Grundy Colouring and B-Colouring for Shadow and Splitting Graph of Star and Comb Graph

M. Venkateswara Rao ${ }^{1}$, M. Lakshmi Prasanna ${ }^{2}$, G. Surya Narayana ${ }^{3}$
${ }^{1,2,3}$ K.B.N. College (Autonomous), Vijayawada-520001, Andhra Pradesh, India

Abstract

In this paper we have discussed about the different colourings of shadow graph of star graph . Also we have found the chromatic number $\varphi(G)$, b-chromatic number $\chi(\mathbf{G})$ and Grundy colouring $\Gamma(\mathbf{G})$.

Keywords: Proper colouring, b-colouring, Grundy colouring, shadow graph, star graph, comb graph.

INTRODUCTION

Graph colouring is a colourful concept in graph theory which has many application in real life situations. In 1979 Grundy number was defined initially by Christen and Selkow[4]. Manounchehrzaker[6] explored the results on the Grundy chromatic number of graphs andobtained the inequalities.

Victor Campose,et.al[8] analyzed the bounds on the Grundy number of products like direct, strong and lexigographic of graphs. In the year of 1999 Irwing and Manlone[9] gave an idea about b-colouring and discussed the bounds for bchromatic number of graphs. Alkhateeb[2] characterized the b-colouring of various graphs. S.K. Vaidhya[10] estimated the b-chromatic number of shadow and splitting graph of path graph. N. Parvathi.et.al[11] estimated the Grundy colouring and b-colouring of join of path and complete graph.

PRELIMINARIES

Definition 1: [1]

A Graph is an ordered pair $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ comprising V the set of vertices (also called nodes or points, E the set of edges (also called links or lines)

Definition 2: [3]
A Proper colouring of the graph assigns colours to the vertices, edges or both so that proximal elements are assigned distinct colours. The chromatic number $\boldsymbol{\varphi}(\boldsymbol{G})$ of G is the minimum K forwhich G is k-chromatic.

Definition 3: [2]
The b-chromatic number $\chi(\mathrm{G})$ of a Graph G is the largest positive integer K such that G admits a proper K -colouring in which every colour class has a representative adjacent to atleast one vertexin each of the other colour classes. Such a colouring is called b -colouring.

Definition 4: [6]
A Grundy colouring of order k of a graph G is a k -colouring of G with colours $1,2, \ldots \mathrm{k}$ such thatfor each vertet x the colour of x is the smallest positive integer not used as a colour on any neighbour of x in G . The Grundy number $\Gamma(\boldsymbol{G})$ is the largest integer k for which G has a Grundycolouring of order k .
Definition 5: [10]
The shadow graph of the connected Graph G is constructed by taking two copies of G say G"and G'. Join each vertex u' in G' to the neighbours of the corresponding vertex u " in $G^{\prime \prime}$.

Definition 6: [12]

The star graph s_{n} of order n is a tree on n nodes with one node having vertex degree ($\mathrm{n}-1$) andthe other ($\mathrm{n}-1$) node having vertex degree 1 . star is a complete biograph $k_{1, n}$

Definition 7: [5]

$\boldsymbol{P}_{\boldsymbol{n}}$ be a path graph with n vertices. The comb graph is defined as $\boldsymbol{P}_{\boldsymbol{n}} \odot \boldsymbol{K}_{\mathbf{1}}$. It has 2 n vertices and $2 \mathrm{n}-1$ edges.

Definition 8: [10]

The splitting graph of a graph G, is obtained by adding a new vertex u ' corresponding to each vertex u of G such that $N(u)=N\left(u^{\prime}\right)$ where $N(u)$ and $N\left(u^{\prime}\right)$ are the neighbourhood sets of u and u^{\prime}.

Result 1: [6]

Let G be a graph set $\boldsymbol{\theta}(\boldsymbol{G})=\boldsymbol{k}$ and $(\boldsymbol{G})=m$, then $\Gamma(\mathrm{G}) \leq^{\boldsymbol{k}+\mathbf{1}} m$.
2
Grundy number for shadow graph of star and comb graphsTheorem1:
For $\mathrm{n} \geq \mathbf{2}$, chromatic number of G is 2 where G is shadow graph of star graph.

Proof:

For proper coloring, let us consider the color set $\{1,2\}$ Since u and u^{\prime} are non-adjacent they are assigned by colour 1 Since $u_{1}, u_{2} \ldots \ldots \ldots u_{n}$ are adjacent to u then it is coloured by 2 and u_{1}, u_{2} \qquad u_{n} are adjacent to u^{\prime} and not adjacent to u_{1}, u_{2} \qquad u_{n} it is colored by 2 .
Hence $\varphi(G)=2$

Theorem 2:

Let G be a shadow graph of star graph then $\chi(\mathrm{G})=2$ for all n
Proof:

Here the indepensdent sets are $\left.\left\{\mathrm{u}, u^{\prime}\right\} \ldots \ldots . u_{n}, u_{n}{ }^{\prime}\right\}$
Hence $\alpha(G)=2, \omega(\mathrm{G})=2, \mathrm{n}(\mathrm{G})=2 \mathrm{n}+2, \quad \Delta(G)=2 n$
From reference 4, we know that, $\chi(\mathrm{G}) \leq \Delta(G)+\omega(G)+n(G)+2$
Let us prove this theorem by induction on n.

Step 1:

When $\mathrm{n}=2$

Here $V(G)=\left\{u, u_{1}, u_{2}, u^{\prime}, u_{1}{ }^{\prime}, u_{2}^{\prime}\right\}$
For b-coloring, let us consider the color set $\{1,2\}$ such that $\operatorname{cdv}(1)=u, \operatorname{cdv}(2)=u_{1}$
Hence $\chi(G)=2$

Step 2:

When $\mathrm{n}=3$

$$
\underset{2}{\chi(G) \leq} \leq \frac{\Delta(G)+\omega(G)+n(G)+2}{2} \leq \frac{2 n+2+2 n+2+2}{2} \leq \frac{4 n+6}{2} \leq 9
$$

Here $V(G)=\left\{u, u_{1}, u_{2}, u_{3}, u^{\prime} u_{1}{ }^{\prime}, u_{2}{ }^{\prime}, u_{3}{ }^{\prime}\right\}$
For b-coloring, let us consider the color set $\{1,2\}$ such that $\operatorname{cdv}(1)=u, \operatorname{cdv}(2)=u_{1}$
Hence $\chi(G)=2$
Step 3 :

```
\chi(G)\leq离G)+\omega(G)+n(G)+2}\leq\underline{4n+6
22
```

Now we consider the vertex set

Now we assign the existing colors to the additional vertices u_{n} and $u_{n}{ }^{\prime}$
Hence b-chromatic number of shadow graph of star graph is 2 .

Theorem 3:

Grundy chromatic number of G is $2 n+1$ where G is a shadow graph of star graph for all n.

Proof:

$\mathrm{n}(\mathrm{G})=2 \mathrm{n}+2, \Delta(G)=2 n, \omega(\mathrm{G})=2$
By result 1, Let G be a graph set $\theta(G)=k$ and $\omega(G)=\omega$, then $\Gamma(\mathrm{G}) \leq^{k+1} \omega$.

By considering following cases the proof can be obtain.
Step 1: When $\mathrm{n}=2$
Here $\mathrm{V}(\mathrm{G})=\left\{\mathrm{u}, u_{1}, u_{2}, u^{\prime}, u_{1}^{\prime}, u_{2}^{\prime}\right\}$ then $\omega(\mathrm{G})=2, \theta(G)=5, \mathrm{n}(\mathrm{G})=6$
$\Gamma(\mathrm{G}) \leq\binom{ 5+1}{\sim} \leq 6$

Since there are 6 vertices in the graph, by the definition of Grundy coloring $\Gamma(\mathrm{G})=5$
For Grundy coloring, let us consider the color set $\{1,2,3,4,5\}$ such that $\mathrm{c}(\mathrm{u})=1, \mathrm{c}\left(u^{\prime}\right)=1, \mathrm{c}\left(u_{1}\right)=2, \mathrm{c}\left(u_{1}{ }^{\prime}\right)=4, \mathrm{c}\left(u_{2}\right)=3, \mathrm{c}\left(u_{2}{ }^{\prime}\right)=5$ Hence $\Gamma(\mathrm{G})=5$

Step 2: When $\mathrm{n}=3$
Here $\mathrm{V}(\mathrm{G})=\left\{\mathrm{u}, u_{1}, u_{2}, u_{3}, u^{\prime} u_{1}{ }^{\prime}, u_{2}{ }^{\prime}, u_{3}{ }^{\prime}\right\}$ where $\omega(\mathrm{G})=2, \theta(G)=7, \mathrm{n}(\mathrm{G})=8 \Gamma(\mathrm{G}) \leq\left(^{7+1} 2 \leq 8\right.$ 2

Since there are 6)vertices in the graph, by the definition of Grundy coloring $\Gamma(G)=5$
For Grundy coloring, let us consider the color set $\{1,2,3,4,5,6,7\}$ such that
$\mathrm{c}(\mathrm{u})=1, \mathrm{c}\left(u^{\prime}\right)=1, \mathrm{c}\left(u_{1}\right)=2, \mathrm{c}\left(u_{1}{ }^{\prime}\right)=5, \mathrm{c}\left(u_{2}\right)=3, \mathrm{c}\left(u_{2}{ }^{\prime}\right)=6, \mathrm{c}\left(u_{3}\right)=4, \mathrm{c}\left(u_{3}{ }^{\prime}\right)=7$ Hence $\Gamma(\mathrm{G})=7$. Hence Grundy chromatic number of G is $2 \mathrm{n}+1$
Theorem 4:
For $\mathrm{n} \geq 2$ chromatic number of G is 2 where G is shadow graph of comb graph.
Proof:

For Proper coloring, let us consider the color set $\{1,2\}$

Therefore, $u_{2}, u_{4}, u_{6}, u_{8} \& u_{2}{ }^{\prime}, u_{4}{ }^{\prime}, u_{6}{ }^{\prime}, u_{8}{ }^{\prime}$ is not adjacent to $u_{1}, u_{3}, u_{5}, u_{7} \& u_{1}{ }^{\prime}, u_{3}{ }^{\prime}, u_{5}{ }^{\prime}, u_{7}{ }^{\prime}$
Then $u_{2}, u_{4}, u_{6}, u_{8}, u_{2}{ }^{\prime}, u_{4}^{\prime}, u_{6}{ }^{\prime}, u_{8}{ }^{\prime}$ are coloured by 1 .
$u_{1}, u_{3}, u_{5}, u_{7}, u_{1}^{\prime}, u_{3}{ }^{\prime}, u_{5}^{\prime}, u_{7}{ }^{\prime}$ are coloured by 2 . Hence $\varphi(G)=2$
Theorem 5:
Let G be a shadow graph of comb graph then $\chi \mathrm{G})=2$ for all $\mathrm{n} \geq \mathbf{2}$ vertices.
Proof:
Let G be a shadow graph of comb graph with 4 n vertices. Here independent sets are $\left\{u_{2}, u_{4}, u_{6}, u_{8}, u_{2}{ }^{\prime}, u_{4}{ }^{\prime}, u_{6}{ }^{\prime}, u_{8}{ }^{\prime}\right\}$
and
$\left\{u_{1}{ }^{\prime}, u_{3}{ }^{\prime}, u_{5}{ }^{\prime}, u_{7}{ }^{\prime}, u_{1}{ }^{\prime}, u_{3}{ }^{\prime}, u_{5}{ }^{\prime}, u_{7}{ }^{\prime}\right\}$
Hence $\alpha(G)=2, \omega(\mathrm{G})=2, \mathrm{n}(\mathrm{G})=4 \mathrm{n}, \Delta(G)=6$
From (ref 4), $\chi(\mathrm{G}) \leq \Delta(\boldsymbol{G})+\underline{m(\boldsymbol{G})+\boldsymbol{n}(\boldsymbol{G})+\mathbf{2}}$
2
Let us prove this theorem by induction on n
Step 1: When $\mathrm{n}=2$

Here $\mathrm{V}(\mathrm{G})=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{1}{ }^{\prime}, u_{2}{ }^{\prime}, u_{3}{ }^{\prime}, u_{4}{ }^{\prime}\right\}$
For b-colouring, let us consider the colour set $\{1,2\}$ such that $\operatorname{cdv}(1)=u_{2}, \operatorname{cdv}(2)=u_{3}$
Hence $\chi(\mathrm{G})=2$
Step 2: When $\mathrm{n}=$
$\chi(\mathrm{G}) \leq^{\Delta(G)+\omega(G)+n(G)+2} \leq \frac{6+2+4 n+2}{\leq} \frac{10+4 n}{} \leq 11$

Here $\mathrm{V}(\mathrm{G})=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6} u_{1}{ }^{\prime}, u_{2}{ }^{\prime}, u_{3}{ }^{\prime} u_{4}{ }^{\prime} u_{5}{ }^{\prime} u_{6}{ }^{\prime}\right\}$
$\operatorname{cdv}(1)=u_{1}, \operatorname{cdv}(2)=u_{2}$
Step 3
$\chi(G) \leq \Delta(G)+\omega(G)+n(G)+2 \leq \frac{6+2+4 n+2}{} \leq \frac{10+4 n}{}$

Consider the shadow graph of comb graph in which the vertex $\operatorname{set} \mathrm{V}(\mathrm{G})=\left\{u_{1}, u_{2} \ldots \ldots \ldots u_{n}, u_{1}{ }^{\prime} \quad u_{n}{ }^{\prime}\right\}$
Now we assign existing colors to $\boldsymbol{u}_{\boldsymbol{n}}$ and $\boldsymbol{u}_{\boldsymbol{n}}{ }^{\prime}$
Hence the b-chromatic number of shadow graph of comb graph is 2 .

Theorem 6

Grundy chromatic number of G is $2 \mathrm{n}+1$ where G is a shadow graph of comb graph for all $\mathrm{n} \geq \mathbf{2}$
Proof:

Where $\mathrm{n}(\mathrm{G})=4 \mathrm{n}, \Delta(G)=6, \omega(\mathrm{G})=2$
By result $1 \Gamma(\mathrm{G}) \leq^{k+1} \omega$ where $\mathrm{k}=\theta(G)$ and $\omega=\omega(\mathrm{G})$
2
By considering following cases the proof can be obtain.
Step 1:When $\mathrm{n}=2$
Here $\mathrm{V}(\mathrm{G})=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{1}{ }^{\prime}, u_{2}{ }^{\prime}, u_{3}{ }^{\prime}, u_{4}{ }^{\prime}\right\}$
$\omega(\mathrm{G})=2, \theta(G)=6=k, \mathrm{n}(\mathrm{G})=8$
$\Gamma(\mathrm{G}) \leq\left(^{6+1} 2\right.$

2
By the definition of Grundy coloring, $\Gamma(\mathrm{G})=5$
For Grundy coloring, let us consider the color set $\{1,2,3,4,5\}$ such that
$\mathrm{C}\left(u_{1}\right)=1, \mathrm{c}\left(u_{1}{ }^{\prime}\right)=1, \mathrm{c}\left(u_{2}\right)=4, \mathrm{c}\left(u_{2}{ }^{\prime}\right)=5, \mathrm{c}\left(u_{3}\right)=1, \mathrm{c}\left(u_{3}{ }^{\prime}\right)=1, \mathrm{c}\left(u_{4}\right)=2, \mathrm{c}\left(u_{4}{ }^{\prime}\right)=3$ Hence $\Gamma(\mathrm{G})=5$
Step 2:When $\mathrm{n}=3$
Here $\mathrm{V}(\mathrm{G})=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}, u_{1}{ }^{\prime}, u_{2}{ }^{\prime}, u_{3}{ }^{\prime}, u_{4}{ }^{\prime}, u_{5}{ }^{\prime}, u_{6}{ }^{\prime}\right\}$
$\omega(\mathrm{G})=2, \theta(G)=10, \mathrm{n}(\mathrm{G})=12$
$\Gamma(\mathrm{G}) \leq\left(^{10+1} 2 \leq 11\right.$
2
For Grundy coloring, let us consider the color set $\{1,2,3,4,5,6,7\}$ such that $\mathrm{c}\left(u_{1}\right)=\mathrm{c}\left(u_{5}\right)=\mathrm{c}\left(u_{1}{ }^{\prime}\right)=\mathrm{c}\left(u_{5}{ }^{\prime}\right)=1, \mathrm{c}\left(u_{2}\right)=6$, $\mathrm{c}\left(u_{2}{ }^{\prime}\right)=7, \mathrm{c}\left(u_{3}\right)=1, \mathrm{c}\left(u_{3}{ }^{\prime}\right)=1 \mathrm{c}\left(u_{4}\right)=4, \mathrm{c}\left(u_{4}{ }^{\prime}\right)=5, \mathrm{c}\left(u_{6}\right)=2, \mathrm{c}\left(u_{6}{ }^{\prime}\right)=3 \therefore \Gamma(\mathrm{G})=7$
Hence Grundy chromatic number of G is $2 \mathrm{n}+1$ for all $\mathrm{n} \geq 2$ verticesHence $\Gamma(\mathrm{G})=7$
Grundy number for Splitting graph of star and comb graphsTheorem 7:
If G is a splitting graph of star graph then $\varphi(G)=2$ for all $n \geq 2$
Proof :
Let G be a splitting graph of star graph vertex set $V(G)=\left\{u, u_{1}, \ldots . . u_{n}, u^{\prime} u_{1}{ }^{\prime}, \ldots \ldots u_{n}{ }^{\prime}\right\}$ For proper coloring, let us consider the color set $\{1,2\}$
$\therefore \mathrm{u}$ and u^{\prime} are non-adjacent they are assigned by colour 1
$\therefore u_{1}, \ldots . u_{n}$ are adjacent to u then it is colored by 2 and $u_{1}{ }^{\prime}, \ldots \ldots u_{n}{ }^{\prime}$ are adjacent to u then theyare assigned by colour 2

Hence $\varphi(\mathrm{G})=2$

Theorem 8:

Let G be a splitting graph of star graph $\chi(G)=$ for all n
Proof:
Let G be a splitting graph of star graph $2 \mathrm{n}+2$ vertices $\left\{\mathrm{u}, u_{1}, \ldots . . u_{n}, u^{\prime} u_{1}{ }^{\prime}, \ldots \ldots u_{n}{ }^{\prime}\right\}$ Here the independent sets are $\{\mathrm{u}$, ,
 Hence $\alpha(\mathrm{G})=2, \omega(\mathrm{G})=2, \mathrm{n}(\mathrm{G})=2 \mathrm{n}+2, \Delta(\mathrm{G})=2 \mathrm{n}$

From reference (4) we know that $\chi(\mathrm{G}) \leq \Delta(G)+\omega(\underline{(\mathrm{G})+\mathrm{n}(\mathrm{G})+2}$

$$
2
$$

Let us prove this theorem by induction on n
Step 1: When $\mathrm{n}=2$

$$
\underset{2}{\chi(\mathrm{G}) \leq} \frac{\Delta(G)+\omega(\mathrm{G})+\mathrm{n}(\mathrm{G})+2}{} \leq \frac{2 n+2+2 n+2+2}{2} \leq \frac{4 n+6}{2} \leq 7
$$

Here $=\left\{\mathbf{u}, u_{1}, u_{2}, u^{\prime} u_{1}{ }^{\prime}, u_{2}{ }^{\prime}\right\}$
For b-coloring let us consider the colour set such that $\operatorname{cdv}(1)=u, \operatorname{cdv}(2)=u_{1}$
Hence $\chi(\mathrm{G})=2$
Step 2 : When $\mathrm{n}=3$

```
\(\chi(\mathrm{G}) \leq \Delta(\mathrm{G})+\omega(\mathrm{G})+\mathrm{n}(\mathrm{G})+2 \leq \frac{2 n+2+2 n+2+2}{} \leq \frac{4 n+6}{} \leq 9\)
2
2
2
```

Here $\left.=\left\{u, u_{1}, u_{2}, u_{3}, u^{\prime} u_{1}{ }^{\prime}, u_{2}{ }^{\prime}, u_{3}{ }^{\prime}\right\}\right\}$
For b-colouring let us consider the colour set $\{1,2\}$ such that $\operatorname{cdv}(1)=u, \operatorname{cdv}(2)=u_{1}{ }^{\prime}$
Hence $\chi(\mathrm{G})=2$
Step 3 : When $\mathrm{n}=4$
$\mathrm{G}) \leq \Delta(G)+\omega(\mathrm{G})+\mathrm{n}(\mathrm{G})+2 \leq 2 n+2+2 n+2+2$

$$
\begin{gathered}
2 \\
\leq \\
4 n+6 \\
\hline
\end{gathered}
$$

2Now consider the vertex set
$\mathrm{V}(\mathrm{G})=\left\{\mathrm{u}, u_{1}, \ldots . . u_{n}, u^{\prime} u_{1}{ }^{\prime}, \ldots . . u_{n}{ }^{\prime}\right\}$
Now we assign the exisiting colours to the additional vertices, u_{n} and $u_{n}{ }^{\prime}$
Hence b-chromatic number of splitting graph of star graph is 2 .

Theorem 9:

Grundy chromatic number of G is $2 n+1$ where G is the splitting graph of star graph for all $n \geq 2$

Proof:

Let G be a splitting graph of star $\operatorname{graph} V(\mathrm{G})=\left\{\mathrm{u}, u_{1}, \ldots . . u_{n}, u^{\prime} u_{1}{ }^{\prime}, \ldots \ldots u_{n}{ }^{\prime}\right\} \mathrm{n}(\mathrm{G})=2 \mathrm{n}+2, \Delta(G)=2 n, \omega(\mathrm{G})=2$
By result $1, \Gamma(\mathrm{G}) \leq^{k+1} \omega$ where
2
$\mathrm{K}=\theta(\mathrm{G}), \omega=\omega(\mathrm{G})$
By considering the following cases the proof can be obtained.
Case (i) When $n=2$
Here $\mathrm{V}(\mathrm{G})=\left\{\mathrm{u}, u_{1}, u_{2}, u^{\prime}, u_{1}{ }^{\prime}, u_{2}{ }^{\prime}\right\} \mathrm{n}(\mathrm{G})=6, \quad \Delta(G)=4, \omega(\mathrm{G})=2$
By theorem $\Gamma(\mathrm{G}) \leq^{4+1} \quad 2 \leq 5$
2
Since there are 6 vertices in the graph by the defn of Grundy colouring $\Gamma(G)=5$ For Grundy colouring let us consider the colour set $\{1,2,3,4,5\}$ such that
$\mathrm{C}(\mathrm{u})=1, \mathrm{c}\left(u^{\prime}\right)=1, \mathrm{C}\left(u_{1}\right)=2, \mathrm{c}\left(u_{1}{ }^{\prime}\right)=4, \mathrm{C}\left(u_{2}\right)=3, \mathrm{c}\left(u_{2}{ }^{\prime}\right)=5$ Hence $\Gamma(\mathrm{G})=5$
Case 2: when $\mathrm{n}=3$
Here $\mathrm{V}(\mathrm{G})=\left\{\mathrm{u}, u_{1}, u_{2}, u_{3}, u^{\prime}, u_{1}{ }^{\prime}, u_{2}{ }^{\prime}, u_{3}{ }^{\prime}\right\} \quad \theta(G)=6, \omega(\mathrm{G})=2$ By theorem $\Gamma(\mathrm{G}) \leq^{6+1} 2 \leq 7$
2
Since there are 8 vertices in the graph by the defn of Grundy colouring $\Gamma(\mathrm{G})=7$ For Grundy colouring let us consider the colour set $\{1,2,3,4,5,6,7\}$ such that $\mathrm{C}(\mathrm{u})=1, \mathrm{c}\left(u^{\prime}\right)=1, \mathrm{C}\left(u_{1}\right)=2, \mathrm{c}\left(u_{1}{ }^{\prime}\right)=4, \mathrm{C}\left(u_{2}\right)=3, \mathrm{c}\left(u_{2}{ }^{\prime}\right)=5, \mathrm{C}\left(u_{3}\right)=4, \mathrm{c}\left(u_{3}{ }^{\prime}\right)=7$
Hence $\Gamma(G)=7$
Hence Grundy chromatic number is $2 n+1$ for all vertices $n \geq 2$ vertices.

Theorem 10:

For $\mathrm{n} \geq 2$ chromatic number of G is 2 where G is splitting graph of comb graph.
Proof:

Let G be a splitting graph of comb graph
The vertex set $\mathrm{V}(\mathrm{G})=\left\{u_{1}, \ldots . . u_{n}, u_{1}{ }^{\prime}, \ldots . . u_{n}{ }^{\prime}\right\}$
For proper colouring let us consider the colour set $\{1,2\}$
Since $u_{2}, u_{4}, u_{6}, u_{8}$ and $u_{2}{ }^{\prime}, u_{4}{ }^{\prime}, u_{6}{ }^{\prime}, u_{8}{ }^{\prime}$ is not adjacent to $u_{1}, u_{3}, u_{5}, u_{7}$ and $u_{1}{ }^{\prime}, u_{3}{ }^{\prime}, u_{5}{ }^{\prime}, u_{7}{ }^{\prime}$ $u_{2}, u_{4}, u_{6}, u_{8}, u_{2}{ }^{\prime}, u_{4}{ }^{\prime}, u_{6}{ }^{\prime}, u_{8}{ }^{\prime}$ are coloured by 1 and
$u_{1}, u_{3}, u_{5}, u_{7}$ and $u_{1}^{\prime}, u_{3}^{\prime}, u_{5}^{\prime}, u_{7}^{\prime}$ are coloured by 2 Hence $\varphi(\mathrm{G})=2$
Theorem: 11

Let G be a splitting graph of comb graph then $\chi(G)=2$ for all $n \geq 2$ vertices.

Proof:

Let G be a splitting graph of comb graph on $4 n$ vertices.
Here independent sets are $\left\{u_{1}, u_{3}, u_{5}, u_{7}, u_{1}{ }^{\prime}, u_{3}{ }^{\prime}, u_{5}{ }^{\prime}, u_{7}{ }^{\prime}\right\}$ and
$\left\{u_{2}, u_{4}, u_{6}, u_{8}, u_{2}^{\prime}, u_{4}^{\prime}, u_{6}^{\prime}, u_{8}^{\prime}\right\}$ therefore $\alpha(G)=2, \omega(G)=2, n(G)=4 n, \Delta(G)=6$
From reference 4 we have , $\chi(\mathrm{G}) \leq \leq^{\Delta(\boldsymbol{G})+m(\boldsymbol{G})+\boldsymbol{n}(\boldsymbol{G})+\mathbf{2}}$

Let us prove this theorem on induction on n.
Step: 1 when $\mathrm{n}=2$

```
~2
```

here $V(G)=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}, u_{4}{ }^{\prime}\right\}$ for b coloring consider the color set $\{1,2\}$
such that $\operatorname{cdv}(1)=u_{1}, \operatorname{cdv}(2)=u_{2}$
hence $\chi(\mathrm{G})=2$
step: 2 when $\mathrm{n}=3$

$$
\underset{\mathbf{2}}{\chi(\mathrm{G}) \leq} \leq \frac{\Delta(\boldsymbol{G})+m(\boldsymbol{G})+\boldsymbol{n}(\boldsymbol{G})+\mathbf{2}}{} \leq \frac{4 n+10}{} \leq 11
$$

here $V(G)=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}, u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}, u_{4}^{\prime}, u_{5}^{\prime}, u_{6}{ }^{\prime}\right\} \operatorname{cdv}(1)=u_{1}, \operatorname{cdv}(2)=u_{2}$
hence $\chi(\mathrm{G})=2$
step:3


```
2
2
```

consider the splitting graph of comb graph in which the vertex set $\mathrm{V}(\mathrm{G})=\left\{u_{1}, \ldots . . u_{n}\right.$,
$\left.u_{1}{ }^{\prime}, \ldots . . u_{n}{ }^{\prime}\right\}$. Now we assign the existing colors to the vertices u_{n} and $u_{n}{ }^{\prime}$.Hence the b chromatic number of splitting graph of comb graph is 2.

Theorem 12:

The Grundy chromatic number of G is $2 n+1$ where G is a splitting graph of comb graph for alln ≥ 2 vertices.
Proof:

Let G be a splitting graph of comb graph with $\mathrm{V}(\mathrm{G})=\left\{u_{1}, \ldots . u_{n}, u_{1}{ }^{\prime}, \ldots \ldots . u_{n}{ }^{\prime}\right\}$. Where $\mathrm{n}(\mathrm{G})=4 \mathrm{n}, \Delta(\boldsymbol{G})=6, \omega(G)=$ 2

By the result 1 we know that $\Gamma(\mathrm{G}) \leq^{k+1} \omega$ where $, \mathrm{K}=\theta(\mathrm{G}), \omega=\omega(\mathrm{G})$

By considering following cases the proof can be obtained
Step 1: when $\mathrm{n}=2$
here $V(G)=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}, u_{4}^{\prime}\right\} \mathrm{n}(\mathrm{G})=8, \omega(G)=2, \theta(\mathrm{G})=6=\mathrm{k}$
$\Gamma(\mathrm{G}) \leq^{k+1} \omega \leq 7$
2
By the definition of Grundy coloring $\Gamma(\mathrm{G})=5$
For Grundy coloring consider the color set $\{1,2,3,4,5\} \mathrm{c}\left(u_{1}\right)=1, c\left(u_{2}\right)=4, c\left(u_{3}\right)=1, c\left(u_{4}\right)=5$
$\mathrm{c}\left(u_{1}{ }^{\prime}\right)=1, c\left(u_{2}{ }^{\prime}\right)=2, c\left(u_{3}{ }^{\prime}\right)=1, c\left(u_{4}^{\prime}\right)=3$
therefore $\Gamma(\mathrm{G})=5$.
Step 2: when $\mathrm{n}=3$
Here $V(G)=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}, u_{1}{ }^{\prime}, u_{2}{ }^{\prime}, u_{3}{ }^{\prime}, u_{4}{ }^{\prime}, u_{5}{ }^{\prime}, u_{6}{ }^{\prime}\right\} \mathrm{n}(\mathrm{G})=12, \omega(G)=2, \theta(\mathrm{G})=10=\mathrm{k}$
$\Gamma(\mathrm{G}) \leq^{k+1} \omega \leq 11$
2

For Grundy coloring let us consider the color set $\{1,2,3,4,5,6,7\} \mathrm{c}\left(u_{1}\right), c\left(u_{5}\right), c\left(u^{\prime}\right), c\left(u_{5}{ }^{\prime}\right), c\left(u_{3}\right),\left(u_{3}{ }^{\prime}\right)=1, \mathrm{c}\left(u_{2}\right)=6$, $c\left(u_{2}^{\prime}\right)=7 \mathrm{c}\left(u_{4}\right)=4, c\left(u_{4}^{\prime}\right)=5, c\left(u_{6}\right)=2, c\left(u^{\prime}\right)=3$
Therefore $\Gamma(\mathrm{G})=7$
1
Hence, Grundy chromatic number of G is $2 n+1$ for all $n \geq 2$ vertices
6

REFERENCES

[1]. Douglas B. West, Introduction to Graph Theory. Prentice-Hall of India private Limited,NewDelhi (1999);
[2]. M. Alkhateeb, on b-colorings and b-continuity of graphs. Ph.D. Thesis Techische UniversityBergakademie, Freiberg, Germany (2012).
[3]. T.R. Jensen, B. Toft, Graph colouring problems, Wiley, New York (1995).
[4]. C.A. Christen, S.M. Selkow, Some perfect coloring properties of graphs, J. Combin TheorySer. B, 27 (1979), 49-59.
[5]. E.Eskkiammel and B.Deepa, K.Thirusangu some labelling of square graph and comb graphSIVET, Chennai.
[6]. M. Zaker, Inequalities for the Gundy chromatic number of graphs, Discrete Math, Discrete Applied Mathematics, 155 (2007), 2567-2572.
[7]. M. Zaker, Results on the Grundy chromatiac number of graphs, Discrete Mathematics,306(2006) 31663173.
[8]. Victor Campos.et,al, New bounds on the Grundy number of products of graphs, HAL, ISSN0249-6399, April 2010.
[9]. R.W Irving, D.F. Manlove, The b-chromatic number of graphs, Discrete. Appl. Math., 91(1991),127141.
[10]. S.K. Vaidya et.al. B-chromatic number of some path related graphs, InternationalJournal of Mathematics and Scientific computing, ISSN (2231-5330), 4, No. 1 (2014).
[11]. N.Parvathi.et.al, Grundy coloring of njoin of path and complete graph, International journal of pure and applied mathematics, vol 113,(2017) ,189-197
[12]. N.Sujatha, C.Dharuman, K.Thirusangu, Triangular fuzzy gracefull labeling on star graph,Journal of physics, PMTIA (2019)

