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ABSTRACT

In this paper we have discussed about the different colourings of shadow graph of star graph . Also we have
found the chromatic number ¢(G), b-chromatic number %(G) and Grundy colouring I'(G).
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INTRODUCTION

Graph colouring is a colourful concept in graph theory which has many application in real life situations. In 1979
Grundy number was defined initially by Christen and Selkow[4]. Manounchehrzaker[6] explored the results on the
Grundy chromatic number of graphs andobtained the inequalities.

Victor Campose,et.al[8] analyzed the bounds on the Grundy number of products like direct, strong and lexigographic of
graphs. In the year of 1999 Irwing and Manlone[9] gave an idea about b-colouring and discussed the bounds for b-
chromatic number of graphs. Alkhateeb[2] characterized the b-colouring of various graphs. S.K. Vaidhya[10] estimated
the b-chromatic number of shadow and splitting graph of path graph. N. Parvathi.et.al[11] estimated the Grundy
colouring and b-colouring of join of path and complete graph.

PRELIMINARIES

Definition 1: [1]
A Graph is an ordered pair G=(V,E) comprising V the set of vertices (also called nodes or points,E the set of edges (also
called links or lines)

Definition 2: [3]
A Proper colouring of the graph assigns colours to the vertices, edges or both so that proximal elements are assigned
distinct colours. The chromatic number ¢(G) of G is the minimum K forwhich G is k-chromatic.

Definition 3: [2]

The b-chromatic number ¥(G) of a Graph G is the largest positive integer K such that G admits a proper K-colouring in
which every colour class has a representative adjacent to atleast one vertexin each of the other colour classes. Such a
colouring is called b-colouring.

Definition 4: [6]

A Grundy colouring of order k of a graph G is a k-colouring of G with colours 1,2,....k such thatfor each vertet x the
colour of x is the smallest positive integer not used as a colour on any neighbour of x in G. The Grundy number I'(G) is
the largest integer k for which G has a Grundycolouring of order k.

Definition 5: [10]

The shadow graph of the connected Graph G is constructed by taking two copies of G say G”and G’. Join each vertex v’
in G’ to the neighbours of the corresponding vertex u” in G”.
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Definition 6: [12]
The star graph s, of order n is a tree on n nodes with one node having vertex degree (n-1) andthe other (n-1) node
having vertex degree 1 . star is a complete biograph k1

Definition 7: [5]
P, be a path graph with n vertices. The comb graph is defined as P, O K. It has 2n vertices and2n-1 edges.

Definition 8: [10]
The splitting graph of a graph G, is obtained by adding a new vertex u’ corresponding to each vertex u of G such that
N(u)=N(u’) where N(u) and N(u”) are the neighbourhood sets of u and v’.

Result 1: [6]
k+1
Let G be a graph set 8(G) = kand (G) = m, thenI['(G) < m.
2 _

Grundy number for shadow graph of star and comb graphsTheorem1:
For n> 2, chromatic number of G is 2 where G is shadow graph of star graph.

Proof:

Let G be a shadow graph of star graph. Vertex set V(G)= {u,u1, uz ... ... ... Up, Wy o Un'}
For proper coloring, let us consider the color set {1,2} Since u and w'are non-adjacent they are assigned by colour 1
Since ug, Uz v v e u, are adjacent to u then it is coloured by 2 and uy,u ... unare adjacent

to u'and not adjacent to u1, u;
Hence ¢(G)=2

uy it is colored by 2.

Theorem 2:
Let G be a shadow graph of star graph then x(G)=2 for all n

Proof:
Let G be a shadow graph of star graph on 2n+2 vertices u,us, uz ... ... ... Up, U, Uyg e Uy
Here the indepensdent sets are {u,i’ }..ocoooevveriiceneniceniennn, {un,un'}
Hence a(G)=2, w(G) =2, n(G) = 2n+2, A(G) = 2n
A(G)+w(G)+n(G)+2
From reference 4,we know that, x(G)< (©)+0(@)in(G)
2
Let us prove this theorem by induction on n.
Step 1:
When n =2
£ (G)< A(Q)+w (@) +n(G)+2 < 2n+2+42n+2+42 < 4n+6 <7
2 2 2

Here V(G) = {u,us, uz,u, u1', uz’}
For b-coloring, let us consider the color set {1,2} such that cdv(1)= u,cdv(2) = us
Hence % (G) =2

Step 2:

When n=3

£ (G)< A +w (@) +n(G)+2 < 2n+242n+242 < 4n+6 <9
2 2 2
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Here V(G) = {u,u1, uz,us,u'us, uz, us’}
For b-coloring, let us consider the color set {1,2} such that cdv(1)= u, cdv(2) = uy
Hence % (G) =2

Step 3:

. ()= A@Q+w(@)+n(G)+2 < in+6
2

Now we consider the vertex set

V(G) = {u,ul' uz ......... un,ul’ ................................. un’}
Now we assign the existing colors to the additional vertices u, and u,’
Hence b-chromatic number of shadow graph of star graph is 2.

Theorem 3:
Grundy chromatic number of G is 2n+1 where G is a shadow graph of star graph for all n.

Proof:
Let G be a shadow graph of star graph with V(G) = {u,us, uz ... ... ... Up, Uy 7T Un '}
n(G) = 2n+2,A(G) = 2n, w(G) =2
k+1
By result 1,Let G be a graph set 8(G) = k and w(G) = w , thenI'(G) < w. —
2
By considering following cases the proof can be obtain.
Step 1:When n =2
Here V(G) = {u,u1, uz,u’, u1', u2'’} then w(G) =2 ,6(6) = 5,n(G) =6
5+1
I'G) < ( * 2 <6
2 —)
Since there are 6 vertices in the graph, by the definition of Grundy coloring I'(G) = 5
For Grundy coloring, let us consider the color set {1,2,3,4,5} such that
c(u) =1, c(u) =1, c(w) = 2 ,c(ur’) = 4,c(uz) =3, c(uz) = 5Hence I'(G)=5
Step 2:When n =3
7+1
Here V(G) = {u,u1, uz,us,uui’, uz, us’} where w(G) =2 ,0(G) = 7, n(G) = 8I'(G) < ( * 2<8
2
Since there are-6)ertices in the graph, by the definition of Grundy coloringl'(G) = 5
For Grundy coloring, let us consider the color set {1,2,3,4,5,6,7} such that
c(u) =1, c(u) = 1,c(u1) = 2, c(u1) = 5,c(uz) =3 ,c(uz’) = 6,c(us) =4, c(us) = 7Hence I'(G)=7. Hence Grundy
chromatic number of G is 2n+1
Theorem 4:
For n> 2 chromatic number of G is 2 where G is shadow graph of comb graph.
Proof:
Let G be a shadow graph of comb graph .The vertex set V(G) = {us, uz ... ... ... Up Uy s un'}

For Proper coloring, let us consider the color set {1,2}
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Therefore, uz,us4, us,us&uz, u4, us, ug is not adjacent to w1,us, us,u7&u+’, us, us, us;’
Then uz,us, ue,us, Uz, us, us, us are coloured by 1.

Uu1,U3, Us,U7,U1, U3, Us, u7are coloured by 2. Hence ¢(G) = 2

Theorem 5:

Let G be a shadow graph of comb graph then yG)=2 for all n> 2 vertices.

Proof:

Let G be a shadow graph of comb graph with 4n vertices. Here independent sets are {uz,u4, us,us, Uz, U4, Us, Us'}
and

{u1, us, us, u7, w1, us, us, us’}

Hence a(G)=2,w(G) =2, n(G) =4n ,A(G) = 6

AG)+m(G)+n(G)+2

From (ref 4), x (G)<
Let us prove this theorem by induction on n

Step 1: When n=2
£ (G)= AMQ+w(@)+n(G)+2 < 6+2+4n+2 < 10+4n <
2

<9
2 2

Here V(G) = {u1, uz,u3,us, w1, u2, us, us’}
For b-colouring, let us consider the colour set {1,2} such that cdv(1)= uy,cdv(2) = us
Hence x(G) =2

Step 2: When n=
£(G)< AQ+w(@)+n(G)+2 < 6+2+4n+2 < 10+4n <

<11
2 2 2

Here V(G) = {u1, uz,us3,u4, us, usUs’, Uz, Uz Ususus '}
cdv(l)=us,cdv(2) = u,

Step 3
£ (@)= AQD+w(@)+n(G)+2 < 6+2+4n+2 < 10+4n

2 2 2

Consider the shadow graph of comb graph in which the vertex setV(G) = {us, uz ... ... ... Un, Uy Un '}
Now we assign existing colors to unand u,’
Hence the b-chromatic number of shadow graph of comb graph is 2.

Theorem 6
Grundy chromatic number of G is 2n+1 where G is a shadow graph of comb graph for all n> 2

Proof:
Let G be a shadow graph of comb graph with V(G) = {uy, uz ... ... ... Up Uy s un'}
Where n(G) =4n, A(G) =6, w(G)=2

k+1
By result 1 T'(G) < * w where k =0(G) and w = w(G)
2 —
By considering following cases the proof can be obtain.

Step 1:When n =2
Here V(G) = {u1, uz,us,usa , ui’, uz, us, us'’}
w(G)=2,0(G) =6 =kn(G)=8
6+1
I'G) < ( * 2
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By the definition of Grundy coloring, I'(G) =5
For Grundy coloring, let us consider the color set {1,2,3,4,5} such that

C(u1) = 1,c(u1) = 1,c(uz) =4,c(u2) = 5,c(us) = 1,c(us)=1,c(us)=2 ,c(us)=3Hence I'(G)=5
Step 2:When n =3

Here V(G) = {u1, uz, us,, usa,us,, Us , U1’ u2’, us’, us’, us’, us '}
w(G) =2 ,8(G) = 10, n(G) = 12

10+1
rGy < o< 11
2 —)

For Grundy coloring, let us consider the color set {1,2,3,4,5,6,7} such that c(u1) = c(us) = c(u1) = c(us) =1, c(uz) =6,
c(u2) =7, c(us) =1, c(us’) = 1c(us) =4, c(us) =5, c(ue) =2, c(ue) =3 ~I'(G)=7
Hence Grundy chromatic number of G is 2n+1 for all n> 2 verticesHence T'(G)=7

Grundy number for Splitting graph of star and comb graphsTheorem 7:
If G is a splitting graph of star graph then ¢(G) = 2 for all n> 2

Proof :

Let G be a splitting graph of star graph vertex set V(G) = { U, u1,.....un, U'u1,...... u, }For proper coloring, let us
consider the color set {1,2}

~ uand u’ are non-adjacent they are assigned by colour 1

. Ui,.....Uy are adjacent to u then it is colored by 2 and uy,...... u, are adjacent to u then theyare assigned by colour
2

Hence ¢(G) =2

Theorem 8:
Let G be a splitting graph of star graph  (G) = forall n

Proof:
Let G be a splitting graph of star graph 2n+2 vertices { u, u1,.....Un, UU1,...... u, yHere the independent sets are {u, ,
W UL UL oo et {un, un'}

Hence a(G) = 2, w(G) = 2, n(G) = 2n+2, A(G) = 2n

A(G)+w(G)+n(G)+2
2

From reference (4) we know that y(G)<

Let us prove this theorem by induction on n

Step 1: When n =2

()+w(G)+n(G)+2 _ 2n+2+42n+2+2 _ 4nt
A +w(@)+n(G)+2 < 2n+2+2n+2+2 < 4n+6 <7

x (G)<
2 2 2
Here = { u, u1,uz, v'ui',u2'}

For b-coloring let us consider the colour set such that cdv(1) = u, cdv(2) = uy
Hence y(G)=2

Step 2 : When n=3
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(G)< AQ+w(@)+n(G)+2 < 2n+2+2n+2+2 < 4n+6 <9

2 2 2

Here = { u, u1,uz, us, u'us',uz, us'}}
For b-colouring let us consider the colour set {1,2} such that cdv(1) = u, cdv(2) = uy’
Hence x(G)=2

Step 3 : When n=4

G)< A(G)+w(G)+n(G)+2S 2n+2+2n+2+2

2
< 4in+6

2Now consider the vertex set

V(G)={u, us,....up, uus,...... un'}

Now we assign the exisiting colours to the additional vertices ,u, and u,’
Hence b-chromatic number of splitting graph of star graph is 2.

Theorem 9:
Grundy chromatic number of G is 2n+1 where G is the splitting graph of star graph for all n>2

Proof:

Let G be a splitting graph of star graphV(G) = { u, u1,.....un, Uu,...... U, In(G) =2n+2, A(G) = 2n, w(G) =2

k+1
By result 1,I'(G) < wwhere
2

K =0 (G),w= w(G)
By considering the following cases the proof can be obtained.

Case (i) When n =2

Here V(G) = { u, us,uz, u,us,u2n(G) =6, A(G) =4, w(G)=2
4+1

By theorem I'(G) < * 25

2

Since there are 6 vertices in the graph by the defn of Grundy colouring I'(G)=5For Grundy colouring let us consider the
colour set {1,2,3,4,5} such that

C(u) = 1, c(u)=1,C(u1) =2, c(u1) = 4,C(uz) =3, c(uz) =5Hence I'(G)=5

Case 2: whenn =3

6+1
Here V(G) = { u, u1,uz, us, u,ui',uz, us’} 6(G) = 6,w(G) = 2By theorem I'(G) < 2<7
2

Since there are 8 vertices inthe graph by the defn of Grundy colouring I'(G)=7For Grundy colouring let us consider the
colour set {1,2,3,4,5,6,7} such that C(u) = 1,c(u)=1,C(u1) =2,c(u1’) = 4,C(uz) =3,c(uz) =5,C(us) = 4, c(us3)=7
Hence I'(G)=7

Hence Grundy chromatic number is 2n+1 for all vertices n> 2 vertices.

Theorem 10:
For n =2 chromatic number of G is 2 where G is splitting graph of comb graph.

Proof:
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Let G be a splitting graph of comb graph

The vertex set V(G) = {ua,.....Un, U1,...... U’}
For proper colouring let us consider the colour set {1,2}

Since ug, us, U, us and uz’, u4, ue, us is not adjacent to us, us, us, uz and wui’, us, us, us;
Uz, Ug, Us, Ug, U2, Ud, Us, Ug are coloured by 1 and

Uy, us, Us, Uz and w1, us, us, u; are coloured by 2Hence ¢(G) =2

Theorem: 11

Let G be a splitting graph of comb graph then ¢(G)=2 for all n> 2 vertices.
Proof:

Let G be a splitting graph of comb graph on 4n vertices.

Here independent sets are {u1, us, us, u7, w1’ , us, us, usyand

{uz, w4, us, ug, u2, us, ue, ug} therefore a(G) = 2, w(G) = 2,n(G) = 4n,A(G) = 6

A(G G G)+2
From reference 4 we have , x(G)< (G)+m(6)+n(6)+

Ny

Let us prove this theorem on induction on n.

Step:1 when n=2

AG) +m(G)+n(G)+2 < 4n+10

x (G)=< 9

2

N A

here V(G) = {uiuzus, usus’, u2, us', us}for b coloring consider the color set {1,2}
such that cdv(1)= uicdv(2)=u;
hence y(G)=2

step:2 when n=3

AGLEm(G)+n(G)+2 _ 4nt+10

x (G)= 11

2

NA

here V(G) = {u1,uzus, uaususui’, uz, us', u4, us, us}cdv(1)= us,cdv(2)=u,
hence y(G)=2

step:3

4 (G)< AG)+m(G)+n(G)+2 < 4n+10

2 2

consider the splitting graph of comb graph in which the vertex set V(G) = {us,.....un,

Uyon.. u,'}. Now we assign the existing colors to the vertices unand u,.Hence the b chromatic number of splitting
graph of comb graph is 2.

Theorem 12:

The Grundy chromatic number of G is 2n+1 where G is a splitting graph of comb graph for alln> 2 vertices.
Proof:

Let G be a splitting graph of comb graph with V(G) = {us,.....un, u1,...... U, }.Where n(G)=4n, A(G) = 6, w(G) =
2
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k+

By the result 1 we know that T (G) < 1 w where K = 6(G),w= w(G)

2

By considering following cases the proof can be obtained

Step 1: whenn =2
here V(G) = {ui,uzus, usus, uz, us', us In(G)=8, w(G) = 2, 6(G)=6=k

rG) < et

2

1
Tw<7

By the definition of Grundy coloring I'(G)=5

For Grundy coloring consider the color set {1,2,3,4,5}c(u1) = 1,c(u2) = 4,c(us) = 1,c(us) =5
c(ur) =1, cuz) = 2,c(us) = 1,c(us) = 3
therefore I'(G)=5.

Step 2: when n=3

Here V(G) = {u1,uzus, usUsusUs, Uz, us, us, us, us yn(G)=12, w(G) = 2, 6(G)=10=k

rG <t

2

1
—w<1l1

For Grundy coloring let us consider the color set {1,2,3,4,5,6,7} c(u1), c(us), c(u'), c(us), c(us), (us) = 1,c(uz) = 6,
c(u2) = 7c(us) = 4,c(us) = 5,c(ue) = 2,c(w’) =3
Therefore I'(G)=7

Hence, Grundy chromatic number of G is 2n+1 for all n> 2 vertices
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