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ABSTRACT 

 

Recently modern optimization methods are often met heuristics and they are very promising in solving NP-

difficult optimization problems. The firefly algorithm (FA) from the met heuristics algorithms have become an 

increasingly important tool of Swarm Intelligence that has been applied in almost all areas of optimization, in 

addition to engineering practice engineering practice. Many problems from different fields have been 

successfully solved using the firefly algorithm and its variants. In this paper, we aim to extend the firefly 

algorithm (EFA) by mixed it with Polyak's log-sigmoid function and The second and third algorithms were 

using the hybridization of the penalty function with Polyak's log-sigmoid function (H1FA) and the latter with a 

augmented Lagrangian function (H2FA) The latest algorithm was given a new style by splitting Polyak's log-

sigmoid function on penalty function All the algorithms proposed in the search to solve nonlinear and 

engineering problems. We have analyzed it similarities and difference with particle swarm optimization. These 

algorithms were implemented and compared to get a good numerical results. 

 

 

 

 

 

 

 

 

 

 

1. INTRODUCTION 

 

Most optimization problems in nonlinear engineering have many constrained. Therefore, an optimal solution to these 

problems would require effective optimization algorithms . In general, optimization algorithms can be divided into two 

main categories: determinism and stochastic. Class I: The determinism algorithms such as climbing the same set of 

solutions if the duplicates begin with the same initial guess. Class II: stochastic algorithms often produce different 

solutions up to the same point. However, the final results, although slightly different, will usually converge to the same 

optimal solutions within a certain accuracy. The determinism algorithms are almost all local search algorithms, and 

they are very effective in finding a local optima. However, there is a risk that algorithms may be confined to the local 
Optima, while Optima Global is out of reach. It is common practice to introduce some random elements into an 

algorithm until it becomes possible to jump out of this area. In this case, the algorithms become random. Random 

algorithms often include an inevitable component and a random component.  

 

The latter can take as many forms as simple random distribution by random sampling of the search area or by random 

walking. Most random algorithms can be considered meteoritic. Metaheuristics algorithm, especially those based on 

the intelligence of the squadron (swarm intelligence), form an important part of contemporary global optimization 

algorithms[14,29,3,2,5,17,18], and good examples are genetic algorithms (GA) [9,7] and particle swarm optimization (PSO) 
[13,12]. Many modern metaheuristics algorithms were developed based on the swarm intelligence in nature [13,6]. New 

modern metaheuristics algorithms are being developed and show their power and effectiveness. For example, the 

Firefly Algorithm (FA) developed by the author shows its superiority over some traditional algorithms [25,15,4,26,30]. 

 
The paper is organized as follows: we will review the main idea of the Firefly Algorithm in Section 2, and we then 

describe a few advantage for the Polyak's log-sigmoid penalty method in Section 3. We proposed the new algorithms so 

that the first algorithm extended the Firefly algorithm (EFA) and the second and third was a hybridization of the Firefly 
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algorithm (H1FA) and (H2FA)The third algorithm was the development of the same algorithm (MFA). All the new 

algorithms with the access feature to solve the problems of variable structural improvement mixed in Section 4. In 

Section 5, we will use our proposed algorithms to find the optimal solution of an some famous and engineering design 

problem. Finally, we will discuss the topics for further studies. 

 

2 FOREWORD TO THE FIREFLY ALGORITHM 

 

Firefly Algorithm  

 

The firefly algorithm was developed by the author [27,28] and was based on the ideal behavior of flame retardant 

properties. In the firefly algorithm, the objective function of a particular improvement problem is related to this flashing 

light or light intensity that helps the firefly squad move to brighter and more attractive locations than to obtain the most 

effective solution [16]. 

 

To illustrate, we can achieve these brilliant characteristics such as the following three rules: s.t Because of the nature of 

the two sexes for all fireflies one firefly will be drawn to another despite his sex and because the gravity is directly 

proportional to the brightness of the lighters, so the less bright fireflies will be attracted by the narrower mattress. 

Finally, the brightness of the firefly is calculated by the the objective function. 
  

If the distance between fireflies increases, both gravity and brightness will decrease significantly. Also if the firefly 

does not find anyone in its vicinity, it will go in a random direction[16]. In the FA, there are two important issues: the 

contrast of light intensity and attractiveness formulation.  

 

Attractiveness: 
 

In the firefly algorithm, the form of attractiveness function of a firefly is the following monotonically decreasing 

function [15]: 

 

𝛽 𝑟 = 𝛽0𝑒
−𝛾𝑟𝑚

           ,  𝑚 ≥ 1                                    ..(1) 
 

Most often, it is used  

 

𝛽 𝑟 = 𝛽0𝑒
−𝛾𝑟2

                                                                 ..(2) 

 

where, r is the distance between any two fireflies, β0 is the initial attractiveness at r=0 and γ is an absorption coefficient 

which controls the decrease of the light intensity. 

 

Distance: 

 

The distance between any two fireflies i and j, at positions xi and xj, respectively, can be defined as a Cartesian distance 
[11]:  

𝑟𝑖𝑗 =  𝑥𝑖 − 𝑥𝑗 2
=   (𝑥𝑖,𝑘 − 𝑥𝑗 ,𝑘)2𝑑

𝑘=1                        ..(3) 

 

where 𝑥𝑖,𝑘 is the kth component of the spatial coordinate xi of the ith firefly and d is the number of dimensions we have, 

for d = 2, we have 

 

𝑟𝑖𝑗 =  (𝑥𝑖 − 𝑥𝑗 )2 + (𝑦𝑖 − 𝑦𝑗 )2                                    ..(4) 

 

However, the calculation of distance r can also be defined using other distance metrics, based on the nature of the 

problem. 

 

Movement 

 

The movement of a firefly i which is attracted by a more attractive i.e., brighter firefly j is given by the following 

equation : 

 

𝑥𝑖+1 = 𝑥𝑖 + 𝛽0𝑒
−𝛾𝑟2

 𝑥𝑖 − 𝑥𝑗  + α (𝑟𝑎𝑛𝑑 −
1

2
)       ..(5) 

 

Where the first chapter is the current state of a firefly, where 𝛽0𝑒
−𝛾𝑟2

 𝑥𝑖 − 𝑥𝑗   is due to the attraction of the firefly 𝑥𝑗 ; 

so if β0= 0 then it turned out to be a simple random movement. Firefly gravity is compared with the previous position. 
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The algorithm will update the position of the firefly to a higher gravity value; otherwise the firefly will remain in the 

current state. The algorithm's termination criterion depends on the number of duplicates given previously [29,10]. 

 

The coefficient α is a randomization parameter determined by the problem of interest, while randis a random number 

generator uniformly distributed in the space [0,1]. As we will see in this implementation of the algorithm, we will use 

β0=1.0, α∈[0,1] and the attractiveness or absorption coefficient γ=1.0, which guarantees a quick convergence of the 
algorithm to the optimal solution [1]. 

 

 

Firefly Algorithm Flow Chart: 

 

Firefly Algorithm (FA) was developed by Xin-She Yang in 2008. The flow chart of Firefly Algorithm is shown in 

(Figure 1 and 2). Every new position should be evaluated by fitness function which is assumed as Integral Square Error 

(ISE) [8]. 

  
 

 
 

Fig. 1: Illustrate Firefly Algorithm [31]. 
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Fig. 2: Flow chart of Firefly Algorithm. 

 

3. CONSTRAINED HANDLING APPROACH 

 

The famous method in community optimization metaheuristic to deal with constraints is to use the penalty method. The 

main idea of this method is to convert a constrained optimization problem into an unconstrained problem by adding a 

specific value to the target function focus on the number of the constraint violation that occurred in a particular 

solution. This technique, known as the penalty method, is one of the famous methods of dealing with evolutionary 

algorithms. The current work has been used the same method: 

 

Constrained Handling 
 

The SUMT (Sequential Unconstrained Minimization Technique) was a very popular approach in the 1960's, where the 

original constrained problem was transformed to a sequence of unconstrained problems. This was a natural approach 

because unconstrained minimization techniques were evenly well developed. As research in optimization algorithms 

progressed, other methods were shown to be more efficient and reliable for "Typical" optimization problems. However, 

as problem has increase in size, it has been found that the more modem methods can become computationally 

inefficient. Thus, especially for structural optimization using approximation techniques, a new look at SUMT is 

appropriate[24]. The basic idea of this method is to transform a constrained optimization problem into an unconstrained 

one by adding a certain value to the objective function based on the  number of constraint violation occurred in a 

certain solution. The SUMT approach is: 

 

Minimize 𝜑 𝑥 = 𝑓 𝑥 + 𝑝 𝑥                                                         (6) 

 

Where υ x  is called the pseudo-objective function and the penalty term, p(x), depends on the method being used. This 

general approach is described in some detail in [23]. The key distinction of each method is the form of p(x). The most 

common approach in the metaheuristic optimization community to handle constraints is to use the penalty method. 

During this project, the following methods were considered: 

 

Exterior Penalty Function 
[23]

 

 

The exterior penalty method, is one of the most popular methods of constraint handling in the evolutionary algorithms. 

If the optimization problem consists of minimization of cost function f subjected to the inequality constraints ci 0, (i 
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1 to p) and equality constraints hi0, (i 1 to q) , then in the penalty function approach, the constraints can be 
collapsed with the cost function into a penalty function defined as follows: 

 

𝑝 𝑥 =  𝜆𝑖  𝑐𝑖
+(𝑥) 2 +  𝑘𝑖  ℎ𝑖 (𝑥) 

2

𝑞

𝑖=1

                                        (7)    

𝑝

𝑖=1

 

𝑐𝑖
+ 𝑥 = max⁡(𝑐𝑖  𝑥 , 0) 

 

The subscript p is the outer loop counter which we will call the cycle number. We begin with a small value of the 

penalty parameter, ki, and minimize the pseudo-objective function,υ x . We then increase ki and repeat the process 

until convergence. 

 

Interior Penalty Function, Polyak's Log-Sigmoid 
[24]

 

 

In recent years the penalty function has been updated by Polyak, et.al.[20] appears to have better properties than the log-

barrier method by eliminating the barrier. Here, they introduced the Log-Sigmoid penalty function (LSP) as: 

 

𝑝 𝑥 = 2𝑘𝑝
−1  𝜆𝑖

𝑝+1 ln 1 + 𝑒𝑘𝑝 𝑐𝑖(𝑥) − ln⁡(2)                                         (8)    

𝑚

𝑖=1

 

Where, 

𝜆𝑖
𝑝+1

=
2𝜆𝑖

𝑝

 1 + 𝑒−𝑘𝑝 𝑐𝑖(𝑥) 
 

 

When compensating by equation (6), the efficiency algorithm increases the efficiency of the traditional algorithm of the 

penalty function. 

 

Augmented Lagrange Multiplier Method 
[24] 

The Augmented Lagrange Multiplier (ALM) method uses the augmented Lagrangian in the form: 

𝐴 𝑥, 𝜆, 𝑘𝑝 = 𝑓 𝑥 +   𝜆𝑖 𝜓𝑖 + 𝑘𝑝𝜓𝑖
2 +   𝜆𝑗+𝑚ℎ𝑗 (𝑥) + 𝑘𝑝ℎ𝑗

2(𝑥)          (7)  

𝑙

𝑗 =1

𝑚

𝑖=1

 

where 

𝜓𝑖 = 𝑚𝑎𝑥  𝑐𝑖 𝑥 ,
−𝜆𝑖

2𝑘𝑝

  

The updated replication formulas for Lagrange multipliers are 

𝜆𝑖
𝑝+1

= 𝜆𝑖
𝑝

+ 2𝑘𝑝  𝑚𝑎𝑥  𝑐𝑖 𝑥 ,
−𝜆𝑖

𝑝

2𝑘𝑝
           i=1,m 

and  

𝜆𝑗 +𝑚
𝑝+1

= 𝜆𝑗+𝑚
𝑝

+ 2𝑘𝑝ℎ𝑗  𝑥 𝑗 = 1, 𝑙 

 

The ALM method is overall considered to be more robust than the interior or exterior methods of the sequential 

unconstrained minimization technique[22,21]. After several years Polyak[19] introduced and analyzed the new Log-

Sigmoid (LS) multipliers method for constrained optimization. The LS method is a homogenization technique recently 

developed as a Lagrange addition to the penalty method. At the same time, the LS method contains some specific 

characteristics, making them fundamentally different from other non-quadrature Lagrangian techniques. He established 

and estimated the approximation rate of the LS method under very moderate assumptions on input data and under the 

second standard stability condition for accurate and inaccurate minimization. 

 

4. NEW PROPOSED ALGORITHMS 
 

Firefly Based on the above interpretation of the two functions, the approach of the penalty function method for Polyak's 

log-sigmoid and the augmented Lagrange function approach was incorporated in the FA. The illustrations of EFA , 

H1FA , H2FA  and MFA are presented in (Figures 3,4,5 and 6) respectively. Firefly algorithm is better than GA and 

PSO in terms of efficiency reach the solution and rate of convergence as described in Yang[28].To illustrate the new idea 

in the algorithms presented in this paper, we can look at the following points: 

 

Extended Firefly Algorithm (EFA): 

 

Through the review presented in the previous section we have observed the possibility of improvement of the firefly 

algorithm through the exterior penalty function, we have tried the same subject, but through the interior penalty 
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functionand specifically using the function Polyak's Log-Sigmoid, a stronger improvement of the previous (penalty 

firefly)as given by the results of the next section and (Table 1a-1b) and we can write the link relationship as follows:. 

We can write the link relationship as: 

 

Polyak's Log-Sigmoid + Firefly algorithm = EFA algorithm  

 

The First Hybrid Algorithm (H1FA): 

The second algorithm was a hybrid between two functions in the convex structure method to take advantage of both 

functions and properties. This algorithm gave a good performance through the results of the next section and (Table 

2a-2b) and we can write the correlation relationship as follows: 

 

θ (Polyak's Log-Sigmoid)+(1-θ)(Penalty)+Firefly algorithm = H1FA algorithm  

 

The Second Hybrid Algorithm (H2FA): 

After the good results obtained from hybridization in the second algorithm we experimented with hybridization of a 

different type between Augmented Lagrange Multiplier and Polyak's Log-Sigmoid functions also using the convex 

structure. The results obtained in the (Table 3a-3b) guide the efficient performance of the third algorithm and we can 

write the correlation relationship as follows: 

 

θ (Polyak's Log-Sigmoid)+(1-θ)(Augmented Lagrange Multiplier)+Firefly algorithm = H2FA algorithm 

 

Modified Firefly Algorithm (MFA): 

Finally, the fourth algorithm was inspired by the idea of hybridization but in a completely new style and significantly 

changed the results as in (Table 4a-4b) of the next chapter with the use of two values to multiply them by the 

numerator and denominator. We can write the link relationship as follows: 

 

(τ1 Polyak's Log-Sigmoid /τ2 Penalty)+Firefly algorithm=MFA algorithm 

 

Now we review the detailed schemas of the new algorithms: 
 

 
 

Fig. 3: Flow chart of proposed  EFA 
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Fig. 4: Flow chart of proposed H1FA 

 

 
 

Fig. 5: Flow chart of proposed H2FA 
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Fig. 6: Flow chart of proposed MFA 

 

5.  NUMERICAL EXAMPLES 

 
From the pseudo code, it is relatively straight forward to implement the Firefly Algorithm using a popular 

programming language such as Matlab The proposed (EFA, H1FA, H2FA and MFA) has been implemented in Matlab 

2011 programming language and run on a PC with Intel(R) Core(TM) i5. An improved firefly algorithm  and Windows 

7 x 32 Pro operating system. The optimization results obtained by the E-FA were compared with the same of the 

original FA [28]. The results of the algorithms used for comparison with the proposed (EFA, H1FA, H2FA and MFA). 

We have tested it against more than a dozen test 

 

Nonlinear test problem for optimization  

 

A number of standard nonlinear functions (see Appendix) were selected to compare the new algorithms and the FA 

algorithm. To demonstrate the efficiency of the new algorithms, the standard FA algorithm was compared with the 

algorithms proposed in the research. The results were compared using statistical analysis to evaluate the efficiency of 
new algorithms based on: 

 

1- Mean: is defined by the following law 

 

Mean=
 𝑥𝑖

𝑛
𝑖=1

𝑛
 

 

2- Standerd Diviation: is defined by the following law 

s.t(𝑥)= 
 (𝑥1−𝑥 )2𝑛

𝑖=1

𝑛−1
 

 

3- Covariance: is defined by the following law 

Cov(𝑥, 𝑦)=
 (𝑥𝑖−𝑥 )(𝑦𝑖−𝑦 )𝑛

𝑖=1

𝑛−1
 

 

The statistical results in all Tables are showed that the functions (1-18) have a small standard deviation of the new 

method compared to the standard method and that the amount of dispersion Little fireflies. 
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Engineering Applications  

 

Now we can apply Firefly algorithm to perform various design optimization tasks. In principle, any improvement 

problems can be solved by genetic algorithms and particle swarm enhancements can be solved by Firefly algorithm. 

For simplicity to be effective in improving the real world, we use the Football Association to find the best solution for 

the standard, but it is very difficult [5] . This is a well-known test problem for optimization and it can be defined as: 
 

1. Compression spring design optimization problem 

 

This problem[4] minimizes the weight of a compression spring (Figure 7), subject to Minimum deviation constraints, 

shear stress, frequency of mutation, limits on external diameter and design variables. There are three design variables: 

wire diameter x1, the mean coil diameter x2, and the number of active coils x3.  

 
Fig. 7: Compression Spring. 

 

2. Speed Reducer design optimization problem 
 

The speed reduction design [4] shown in (Figure 8), with the x1 face width, is the tooth unit x2, number of teeth on 

pinion x3, length of the first shaft between bearings x4, length of the second shaft between bearings x5, diameter of the 

first shaft x6, and diameter of the first shaft x7 (all variables continuous except x3 that is integer). The weight of the 

reducer should be reduced in accordance with the gear bend limits of the gear teeth, surface stress, and the occasional 

deviations of columns and pressures in the column. 

 
Fig. 8: Speed Reducer. 

 

3. Welded beam design optimization problem 

 

The problem is to design a welded beam for minimum cost, subject to some constraints[4]. (Figure 9) shows the welded 

beam structure which consists of a beam A and the weld required to hold it to member B. The objective is to find the 

minimum fabrication cost, consideration four design variables: x1, x2, x3, x4 and constraints of shear stress τ , bending 
stress in the beam σ, buckling load on the bar Pc, and end deflection on the beam δ. 
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Fig. 9: Welded Beam. 

 

Table 1a: Comparing FA Algorithm against EFA in 2-dimension models  for ( best objective, mean, Standard 

Division, Covariance) total N of function evaluation=20000 

 

function 
FA EFA 

Best obj. Mean Std Covariance Best obj. mean Std covariance 

F1 3.3746e+015 1.6842 0.8969 0.8044 4.9517e+005 3.3444 0.5286 0.2794 

F2 3.4471e+016 2.025 0.0354 0.0012 8.4686e+016 2.5250 0.6718 0.4513 

F3 1.9315e+015 2.2152 1.1098 1.2317 1.4640e+004 1.9904 0.4669 0.2180 

F5 5.1453e+017 3.025 2.7931 7.8012 1.2155e+015 1.5250 0.6718 0.4512 

F6 5.1816e+005 1.7626 1.2020 1.4448 1.0572e+005 1.6918 1.2464 1.5535 

F7 2.5000e+012 1.3761 0.4612 0.2127 -0.0469 1.4006 0.2767 0.0766 

F8 2.8046 1.2966 0.3487 0.1216 4.7939e+004 1.4088 0.1753 0.0307 

F10 8.6963e+003 0.7279 0.7071 0.5 2.2778e+003 1.6135 0.7071 0.5000 

F11 1.0000e+015 1.2771 1.0223 1.0450 1.0000e+015 1.7508 0.3525 0.1242 

F12 1.0000e+015 2 0 0 1.0000e+015 2.9588 1.3559 1.8385 

F13 6.7089e+004 0.8698 0.4936 0.2436 992.9370 0.8769 0.5435 0.2954 

F14 5.7584e+014 0.9123 0.5484 0.3007 4.4100e+017 1.5250 0.6718 0.4512 

F15 7.2810e+003 0.9713 0.3366 0.1133 6.1294e+003 0.8865 0.6543 0.4282 

 

Table 1b: Comparing FA Algorithm against EFA in 3-dimension and Engineering models for (total N of 

function evaluation=20000 & n of fireflies=40)  

 

function 
FA EFA 

Best obj. Mean Std covariance Best obj. Mean Std covariance 

F4 2.0100e+015 1.0167 0.9751 0.9508 1.5688e+015 1.1 0.9836 0.9675 

F9 4.3213 3.7667 2.0404 4.1633 -103.2000 4.7667 1.0786 1.1633 

Spring 0.0127 3.5812 5.1576 26.6 90000 3.8333 3.2532 10.5833 

Speed 2.504 8.024 9.1471 83.5497 1.345 6.6509 5.8031 33.6761 

Beam 1.766 3.3505 4.2119 0.1877 0.7508 0.8007 0.501 0.251 

 

Table 2a: Comparing FA Algorithm against H1FA in 2-dimension models for ( best objective, mean, Standard 

Division, Covariance) total N of function evaluation=20000  

 

function 
FA H1FA 

Best obj. Mean Std Covariance Best obj. Mean Std covariance 

F1 3.3746e+015 1.6842 3.9175     0.8044 1.3534e+016 2.3708     0.8898     0.7918 

F2 3.4471e+016 2.025 3.8633 0.0012 1.8383e+018 4.7750     1.0253     1.0513 

F3 1.9315e+015 2.2152 10.5625 1.2317 1.5894e+015 4.4537     2.1868     4.7821 

F5 5.1453e+017 3.025 10.9354 7.8012 8.0684e+017 3.9000     0.5657     0.3200 

F6 5.1816e+005 1.7626 1.6301 1.4448 2.1774e+005 2.2289     0.8954     0.8018 

F7 2.5000e+012 1.3761 3.9175     0.2127 1.1688e+017 2.6500     0.8485     0.7200 

F8 2.8046 1.2966 3.8633 0.1216 3.7521e+016 2.1500     0.1414     0.0200 
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F10 8.6963e+003 0.7279 10.5625 0.5 1.5610e+015 1.6500     0.8485     0.7200 

F11 1.0000e+015 1.2771 10.9354 1.0450 2.2500e+014 2.7500     0.3535     0.1250 

F12 1.0000e+015 2 1.6301 0 4.7610e+015 3.6500     0.9192     0.8450 

F13 6.7089e+004 0.8698 3.9175     0.2436 3.4225e+015 1.1500     0.1414     0.0200 

F14 5.7584e+014 0.9123 3.8633 0.3007 4.5066e+017 1.5250     0.6718     0.4512 

F15 7.2810e+003 0.9713 10.5625 0.1133 1.1248e+004 0.9996     0.0394     0.0016 

 

Table 2b: Comparing FA Algorithm against H1FA in 3-dimension and Engineering models for (total N of 

function evaluation=20000 & n of fireflies=40)  

 

function 
FA H1FA 

Best obj. Mean Std covariance Best obj. Mean Std covariance 

F4 2.0100e+015 1.0167 0.9751 0.9508   1.7256e+018 4.1000     1.9793     3.9175     

F9 4.3213 3.7667 2.0404 4.1633 3.4083e+018 4.7667     1.9655     3.8633 

Spring 0.0127 3.5812 5.1576 26.6 1.0406e+016 4.2500     3.2500    10.5625 

Speed 2.504 8.024 9.1471 83.5497 2.155 5.9755     3.3069    10.9354 

Beam 1.766 3.3505 4.2119 0.1877 6.2061 2.0439     1.2767     1.6301 

 

Table 3a: Comparing FA Algorithm against H2FA in 2-dimension models for ( best objective, mean, Standard 

Division, Covariance) total N of function evaluation=20000  

 

Function 
FA H2FA 

Best obj. Mean Std covariance Best obj. Mean Std Covariance 

F1 3.3746e+015 1.6842 0.8969 0.8044 1.2476e+015 1.5215     1.1618     1.3498 

F2 3.4471e+016 2.025 0.0354 0.0012 1.6925e+015 1.2750     0.3182     0.1012 

F3 1.9315e+015 2.2152 1.1098 1.2317 1.4174e+015 3.6456     1.9153     3.6685 

F5 5.1453e+017 3.025 2.7931 7.8012 3.5830e+016 3.9000     0.5657     0.3200 

F6 5.1816e+005 1.7626 1.2020 1.4448 1.2502e+012 2.7346     0.5388     0.2903 

F7 2.5000e+012 1.3761 0.4612 0.2127 1.1463e+016 2.6250     0.8839     0.7813 

F8 2.8046 1.2966 0.3487 0.1216 1.5770e+015 1.3761     0.4612     0.2127 

F10 8.6963e+003 0.7279 0.7071 0.5 1.0750e+015 3.1250     1.2374     1.5313 

F11 1.0000e+015 1.2771 1.0223 1.0450 1.4081e+011 2.5000     0.7072     0.5001 

F12 1.0000e+015 2 0 0 1.0000e+015 2    0  0 

F13 6.7089e+004 0.8698 0.4936 0.2436 1.0980e+016 1.3500     1.2021     1.4450 

F14 5.7584e+014 0.9123 0.5484 0.3007 2.3364e+006 0.8027     0.5385     0.2900 

F15 7.2810e+003 0.9713 0.3366 0.1133 2.4734e+015 1.3750     0.1768     0.0313 

 

Table 3b: Comparing FA Algorithm against H2FA in 3-dimension and Engineering models for(total N of 

function evaluation=20000 & n of fireflies=40)  

 

function 
FA H2FA 

Best obj. Mean Std covariance Best obj. Mean Std Covariance 

F4 2.0100e+015 1.0167 0.9751 0.9508 1.0920e+016 2.1000     0.9836     0.9675 

F9 4.3213 3.7667 2.0404 4.1633 1.0539e+017 3.4333     0.5132     0.2633 

Spring 0.0127 3.5812 5.1576 26.6 2.5733 1.8333     1.6042     2.5733 

Speed 2.504 8.024 9.1471 83.5497 1.504 3.0716     0.5109     0.2611 

Beam 1.766 3.3505 4.2119 0.1877 1.463 1.0914     0.4586     0.2103 

 

Table 4a: Comparing FA Algorithm against MFA in 2-dimension models  for( best objective, mean, Standard 

Division, Covariance) total N of function evaluation=20000  

 

Function 
FA MFA 

Best obj. Mean Std covariance Best obj. Mean Std Covariance 

F1 3.3746e+015 1.6842 0.8969 0.8044 2.6433e+006 2.4984     0.7076     0.5006 

F2 3.4471e+016 2.025 0.0354 0.0012 1.1900e+006 1.4114     0.1252     0.0157 

F3 1.9315e+015 2.2152 1.1098 1.2317 1.4286e+006 2.7021     0.8024     0.6438 
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F5 5.1453e+017 3.025 2.7931 7.8012 1.5524e+016 1.9000     0.8485     0.7200 

F6 5.1816e+005 1.7626 1.2020 1.4448 1.0279e+007 3.4717     0.0173     0.0003 

F7 2.5000e+012 1.3761 0.4612 0.2127 1.1157e+017 2.6250     0.8839     0.7813  

F8 2.8046 1.2966 0.3487 0.1216 2.4067e+006 1.3053     0.7697     0.5925 

F10 8.6963e+003 0.7279 0.7071 0.5 2.8391e+005 1.9757     0.7071     0.5 

F11 1.0000e+015 1.2771 1.0223 1.045 1.1025e+015 4.0500                  0 0 

F12 1.0000e+015 2 0 0 1.0000e+015 1.9441     0.0791     0.0063 

F13 6.7089e+004 0.8698 0.4936 0.2436 1.1236e+017 2.8500     0.4950     0.2450 

F14 5.7584e+014 0.9123 0.5484 0.3007 4.3867e+006 0.7928     0.6371     0.4058 

F15 7.2810e+003 0.9713 0.3366 0.1133 3.2852e+015 1.3750     0.1768     0.0313 

 

Table 4b: Comparing FA Algorithm against MFA in 3-dimension and Engineering models for(total N of 

function evaluation=20000 & n of fireflies=40)  

 

Function 
FA MFA 

Best obj. Mean Std covariance Best obj. Mean Std Covariance 

F4 2.0100e+015 1.0167 0.9751 0.9508 1.5688e+015 1.1000     0.9836     0.9675 

F9 4.3213 3.7667 2.0404 4.1633 
  

1.1105e+010 
3.4333     0.5132     0.2633 

Spring 0.0127 3.5812 5.1576 26.6 0.0027 1.3721     1.1859     0.2079 

Speed 2.504 8.024 9.1471 83.5497 2.004 3.4703     1.6358     2.6757 

Beam 1.766 3.3505 4.2119 0.1877 0.1549 1.6256     1.9534     3.8159 

 

 

 
 

Fig. 10: Traditional FA  
  

 
 

Fig. 11: Extended EFA  
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Fig. 12: Hybrid (1) H1FA  
 

 
 

Fig. 13: Hybrid (2) H2FA  
 

 
 

Fig. 14: Modified MFA 
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CONCLUSION 

 

The statistical results in (Tables 1-4) showed that the functions (1-18) have a small standard deviation of the new 

method compared to the standard method and that the amount of dispersion of fireflies is small. In this way we have 

been able to demonstrate the ability of the algorithms provided in the research to overcome the firefly algorithm in the 

value of the optimal solution to the target function. The final forms of the new algorithms showed a good performance 
compared to the traditional firearm algorithm and the nonlinear and geometric functions in this study. 

 

Appendix  

 

1-𝑚𝑖𝑛𝑓 𝑥 = (𝑥1 − 3)2 + (𝑥2 − 2)2 

s.t           

𝑥1
2 − 𝑥2

2 + 5 = 0 

𝑥1 + 2𝑥2 − 4 ≤ 0 

2-𝑚𝑖𝑛𝑓 𝑥 = 𝑥1
2 − 𝑥1𝑥2 + 𝑥2

2  
s.t                                        

𝑥1
2 + 𝑥2

2 − 4 = 0 

2𝑥1 − 𝑥2 + 2 < 0 

3-𝑚𝑖𝑛𝑓 𝑥 = (𝑥1 − 2)2 + (𝑥2 − 1)2 
s.t     

𝑥1 − 2𝑥2 = −1 

−
𝑥1

2

4
+ 𝑥2

2 + 1 ≥ 0 

4-𝑚𝑖𝑛𝑓 𝑥 = 𝑥1
3 + 2𝑥2 

2 𝑥3 + 2𝑥3 

s.t        

𝑥1
2 + 𝑥2 + 𝑥3

2 = 4 

𝑥1
2 − 𝑥2 + 2𝑥3 ≤ 2 

5-𝑚𝑖𝑛𝑓 𝑥 = 𝑒1 − 𝑥1𝑥2 + 𝑥2
2  

s.t        

𝑥1
2 + 𝑥2

2 = 4 

2𝑥1 + 𝑥2 ≤ 2 

6-𝑚𝑖𝑛𝑓 𝑥 = 𝑥1
3 − 3𝑥1𝑥2 + 4 

s.t        

−2𝑥1 + 𝑥2
2 = 5 

5𝑥1 + 2𝑥2 ≥ 18 

7-𝑚𝑖𝑛𝑓 𝑥 = −𝑒−𝑥1−𝑥2  
s.t           

𝑥1
2 + 𝑥2

2 − 4 

𝑥1 − 1 ≥ 0 

8-𝑚𝑖𝑛𝑓 𝑥 = −𝑥1
2 + 2𝑥1𝑥2 + 𝑥2

2 − 𝑒−𝑥1−𝑥2  

s.t      

𝑥1
2 + 𝑥2

2 − 4 = 0 

𝑥1 + 𝑥2 ≤ 1 

9-𝑚𝑖𝑛𝑓 𝑥 = −𝑥1𝑥2𝑥3 

s.t        

20 − 𝑥1 ≥0 

11 − 𝑥2 ≥ 0 

42 − 𝑥3 ≥ 0 

72 − 𝑥1 − 2𝑥2 − 2𝑥3 ≥ 0 

10-𝑚𝑖𝑛𝑓 𝑥 = (𝑥1 − 1)2 + 𝑥2 − 2 

s.t           

𝑥2 − 𝑥1 = 1 

𝑥1+𝑥2 ≥ 2 

11-𝑚𝑖𝑛𝑓 𝑥 = 𝑥1
2 + 𝑥2

2  

s.t             

𝑥1 − 3 = 0 

𝑥2 − 2 ≤ 0 
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  12-𝑚𝑖𝑛𝑓 𝑥 =
1

4000
 𝑥1

2 + 𝑥2
2 − cos 𝑥1 𝑐𝑜𝑠  

𝑥2

 2
 + 1  

s.t     

𝑥1 − 3 = 0 

𝑥2 − 2 ≤ 0 

13-𝑚𝑖𝑛𝑓 𝑥 = (𝑥1 − 2)2 +
1

4
𝑥2

2 

 s.t   

2𝑥1 + 3𝑥2 = 4 

𝑥1 −
7

2
𝑥2 ≤ 1 

14-𝑚𝑖𝑛𝑓 𝑥 = −𝑥1𝑥2 

s.t 

20𝑥1 + 15𝑥2 − 30 = 0 

𝑥1
2

4
+ 𝑥2

2 − 1 ≤ 0 

15-𝑚𝑖𝑛𝑓 𝑥 = 𝑥1
4 − 2𝑥1

2𝑥2 +  𝑥1
2 + 𝑥1𝑥2

2 − 2𝑥1 + 4  
s.t 

𝑥1
2 + 𝑥2

2 − 2 = 0 

0.25 𝑥1
2 + 0.75𝑥2

2 − 1 ≤ 0 
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