

Synthesis and Spectral Studies of Mercury (II) Complexes with S₄ Macrocyclic Ligands

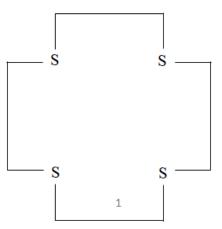
Ram Bishes Yadav¹, Anil Kumar^{2*}, Sunil Bhatia³, Sunil Kumar Mishra⁴, Mukesh Srivastava⁵

> ^{1-3,5}Department of Chemistry, Bipin Bihari College, Jhansi (UP) India ⁴Department of Chemistry, D.A-V. College, Kanpur (U.P.) India

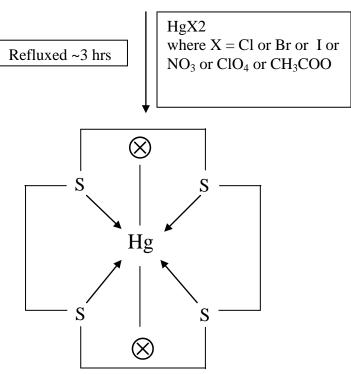
ABSTRACT

The synthesis and characterization of numerous macrocyclic polyoxaethershave been reported in last few decades [1-5] but a limited number of macrocyclic polythiaethers [6-11]; mixed azo-oxa-thia macrocyclic [1-5] and microbicyclic [12-13] polythers containing four or more sulfur atoms in macrocyclic ring have been reported. A keen interest has been raised for macrocyclic polyoxaethers through stable complex formation with cations of the alkali and alkaline earths; ammonium and silver [14]. As model compounds these are used varying degrees of biological activity in the process of active ion transport [15-18]. The thia and mixed oxa-thia macrocyclic show lower selectivity and coordinatability of active metal ions [1-5]. A survey of literature reveals that very few macrocyclic polythiaethers have been synthesised and characterised [19]. In this paper 1, 4, 7, 10–Tetrathiacycloddecane i.e. [12]aneS₄ and 1, 4, 8, 11– Tetrathiacyclotetradecane i.e. [14]aneS₄ have been synthesised and interacted with HgX₂ in 1:1 molar ratio in methanol (Where X=Cl or Br or I or NO₃ or ClO₄ or CH₃COO) to form Hg(II) complexes.

EXPRIMENTAL

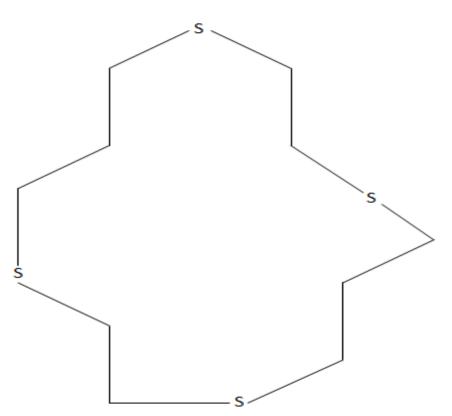

The ligands 1, 4, 7, 10–Tetrathiacyclodo-decane i.e. [12]aneS4 and 1,4,8,11–Tetrathiacyclotetradecane i.e. [14]aneS4 were synthesised by procedure as given in literature [19].

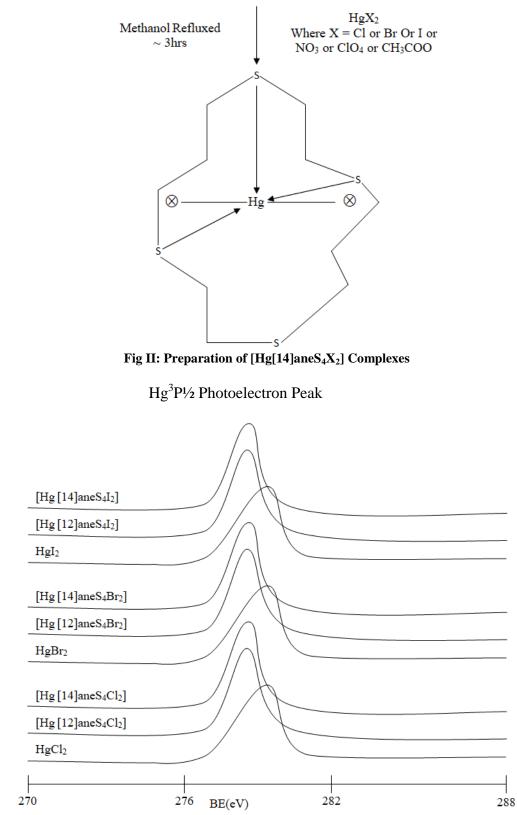
Preparation of [Hg[12]aneS4X2] and [Hg[14]aneS4X2]


1 mmol of [12]aneS4 or [14]aneS₄ in methanol is mixed with 1 mmol of HgX₂ (where X = Cl or Br or I or NO₃ or ClO₄ or CH₃COO) and refluxed for 3 hrs. The orange red precipitate was obtained, filtered and recrystallised with benzene: pet–ether (9:1) and air–dried [Fig. I & II].

RESULTS AND DISCUSSION

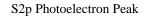
All these prepared complexes $[Hg[12]aneS_4X_2]$ and $[Hg[14]aneS_4X_2]$ (where X = Cl or Br or I or NO₃ or ClO₄ or CH₃COO) were orange red solids. They were stable at room temperature. The elemental analysis for Hg, C, H, S, Cl or Br were found (for calculated and found values) within $\pm 0.5\%$.





1, 4, 7, 10-Tetrathiacyclodecane i.e. [12] aneS₄Ligand

Fig. 1: Preparation of [Hg[12]aneS₄X₂] Complex



1, 4, 8, 11-Tetrathiacyclotetradecane i.e. [14] aneS4 Ligand

Fig.3: $Hg^{3}P^{1/2}$ binding energies (eV) in HgX_{2} ; $[Hg[12]aneS_{4}X_{2}]$ and $[Hg[14]aneS_{4}X_{2}]$ Complexes

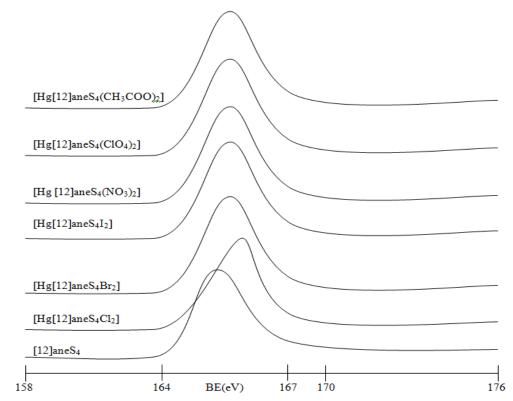


Fig.4: S2p binding energies (eV) in ligand [14]aneS₄ and [Hg(14)aneS₄X₂] where X=Cl or Br or I

Sr. No.	Ligand & Complex	Hg		62.	Х		
		Hg ³ p1/2	Hg ³ p3/2	S2p	Cl ₂ p	Br ₃ p ¹ / ₂	N1s from NO ₃
1	[12]aneS4	-	-	166.2	-	-	-
2	[14]aneS4	-	-	166.2	-	-	-
3	$HgCl_2$	279.8	847.8	-	201.8	-	-
4	$[Hg[12]aneS_4Cl_2]$	278.8	846.8	167.2	202.2	-	-
5	[Hg[14]aneS ₄ Cl ₂]	278.8	846.8	166.2-167.4	202.2	-	-
6	HgBr ₂	279.6	847.6	-	-	189.6	-
7	[Hg[12]aneS ₄ Br ₂]	278.6	846.6	167.0	-	190.0	-
8	[Hg[14]aneS ₄ Br ₂]	278.6	846.6	166.2-167.2	-	190.0	-
9	HgI_2	279.4	847.4	-	-	-	-
10	$[Hg[12]aneS_4I_2]$	278.4	846.4	167.0	-	-	-
11	$[Hg[14]aneS_4I_2]$	278.4	846.4	166.2-167.2	-	-	-
12	$Hg(NO_3)_2$	279.4	847.4	-	-	-	404.4
13	$[Hg[12]aneS_4(NO_3)_2]$	278.4	846.4	167	-	-	405.2
14	$[Hg[14]aneS_4(NO_3)_2]$	278.2	846.2	166.2-167.2	-	-	405.2
15	$Hg(ClO_4)_2$	279.2	847.2	-	-	-	-
16	$[Hg[12]aneS_4(ClO_4)_2]$	278.0	846.2	167.2	-	-	-
17	$[Hg[14]aneS_4(ClO_4)_2]$	278.0	846.2	166.2-167.2	-	-	-
18	$Hg(CH_3COO)_2$	279.0	847.0	-	-	-	-
19	[Hg[12]aneS ₄ (CH ₃ COO) ₂]	278.0	846.0	167.0	-	-	-
20	$[Hg[14]aneS_4(CH_3COO)_2]$	278.0	846.0	166.2-167.2	-	-	-

The molar conductance of all these complexes were obtained below 38 $Ohm^{-1} cm^2 mo1^{-1}$ in acetone 10^{-3} molar solution at room temperature, suggested all these complexes are no electrolyte with composition of [Hg[12]aneX₄X₂] and [Hg[14]aneS₄X₂] [20].

Far IR spectra have shown \cup Hg-Cl frequency in range of 260-280 cm⁻¹ in [Hg[12]aneS₄Cl₂] and [Hg[14]aneS₄Cl₂] complexes [21]; \cup Hg-Br in range of 280-293 cm⁻¹ in [Hg[12]aneS₄Br₂] and [Hg[14]aneS₄Br₂] complexes [21]; \cup Hg-II in the range of 100-123 cm⁻¹ in [Hg[12]aneS₄I₂] and [Hg[14]aneS₄I₂] complexes [21]; \cup Hg-NO₃ in the range 1384-1306 cm⁻¹ in [Hg[12]aneS₄(NO₃)₂] and [Hg[14]aneS₄(NO₃)₂] complexes [22]; \cup Hg-ClO₄ in the range of 610-624 cm⁻¹ in [Hg[12]aneS₄(ClO₄)₂] and [Hg[14]aneS₄(ClO₄)₂] complexes [23] and \cup Hg-CH₃COO IR frequency in the range 1448-1405 cm⁻¹ in [Hg[12]aneS₄(CH₃COO)₂] and [Hg[14]aneS₄(CH₃COO)₂] complexes [24].

The binding energies (eV) of prepared ligands [12]aneS₄and [14]aneS₄;HgX₂ and prepared complexes [Hg[12]aneS₄X₂] and [Hg[14]aneS₄X₂] for Hg³p¹/₂,³/₂, S2p and Xnp(where X= Cl or Br or I or NO₃ or ClO₄ or CH₃COO) are listed in Table I. It was observed that the binding energies (eV) of Hg³p¹/₂,³/₂ in the starting material HgX₂(where X= Cl or Br or I or NO₃ or ClO₄ or CH₃COO) were more than in prepared complex. [Hg[12]aneS₄X₂] or [Hg[14]aneS₄X₂] (Table I). These XPS data suggested that the electron density in mercury metal ion is more in prepared complexes than in HgX₂ due to coordination (Fig. 3) [25].

CONCLUSION

The Sp photoelectron spectra of all [Hg[12]aneS₄X₂] complexes have shown only one single high intensity symmetrical photoelectron peak towards higher binding energy side [BE~167.2-167.4eV] than S2p photoelectron peak of ligand i.e. [12]aneS₄ but in all [Hg[14]aneS₄X₂] complexes have shown two S2p photoelectron peak in intensity ratio 3:1;one high intensity energy side and other lower intensity at same position as in ligand [14]aneS₄. These S2p binding energies (eV) data suggested that all four sulfur atoms are coordinated to metal mercury ion in [Hg[12]aneS₄X₂] complexes but in [Hg[14]aneS₄X₂] complexes only three sulfur atoms are coordinated to metal mercury ion;one sulfur is uncoordinated (Table I)(Fig4). The Hg3s photoelectron peaks in all these metal complexes i.e [Hg[12]aneS₄X₂] and [Hg[14]aneS₄X₂] have not shown multiple splitting, suggested diamagnetic nature [25].

On the basis of above physicochemical data of $[Hg[12]aneS_4X_2]$ and $[Hg[14]aneS_4X_2]$ complexes i.e. on the basis of elemental analysis, molar conductivity, IR and X-Ray photoelectron (XPS) data; it may be propose structure of all these complexes as shown in Fig.I and II and an octohedral geometry for $[Hg[12]aneS_4X_2]$ and trigonal bipyramidal geometry for $[Hg[14]aneS_4X_2]$ may be established.

REFERENCES

- [1]. C.J. Padersen, J.Am. Chem.Soc., 89, 2495, 1967.
- [2]. C.J. Padersen, J.Am. Chem.Soc., 92, 386, 1970.
- [3]. C.J. Padersen, Fed. Proc. Fed. Amer.Soc.Exp.Biol. 27, 1305, 1968.
- [4]. C.J. Padersen, J. Org. Chem., 36, 254, 1971.
- [5]. N.S. Punia, J.Am. Chem.Soc., 96, 1012, 1974.
- [6]. D.St.C.Black and I.A. Mclean, Tetrahedron Lett., 3961, 1969.
- [7]. W.Rosen and D.H.Busch, J.Am.Chem.Soc., 91, 4694, 1969.
- [8]. W.Rosen and D.H.Busch, Inorg.Chem. 9, 262, 1970.
- [9]. L.F. Linday and D.H.Busch, J.Am.Chem.Soc., 91, 4890, 1969.
- [10]. N.B. Tucker and E.E.Reid, J.Am.Chem.Soc., 55, 775, 1933.
- [11]. S.R. Meadow and E.E.Reid, J.Am.Chem.Soc., 56, 2177, 1934.
- [12]. B. Dietrich, J.M. Lehn and J.P.Sauvage, Chem.Commun., 1055, 1970.
- [13]. B. Dietrich, J.M. Lehn and J.P.Sauvage, Tetrahedron. Lett., 2990, 1989.
- [14]. H.K. Freusdorff, J.Am.Chem.Soc., 93, 800, 1971.
- [15]. R.W. Izatt, J.H. Rytting, D.P.Nelson, B.L.Haymore and J.J. Christensen, Science, 184, 44, 1969.
- [16]. G.Eisenmen, S.M. Ciant and G. Szobo, Fed. Proc. Fed. Amer.Soc. Exo.Biol., 27, 1289, 1968.
- [17]. B.C.Pressman, Fed.Proc.Fed.Amer. Soc. Exo. Biol., 27, 1283, 1988.
- [18]. A. Thore, D.L. Kaister, N. Shani and A.San Piatro, Biochemistry, 7, 3499, 1968.
- [19]. Leo A. Ochrymowycz, Ching-Pong Mak and John D. Michra, J. Org. Chem., 39, 2079, 1974.

- [20]. W.L. Geary, Coord.Chem.Rev., 13, 47, 1971.
- [21]. K.K. Norang and MeenaKumariSingh, Synthesis and reactivity in Inorganic and Metal-Organic Chemistry , 17(1), 57, 1987.
- [22]. William Kemperer and Louis Lindimen, The Journal of Chemical Physics, 25, 397, 1956.
- [23]. EmelZrgon, Hulya Sivas and KadriyaBenkl, Turk.J.Biol., 34, 379, 2010.
- [24]. Omyana A.M. Ali, Samir M.El. Medani, Maha R Abu Serea, Abeer S.S. Sayed, SpectrochimaActa Part A: Molecular and Biomolecular Spectroscopy, 136, 651, 2015.
- [25]. Shekhar Srivastava, Appl. Spectrosc. Rev., 22, 401, 1986.