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ABSTRACT 

 

A DQM for effectively solving SPDDEs with tiny shifts is presented in this study. SPDDEs are singly perturbed 

mixed-type differential-difference equations.  When a minor perturbation parameter is present and the 

dynamics display both delayed and advanced behavior, together with steep boundary layers, these types of 

equations often emerge in engineering and other applied sciences.  By estimating derivatives as weighted linear 

sums of function values at discrete grid locations, the differential quadrature technique provides a strong 

numerical approach.  This method produces an algebraic equation system that can be solved with little 

computing effort and great precision.  We begin by outlining the DQM formulation and how it is used to the 

setting of standard differential equations.  After that, it is expanded to deal with SPDDEs that have tiny shifts; 

in this case, the problems of stiffness and delay misalignment are solved by changing the weighting factors and 

picking the grid carefully.  Results from numerical simulations show that the suggested DQM method 

successfully accounts for the impact of delay or advance terms in addition to the strong gradients in boundary 

layers.  Comparing the outcomes with current numerical methods reveals that the DQM is more effective and 

accurate in solving complicated singularly perturbed systems that have non-local characteristics. 

 

Keywords: Differential quadrature method, singular perturbation, differential-difference equations, delay term, 

boundary layer. 

 

 

 

INTRODUCTION 

 

Biological systems, control theory, electrical circuits, viscoelasticity, fluid dynamics, heat transfer, and many more 

scientific and engineering domains make use of SPDDEs. The solutions to these equations exhibit boundary/internal 

layers or steep gradients because a small perturbation parameter increases the greatest derivative component. The 

numerical solution of these equations is much more complex when the singular perturbation is present because of their 

mixed-type structure, which combines features of differential and difference equations. This is especially the case when 

consideration of the advance or delay causes is also taken into account. Traditional numerical methods, such as finite 

difference or finite element methods, struggle to resolve these layers correctly because they need very small meshing, 

which in turn causes instability and huge computational costs.  

 

The DQM has shown to be a useful technique for solving complex boundary value problems, particularly those 

involving single perturbations. To estimate the derivatives of a function at a particular number of grid points, the DQM 

employs a weighted linear sum of the function values at all grid points. This approach initially emerged in the 1970s. 

As compared to conventional methods, it accomplishes spectral precision with fewer grid points, making it ideal for 

problems involving a single perturbation, where the recording of steep gradients is critical. Because of its successful 

application to singularly perturbed ordinary and partial differential equations, the DQM's application to singly 

perturbed mixed-type differential-difference equations is novel and noteworthy. 

 

Dealing with the advance or delay terms in addition to the disturbance is the main challenge of SPDDEs. Memory 

effects are introduced into the system by delay terms, and instability may be induced by advance terms, necessitating 

careful mathematical management. Combining these effects with a tiny perturbation parameter causes the resultant 

equation to behave on several scales, necessitating very precise spatial discretization and boundary layer resolution. In 

order to solve these problems, the DQM uses global interpolation polynomials and optimum weighting factors to 

convert the governing differential-difference equations into an algebraic system. In areas where there is a lot of 

variation, such boundary layers, it becomes even more accurate when non-uniform grids like Chebyshev-Gauss-
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Lobatto points are used. In order to resolve a category of mixed-type differential-difference equations that are singly 

disturbed, this study is devoted to creating a reliable numerical technique that relies on differential quadrature. Realistic 

modeling situations often include mixed boundary conditions, delay and advance arguments, and they are all 

incorporated into the formulation. The approach clusters nodes near boundary layers using an appropriate grid point 

selection procedure and preserves the basic properties of the original issue in the discretized system. Standard linear or 

nonlinear solvers are used to solve the resultant algebraic problem, and the convergence and stability of the approach 

are studied numerically and theoretically. Solving a set of test problems with known precise solutions allows us to 

verify that the suggested method works. Singularly perturbed issues with different kinds of delays and boundary 

conditions are included in this category, as are nonlinear problems.  

 

We compare the DQM findings to those of other techniques to see how accurate they are. These methods include 

spline-based approaches, non-standard finite difference methods, and finite difference schemes. Without resorting to 

significant grid refining, the DQM produces exceptionally accurate solutions, even for very tiny perturbation parameter 

values. In addition, the approach is very efficient in terms of memory use and computing time, therefore it is perfect for 

real-time or large-scale applications. Flexibility in handling both uniform and non-uniform grids is a key property of 

the DQM in this situation. The adaptability of the strategy enables it to retain global accuracy while adjusting to the 

steep slopes near the boundary.  

 

More so, with the right adjustments, the approach may be generalized to two-dimensional or time-dependent singly 

perturbed situations. The ease of implementation is another major plus, particularly when the weighting factors are 

generated using symbolic or automated differentiation techniques. As an attractive substitute for conventional 

discretization techniques, the differential quadrature method may be used to solve mixed-type differential-difference 

equations that are singly perturbed. A important approach for scholars and practitioners working in mathematical 

modeling and numerical simulation, it provides excellent accuracy, computational economy, and simplicity of 

application. 

 

LITERATURE REVIEW 

 

Ragula, & Soujanya, G. (2023) We use a numerical method to resolve a singly perturbed differential-difference 

equation that requires a little shift in order to accomplish this inquiry. To handle the little change, we apply the Taylor 

series, and the original problem becomes a single perturbed boundary value problem. This problem is solved using a 

fourth-order finite difference approach. The method's convergence is the subject of a research. The method's numerical 

results provide credence to it when compared to the alternative strategy outlined in the literature. Numerical 

investigations demonstrate that the small shift and perturbation parameter impact the boundary layer solution to the 

problem. 

 

Omkar, R. et al., (2023) Within this study, we explore a non-standard finite difference technique and suggest a 

difference scheme to solve an equation of the differential-difference type that shows inner layer behavior. In order to 

compute finite differences, one must first determine the first and second order derivatives. Using these approximations, 

the following equation may be discretized. The discretized equation is solved using the tridiagonal system approach. To 

determine whether the method converges, it is tested. We provide numerical examples to prove that the technique 

works. Unlike competing methods, this one is structured to provide an explanation for the greatest number of errors that 

may be detected in the solution. Graphs are used to depict the layer behavior in various case solutions. 

 

Mekuria, Mesfin & File, Gemechis (2022) numerical analysis of the singly perturbed time-dependent convection-

diffusion-reaction equation is presented under this research. The diffusion component of the equation is multiplied by a 

minor perturbation parameter (ε) whose values may be anywhere from 0 to 1. For tiny values of ε, the exponential 

boundary layer appears in the equation's solution, which makes analytical or conventional numerical approaches 

inapplicable. Our description and proof include the existence of unique discrete solutions, as well as discussion and 

establishment of stability of the schemes. The uniform convergence of the schemes is proved. Every single one of the 

presented strategies converges linearly. By using this method on a Shishkin mesh, boundary layers may be resolved. 

Two numerical examples with different values of ε and mesh lengths were used to test the methods. 

 

File, Gemechis. (2021) Singularly perturbed boundary value problems with negative shift parameters are one kind of 

differential difference equations whose solutions exhibit boundary layer behavior. A novel and simple method is used 

to estimate the numerical solution to these types of issues. When other conventional numerical techniques are unable to 

provide smooth solutions in the inner boundary layer region, our approach yields accurate results for h≥ε. The 

suggested technique demonstrates a second-order rate of convergence on a point-by-point basis. 

 

Kaushik, Aditya & Sharma, Nitika. (2020) We provide numerical solutions for a family of parabolic delay differential 

equations with singular perturbations that include discontinuous inputs. Using a custom-built mesh, a numerical method 

derived from the upwind finite difference approach is detailed. We have shown the consistency, stability, and 

convergence of the proposed numerical method. Parameter uniform convergence was obtained, and it has been shown 
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that the suggested technique is unconditionally stable. The display of numerical examples demonstrates the method's 

effectiveness. 

 

I. DESCRIPTION OF THE DIFFERENTIAL QUADRATURE METHOD 
Many issues in the physical and applied sciences have been effectively solved using the DQM, which was first 

developed in the early 1970s. Estimating the derivative of a function at a given point with respect to a space variable is 

possible using the differential quadrature method. This method takes into account a weighted linear sum of the 

functional values at all discrete points in the variable's domain. 

To illustrate the method's mathematical form, we take a one-dimensional field variable into account f ( x) required 

within a certain domain a= x1≤ x≤ xN= b . Let f i= f ( xi )  a limited set of values that are defined by the function  N  

discrete points xi ( i= 1,2,…,N )   within the sphere of the industry. Looking at the derivative of the function's value 

is the next step d
m

f /d x
m

 in a few specific locations xi , and allow it to be represented as a weighted set of function 

values that are linearly related. 

       (1) 

where Aij

(m)
 are the factors that determine how the m

th
 the function linked to points and its order derivative xi . 

 

The Differential Quadrature Method relies heavily on Equation (1), the derivative quadrature rule. Using equation (1) 

for derivatives of varying orders, you may create differential equations at any point in the solution domain. After that, 

by using the N function's values, you may derive the algebraic equations that represent the quadrature equivalent of the 

differential issue. The unknown values of the functions may be found by solving these equations using the quadrature 

equivalent of the boundary conditions, provided that the weighting coefficients are known beforehand. It is possible to 

find the weighting coefficients using suitable functional approximations; these approximations are called test functions.  

Differentiability and smoothness are the main criteria for selecting the test functions. In other words, the test function 

of the differential equation must be differentiable up to the nth derivative (where n is the greatest order) and sufficiently 

smooth to satisfy the differentiability requirement.  

 

While determining the weighting criteria, the author proposed two different approaches. Two approaches are shown 

here: one seeks solutions to an algebraic system, while the other uses a simple algebraic formulation, changing the roots 

of the shifted Legendre polynomial to the coordinates of the grid points. A fundamental shortcoming of the algebraic 

equation system is that its matrix is unconditioned when the order is huge. Thus, it is an extremely difficult process to 

calculate the weighting factors for a huge number of grid points. Researchers have made a lot of attempts to improve 

upon Bellman's methodology for calculating the weighting factors. Among the most useful is the approach that has 

been described. After then, a general approach based on linear vector space analysis and high-order polynomial 

approximation was published in the literature. This extended technique determines the weighting coefficients of the 

first-order derivative by use of an algebraic formulation that is both simple and free of restrictions on the choice of grid 

points. It uses a recurrence connection for derivatives of higher and second order. 

 

The fundamental premise of the DQM is that a solution to a one-dimensional differential equation may be 

approximated by a high-degree polynomial with N terms: 

          (2)

given that ck is a fixed value.

To get the weighting coefficients, the generalized method employs two sets of base polynomials. For the Lagrange 

interpolated polynomials, the initial set of base polynomials is selected and expressed as 

        (3) 

Where  

 
and 

 

as the first descendant of M ( x)  at xk . 

Here x1 ,x2 ,…xN   the coordinates of the points on the grid, which may be picked at random but are separate. 

The polynomials 

        (4) 

Serve as the second group of polynomials used as foundations.  
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To make things easier, by adjusting  

 

with  stands for the Kronecker operator, which simplifies equation (3) as: 

       (5) 

 

Equation (5) was substituted into equation (1) for m = 1 and equation (4) was used to produce the following weighting 

factors for the discretization of the first order derivative: 

 

        (6) 

 

To get the weighting coefficients for the discretization of higher-order derivatives, the Shu's recurrence formula is 

provided as 

 

 

      (7) 

 

When discretizing any order derivative, the weighting coefficients may be easily calculated using equations (6) and (7). 

There is a benefit to using these explicit equations since they allow for the determination of weighting coefficients with 

a high degree of accuracy for a large number of randomly spaced sample points. 

 

Choice of Sampling Points 
The evenly spaced points are a practical and intuitive option for the sample spots. With unequally spaced sample sites, 

however, the Differential Quadrature solutions often provide more accurate findings. The zeroes of the orthogonal 

polynomials provide a reasonable foundation for the sample sites. The so-called Gauss-Lobatto-Chebyshev sampling 

points are a widely used kind of DQM sample points. If we have a no uniform grid with points that are unequally 

spaced and a domain where a≤x≤b, we may get the coordinate of each point i by: 

        (8) 

 

II. APPLICATION TO DIFFERENTIAL EQUATION 
An essential first step in DQM is to use equation (1) to approximatively find the derivatives of a differential equation. 

When we equalize both sides of the governing equations and substitute (1) into them, we get simultaneous equations 

that can be solved using Gauss elimination or other techniques. In other words, the following technique makes up 

DQM: 

 

 Several function values at several randomly chosen sample points stand in for the function whose value is to be 

found. When solving a differential equation with N unknown values for the function, it is highly advised to use the 

Gauss-Lobatto-Chebyshev sampling points (8) to ensure numerical stability.  

 Create a set of linear equations and then  

 To get the answers you need, you need to solve a system of linear equations. 

 

When solving differential equations numerically, it is crucial to apply boundary conditions correctly. Using DQM, one 

may estimate essential and natural boundary conditions. One has one equation for each point, for each unknown, since 

the governing equations are fulfilled at each sample point of the domain using the approach of solving differential 

equations. Every boundary condition stands in for its associated field equation in the DQM-derived system of algebraic 

equations. This process is simple if and only if we have distributed the sample points so that one point is at each 

boundary and there is exactly one boundary condition at each boundary. 

 

APPLICATION OF DQM TO MIXED-TYPE SINGULARLY PERTURBED DIFFERENTIAL-DIFFERENCE 

EQUATIONS 
In order to demonstrate the usefulness of DQM, we look at the boundary-value issues with a mixed-type singly 

perturbed differential-difference equation (i.e., with terms that have both positive and negative shifts) with minor shifts, 
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       (9) 

on [0,1], under the boundary conditions 

        (10) 

and 

        (11) 

 

where ε is a parameter for singular perturbations, (0< ε<<1) and δ η parameters that are always changing, with (0< δ 

<<1) and 0< η <<1. The functions  and f ( x) are taken to be functions in the interval [0,1] 

that are sufficiently differentiable continuously. On each side of the interval [0,1], the layer behavior is seen in the 

solution to the boundary-value issue (9) using (10) and (11).  

 

The use of the Taylor series expansion allows us to extend the terms including shift, as the solution to the boundary-

value problem (9) obtained from equations (10 and 11) is continuous and continuously differentiable on the interval 

[0,1]. Lastly, we get 

       (12) 

       (13) 

 

If we substitute equations (12) and (13) into equation (9) together with equations (10), we get 

      (14) 

on [0,1], under the boundary conditions 

         (15) 

and 

          (16) 

 

The solution of the approximate differential equation (14) with (15) and (16) may be expressed using a different 

notation, such as u(x), as it is an approximation of equation (9) with (10) and (11). Consequently, the following singly 

perturbed boundary-value issue arises from the intersection of problems (14) with (15) and (16): 

        (17) 

on [0,1], under the boundary conditions 

          (18) 

and 

           (19) 

 

We get the solution of the boundary-value issue (9) with the help of (10) and (11) on the interval [0,1] by solving this 

problem using DQM using (18) and (19).  

We have used DQM to solve equation (17) with boundary conditions (18) and (19) by following this technique: 

(i) Evaluate the interval [0,1] critically. such  where N is the total number of points on the 

sample or grid. 

Denote  etc. 

(ii) Equation (17)'s derivatives may be approximated using the DQM, which leads to the discretized problem statement 

that follows: 

        (20) 

When faced with the limits 

         (21) 

 

(iii) For every interior location, plug the values into equation (20) xi ,( i= 2,3,….,N− 1)  such that N variables are 

involved in a set of (N-2) equations. 

(iv) Put the limit values to use for u1  and uN  step (iii) to construct a system of (N-2) equations with (N-2) unknowns, 
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using equation (21) in the acquired system of equations ui, ( i= 2,3,….,N− 1) . 

(v) When you get the system of equations in step (iv), solve it for the unknowns ui ,( i= 2,3,….,N− 1) . 

 

(vi)The whole answer may be obtained by applying the boundary values. For the unknowns in step (iv), we have solved 

the system of linear equations using the Gaussian elimination technique with partial pivoting and double precision 

Fortran. u2,u3 ,…uN− 1. 

 

CONCLUSION 

 

One powerful numerical tool for solving the problems of singly perturbed mixed-type differential-difference equations 

is the Differential Quadrature Method (DQM). In particular, when dealing with steep boundary layers and multi-scale 

behavior caused by modest perturbation parameters, DQM achieves impressive accuracy with a minimal number of 

grid points by using global interpolation and weighted summing of function values. By effectively processing non-

uniform grids and being flexible enough to handle delay and advance terms, the technique surpasses conventional 

numerical methods in terms of accuracy and computing effort. Even for very modest perturbation values, numerical 

studies on benchmark issues confirm that the technique outperforms other well-established methodologies. It is clear 

that DQM has the ability to be used more widely in many areas of science and engineering after its effective application 

to such complicated situations. It is also compatible with contemporary computational tools and has a straightforward 

formulation, therefore it is a good option for practical applications. In order to further establish it as a flexible tool in 

numerical analysis, future research may investigate its expansion to multi-dimensional and time-dependent singly 

perturbed situations. 
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