

Grundy Colouring and B-Colouring for Shadow and Splitting Graph of Star and Comb Graph

M. Venkateswara Rao¹, M. Lakshmi Prasanna², G. Surya Narayana³

^{1,2,3}K.B.N. College (Autonomous), Vijayawada-520001, Andhra Pradesh, India

ABSTRACT

In this paper we have discussed about the different colourings of shadow graph of star graph. Also we have found the chromatic number $\varphi(G)$, b-chromatic number $\chi(G)$ and Grundy colouring $\Gamma(G)$.

Keywords: Proper colouring, b-colouring, Grundy colouring, shadow graph, star graph, comb graph.

INTRODUCTION

Graph colouring is a colourful concept in graph theory which has many application in real life situations. In 1979 Grundy number was defined initially by Christen and Selkow[4]. Manounchehrzaker[6] explored the results on the Grundy chromatic number of graphs and obtained the inequalities.

Victor Campose,et.al[8] analyzed the bounds on the Grundy number of products like direct, strong and lexigographic of graphs. In the year of 1999 Irwing and Manlone[9] gave an idea about b-colouring and discussed the bounds for b-chromatic number of graphs. Alkhateeb[2] characterized the b-colouring of various graphs. S.K. Vaidhya[10] estimated the b-chromatic number of shadow and splitting graph of path graph. N. Parvathi.et.al[11] estimated the Grundy colouring and b-colouring of join of path and complete graph.

PRELIMINARIES

Definition 1: [1]

A Graph is an ordered pair G=(V,E) comprising V the set of vertices (also called nodes or points, E the set of edges (also called links or lines)

Definition 2: [3]

A Proper colouring of the graph assigns colours to the vertices, edges or both so that proximal elements are assigned distinct colours. The chromatic number $\varphi(G)$ of G is the minimum K forwhich G is k-chromatic.

Definition 3: [2]

The b-chromatic number $\chi(G)$ of a Graph G is the largest positive integer K such that G admits a proper K-colouring in which every colour class has a representative adjacent to atleast one vertex in each of the other colour classes. Such a colouring is called b-colouring.

Definition 4: [6]

A Grundy colouring of order k of a graph G is a k-colouring of G with colours 1, 2, ..., k such that for each vertet x the colour of x is the smallest positive integer not used as a colour on any neighbour of x in G. The Grundy number $\Gamma(G)$ is the largest integer k for which G has a Grundycolouring of order k. **Definition 5:** [10]

The shadow graph of the connected Graph G is constructed by taking two copies of G say G"and G'. Join each vertex u' in G' to the neighbours of the corresponding vertex u" in G".

Definition 6: [12]

The star graph s_n of order n is a tree on n nodes with one node having vertex degree (n-1) and the other (n-1) node having vertex degree 1. star is a complete biograph $k_{1,n}$

Definition 7: [5]

 P_n be a path graph with n vertices. The comb graph is defined as $P_n \odot K_1$. It has 2n vertices and 2n-1 edges.

Definition 8: [10]

The splitting graph of a graph G, is obtained by adding a new vertex u' corresponding to each vertex u of G such that N(u)=N(u') where N(u) and N(u') are the neighbourhood sets of u and u'.

Result 1: [6]

Let G be a graph set $\theta(G) = k$ and (G) = m, then $\Gamma(G) \le \frac{k+1}{2}m$.

Grundy number for shadow graph of star and comb graphsTheorem1: For $n \ge 2$, chromatic number of G is 2 where G is shadow graph of star graph.

Proof:

Let G be a shadow graph of star graph. Vertex set $V(G) = \{u, u_1, u_2, \dots, u_n, u'u_1' \dots u_n, u'u_1' \dots u_n'\}$ For proper coloring, let us consider the color set $\{1,2\}$ Since u and u'are non-adjacent they are assigned by colour 1 Since u_1, u_2, \dots, u_n are adjacent to u then it is coloured by 2 and u_1, u_2, \dots, u_n are adjacent to u'and not adjacent to u_1, u_2, \dots, u_n it is colored by 2. Hence $\varphi(G)=2$

Theorem 2:

Let G be a shadow graph of star graph then $\chi(G)=2$ for all n

Proof:

Let G be a shadow graph of star graph on 2n+2 vertices $u, u_1, u_2 \dots \dots u_n, u', u_1'$ u_n, u', u_1' u_n' Here the independent sets are $\{u, u'\}$ $\{u_n, u_n'\}$ Hence $\alpha(G) = 2, \ \omega(G) = 2, \ n(G) = 2n+2, \qquad \Delta(G) = 2n$

From reference 4, we know that, $\chi(G) \le \Delta(G) + \omega(G) + n(G) + 2$

Let us prove this theorem by induction on n.

Step 1:

When n =2

$$\chi(G) \le \frac{\Delta(G) + \omega(G) + n(G) + 2}{2} \le \frac{2n + 2 + 2n + 2 + 2}{2} \le \frac{4n + 6}{2} \le 7$$

Here V(G) = { $u, u_1, u_2, u', u_1', u_2'$ } For b-coloring, let us consider the color set {1,2} such that $cdv(1)=u, cdv(2)=u_1$ Hence χ (G) = 2

Step 2:

When n=3

$$\chi(G) \le \frac{\Delta(G) + \omega(G) + n(G) + 2}{2} \le \frac{2n + 2 + 2n + 2 + 2}{2} \le \frac{4n + 6}{2} \le 9$$

Here V(G) = { $u, u_1, u_2, u_3, u'u_1', u_2', u_3'$ } For b-coloring, let us consider the color set {1,2} such that $cdv(1)=u, cdv(2)=u_1$ Hence χ (G) = 2

2

Step 3 :

 $\chi(G) \leq \frac{\Delta(G) + \omega(G) + n(G) + 2}{2} \leq \frac{4n + 6}{3}$

Now we consider the vertex set

 $V(G) = \{u, u_1, u_2 \dots \dots u_n, u_1' \dots u_n'\}$ Now we assign the existing colors to the additional vertices u_n and u_n' Hence b-chromatic number of shadow graph of star graph is 2.

Theorem 3:

Grundy chromatic number of G is 2n+1 where G is a shadow graph of star graph for all n.

Proof:

Let G be a shadow graph of star graph with $V(G) = \{u, u_1, u_2 \dots \dots u_n, u_1' \dots u_n'\}$ $n(G) = 2n+2, \Delta(G) = 2n, \omega(G) = 2$

By result 1,Let G be a graph set $\theta(G) = k$ and $\omega(G) = \omega$, then $\Gamma(G) \leq k+1 \omega$.

By considering following cases the proof can be obtain.

Step 1:When n =2 Here V(G) = { $u, u_1, u_2, u', u_1', u_2'$ } then $\omega(G) = 2, \theta(G) = 5, n(G) = 6$ $\Gamma(G) \le {\binom{5+1}{2} \le 6}{2}$

Since there are 6 vertices in the graph, by the definition of Grundy coloring $\Gamma(G) = 5$

For Grundy coloring, let us consider the color set $\{1,2,3,4,5\}$ such that c(u) = 1, c(u') = 1, $c(u_1) = 2$, $c(u_1') = 4$, $c(u_2) = 3$, $c(u_2') = 5$ Hence $\Gamma(G) = 5$

Step 2:When n =3

Here V(G) = { $u, u_1, u_2, u_3, u'u_1', u_2', u_3'$ } where $\omega(G) = 2, \theta(G) = 7, n(G) = 8\Gamma(G) \le {\binom{7+1}{2}} \le 8$

Since there a_{re-6} vertices in the graph, by the definition of Grundy coloring $\Gamma(G) = 5$

For Grundy coloring, let us consider the color set $\{1,2,3,4,5,6,7\}$ such that

c(u) = 1, c(u') = 1, $c(u_1) = 2$, $c(u_1') = 5$, $c(u_2) = 3$, $c(u_2') = 6$, $c(u_3) = 4$, $c(u_3') = 7$ Hence $\Gamma(G) = 7$. Hence Grundy chromatic number of G is 2n+1**Theorem 4:**

For $n \ge 2$ chromatic number of G is 2 where G is shadow graph of comb graph.

Proof:

Let G be a shadow graph of comb graph .The vertex set $V(G) = \{u_1, u_2 \dots \dots u_n, u_1' \dots u_n, u_n'\}$ For Proper coloring, let us consider the color set $\{1,2\}$

2

Therefore, $u_{2}, u_{4}, u_{6}, u_{8} \& u_{2}', u_{4}', u_{6}', u_{8}'$ is not adjacent to $u_{1}, u_{3}, u_{5}, u_{7} \& u_{1}', u_{3}', u_{5}', u_{7}'$ Then $u_{2}, u_{4}, u_{6}, u_{8}, u_{2}', u_{4}', u_{6}', u_{8}'$ are coloured by 1. $u_{1}, u_{3}, u_{5}, u_{7}, u_{1}', u_{3}', u_{5}', u_{7}'$ are coloured by 2. Hence $\varphi(G) = 2$ **Theorem 5:**

Let G be a shadow graph of comb graph then χ G)=2 for all n \geq 2 vertices.

Proof:

Let G be a shadow graph of comb graph with 4n vertices. Here independent sets are $\{u_2, u_4, u_6, u_8, u_2', u_4', u_6', u_8'\}$ and

2

{ $u_1', u_3', u_5', u_7', u_1', u_3', u_5', u_7'$ } Hence $\alpha(G) = 2, \omega(G) = 2, n(G) = 4n, \Delta(G) = 6$

From (ref 4), χ (G) $\leq^{\Delta(G) + \underline{m(G)} + \underline{n(G)} + 2}$

Let us prove this theorem by induction on n

Step 1: When n=2 χ (G) $\leq \frac{\Delta(G) + \omega(G) + n(G) + 2}{2} \leq \frac{6 + 2 + 4n + 2}{2} \leq \frac{10 + 4n}{2} \leq 9$

Here V(G) = { u_1 , u_2 , u_3 , u_4 , u_1' , u_2' , u_3' , u_4' } For b-colouring, let us consider the colour set {1,2} such that $cdv(1) = u_2$, $cdv(2) = u_3$ Hence $\chi(G) = 2$

Step 2: When n= $\chi(G) \le \frac{\Delta(G) + \omega(G) + n(G) + 2}{2} \le \frac{6 + 2 + 4n + 2}{2} \le \frac{10 + 4n}{2} \le 11$

Here V(G) = { $u_1, u_2, u_3, u_4, u_5, u_6u_1', u_2', u_3'u_4'u_5'u_6'$ } cdv(1)= u_1 ,cdv(2) = u_2

Step 3

$$\chi(G) \le \frac{\Delta(G) + \omega(G) + n(G) + 2}{2} \le \frac{6 + 2 + 4n + 2}{2} \le \frac{10 + 4n}{2}$$

Consider the shadow graph of comb graph in which the vertex set $V(G) = \{u_1, u_2, \dots, u_n, u_1', u_n'\}$ Now we assign existing colors to u_n and u_n' Hence the b-chromatic number of shadow graph of comb graph is 2.

Theorem 6

Grundy chromatic number of G is 2n+1 where G is a shadow graph of comb graph for all $n \ge 2$

Proof:

Let G be a shadow graph of comb graph with $V(G) = \{u_1, u_2, \dots, u_n, u_1' \dots u_n, u_n'\}$ Where n(G) = 4n, $\Delta(G) = 6$, $\omega(G) = 2$ By result $1 \Gamma(G) \leq \frac{k+1}{2} \omega$ where $k = \theta(G)$ and $\omega = \omega(G)$ By considering following cases the proof can be obtain.

Step 1:When n =2

Here V(G) = { u_1, u_2, u_3, u_4 , u_1', u_2', u_3', u_4' } $\omega(G) = 2, \theta(G) = 6 = k, n(G) = 8$ $\Gamma(G) \le (6+1)$

2

By the definition of Grundy coloring, $\Gamma(G) = 5$

For Grundy coloring, let us consider the color set $\{1,2,3,4,5\}$ such that

 $C(u_1) = 1, c(u_1') = 1, c(u_2) = 4, c(u_2') = 5, c(u_3) = 1, c(u_3') = 1, c(u_4) = 2, c(u_4') = 3$ Hence $\Gamma(G) = 5$ Step 2:When n = 3

Here V(G) = { $u_1, u_2, u_3, u_4, u_5, u_6, u_1', u_2', u_3', u_4', u_5', u_6'$ } $\omega(G) = 2, \theta(G) = 10, n(G) = 12$ $\Gamma(G) \le \begin{pmatrix} 10+1 \\ 2 \end{pmatrix}$

For Grundy coloring, let us consider the color set {1,2,3,4,5,6,7} such that $c(u_1) = c(u_5) = c(u_1') = c(u_5') = 1$, $c(u_2) = 6$, $c(u_2') = 7$, $c(u_3) = 1$, $c(u_3') = 1c(u_4) = 4$, $c(u_4') = 5$, $c(u_6) = 2$, $c(u_6') = 3 : \Gamma(G) = 7$ Hence Grundy chromatic number of G is 2n+1 for all $n \ge 2$ vertices Hence $\Gamma(G) = 7$

Grundy number for Splitting graph of star and comb graphs Theorem 7:

If G is a splitting graph of star graph then $\varphi(G) = 2$ for all $n \ge 2$

Proof :

Let G be a splitting graph of star graph vertex set $V(G) = \{ u, u_1, \dots, u_n, u'u_1', \dots, u_n' \}$ For proper coloring, let us consider the color set $\{1,2\}$

 \therefore u and u' are non-adjacent they are assigned by colour 1

 $\therefore u_1, \dots, u_n$ are adjacent to u then it is colored by 2 and u_1', \dots, u_n' are adjacent to u then they are assigned by colour 2

Hence $\varphi(G) = 2$

Theorem 8:

Let G be a splitting graph of star graph $\chi(G) =$ for all n

Proof:

From reference (4) we know that $\chi(G) \le \Delta(G) + \omega(G) + n(G) + 2$

Let us prove this theorem by induction on n

Step 1: When n =2

$$\chi(G) \le \frac{\Delta(G) + \omega(G) + n(G) + 2}{2} \le \frac{2n + 2 + 2n + 2 + 2}{2} \le \frac{4n + 6}{2} \le 7$$

Here = { $u, u_1, u_2, u'u_1', u_2'$ }

For b-coloring let us consider the colour set such that cdv(1) = u, $cdv(2) = u_1$ Hence $\chi(G)=2$

Step 2 : When n=3

$$\chi(G) \le \frac{\Delta(\underline{G}) + \omega(\underline{G}) + n(\underline{G}) + 2}{2} \le \frac{2n + 2 + 2n + 2 + 2}{2} \le \frac{4n + 6}{2} \le 9$$

Here = { $u, u_1, u_2, u_3, u'u_1', u_2', u_3'$ } For b-colouring let us consider the colour set $\{1,2\}$ such that cdv(1) = u, $cdv(2) = u_1'$ Hence $\chi(G)=2$

Step 3 : When n=4

2Now consider the vertex set

 $V(G) = \{ u, u_1, \dots, u_n, u'u_1', \dots, u_n' \}$ Now we assign the exisiting colours to the additional vertices u_n and u_n' Hence b-chromatic number of splitting graph of star graph is 2.

Theorem 9:

Grundy chromatic number of G is 2n+1 where G is the splitting graph of star graph for all $n \ge 2$

Proof:

Let G be a splitting graph of star graph V(G) = { $u, u_1, \dots, u_n, u'u'_1, \dots, u''_n$ }n(G) = 2n+2, $\Delta(G) = 2n, \omega(G) = 2$ By result $1.\Gamma(G) < {k+1 \over \omega}$ where 2

2

 $K = \theta$ (G), $\omega = \omega$ (G)

By considering the following cases the proof can be obtained.

Case (i) When n =2

Here V(G) = { u, u_1, u_2, u', u_1', u_2' }n(G) = 6, $\Delta(G) = 4, \omega(G) = 2$ By theorem $\Gamma(G) \le 4+1$ $2 \le 5$ 2

Since there are 6 vertices in the graph by the defn of Grundy colouring $\Gamma(G)=5$ For Grundy colouring let us consider the colour set $\{1,2,3,4,5\}$ such that

C(u) = 1, c(u')=1, $C(u_1) = 2$, $c(u_1') = 4$, $C(u_2) = 3$, $c(u_2') = 5$ Hence $\Gamma(G)=5$ **Case 2:** when n = 3

Here V(G) = { u, $u_1, u_2, u_3, u', u'_1, u'_2, u'_3$ $\theta(G) = 6, \omega(G) = 2By$ theorem $\Gamma(G) \le \frac{6+1}{2} \le 7$ 2

Since there are 8 vertices in the graph by the defn of Grundy colouring $\Gamma(G)=7$ For Grundy colouring let us consider the colour set {1,2,3,4,5,6,7} such that $C(u) = 1, c(u') = 1, C(u_1) = 2, c(u_1') = 4, C(u_2) = 3, c(u_2') = 5, C(u_3) = 4, c(u_3') = 7, C(u_3) = 7, C$ Hence $\Gamma(G)=7$

Hence Grundy chromatic number is 2n+1 for all vertices $n \ge 2$ vertices.

Theorem 10:

For $n \ge 2$ chromatic number of G is 2 where G is splitting graph of comb graph.

Proof:

Let G be a splitting graph of comb graph

The vertex set V(G) = $\{u_1, \dots, u_n, u_1', \dots, u_n'\}$ For proper colouring let us consider the colour set $\{1,2\}$

Since u_2, u_4, u_6, u_8 and u_2' , u_4', u_6', u_8' is not adjacent to u_1, u_3, u_5, u_7 and u_1', u_3', u_5', u_7' $u_2, u_4, u_6, u_8, u_2', u_4', u_6', u_8'$ are coloured by 1 and u_1, u_3, u_5, u_7 and u_1', u_3', u_5', u_7' are coloured by 2Hence $\varphi(G) = 2$ **Theorem : 11**

Let G be a splitting graph of comb graph then $\chi(G)=2$ for all $n \ge 2$ vertices.

Proof:

Let G be a splitting graph of comb graph on 4n vertices.

Here independent sets are $\{u_1, u_3, u_5, u_7, u_1', u_3', u_5', u_7'\}$ and $\{u_2, u_4, u_6, u_8, u_{2'}, u_{4'}, u_{6'}, u_{8'}\}$ therefore $\alpha(G) = 2, \omega(G) = 2, n(G) = 4n, \Delta(G) = 6$ From reference 4 we have , $\chi(G) \leq \Delta(G) + m(G) + n(G) + 2$

Let us prove this theorem on induction on n.

Step:1 when n=2

$$\chi(\mathbf{G}) \leq \frac{\Delta(\boldsymbol{G}) + m(\boldsymbol{G}) + n(\boldsymbol{G}) + 2}{2} \leq \frac{4n + 10}{2} \leq 9$$

here $V(G) = \{u_1, u_2, u_3, u_4, u_1', u_2', u_3', u_4'\}$ for b coloring consider the color set $\{1, 2\}$ such that $cdv(1) = u_1, cdv(2) = u_2$ hence $\chi(G) = 2$

step:2 when n=3

$$\chi(\mathbf{G}) \leq \frac{\Delta(\boldsymbol{G}) + m(\boldsymbol{G}) + n(\boldsymbol{G}) + 2}{2} \leq \frac{4n + 10}{2} \leq 11$$

here $V(G) = \{u_{1,}u_{2,}u_{3}, u_{4,}u_{5,}u_{6,}u_{1}', u_{2}', u_{3}', u_{4}', u_{5}', u_{6}'\}$ cdv(1)= $u_{1,}$ cdv(2)= u_{2} hence $\chi(G)$ =2

step:3

$$\chi(G) \leq \frac{\Delta(\boldsymbol{G}) + m(\boldsymbol{G}) + n(\boldsymbol{G}) + 2}{2} \leq \frac{4n + 10}{2}$$

consider the splitting graph of comb graph in which the vertex set $V(G) = \{u_1, \dots, u_n, u_n', \dots, u_n'\}$. Now we assign the existing colors to the vertices u_n and u_n' . Hence the b chromatic number of splitting graph of comb graph is 2.

Theorem 12:

The Grundy chromatic number of G is 2n+1 where G is a splitting graph of comb graph for all $n \ge 2$ vertices. **Proof:**

Let G be a splitting graph of comb graph with $V(G) = \{u_1, \dots, u_n, u_1', \dots, u_n'\}$. Where $n(G)=4n, \Delta(G) = 6, \omega(G) = 2$

By the result 1 we know that $\Gamma(G) \leq \frac{k+1}{\omega}$ where $K = \theta(G), \omega = \omega(G)$

By considering following cases the proof can be obtained

Step 1: when n =2 here $V(G) = \{u_{1,}u_{2,}u_{3}, u_{4,}u_{1}', u_{2}', u_{3}', u_{4}'\}$ n(G)=8, $\omega(G)$ = 2, $\theta(G)$ =6=k $\Gamma(G) \le \frac{k+1}{\omega} \le 7$ 2

By the definition of Grundy coloring $\Gamma(G)=5$

For Grundy coloring consider the color set $\{1,2,3,4,5\}c(u_1) = 1, c(u_2) = 4, c(u_3) = 1, c(u_4) = 5$ $c(u_1') = 1, c(u_2') = 2, c(u_3') = 1, c(u_4') = 3$ therefore $\Gamma(G)=5$.

Step 2: when n=3

Here $V(G) = \{u_{1,}u_{2,}u_{3}, u_{4,}u_{5,}u_{6,}u_{1}', u_{2}', u_{3}', u_{4}', u_{5}', u_{6}'\}$ n(G)=12, $\omega(G) = 2, \theta(G)=10=k$ $\Gamma(G) \le \frac{k+1}{\omega} \le 11$

6

For Grundy coloring let us consider the color set {1,2,3,4,5,6,7} $c(u_1)$, $c(u_5)$, $c(u'_1)$, $c(u_5')$, $c(u_3)$, $(u_3') = 1$, $c(u_2) = 6$, $c(u_2') = 7c(u_4) = 4$, $c(u_4') = 5$, $c(u_6) = 2$, $c(u'_1) = 3$ Therefore $\Gamma(G)=7$

Hence, Grundy chromatic number of G is 2n+1 for all $n \ge 2$ vertices

REFERENCES

- [1]. Douglas B. West, Introduction to Graph Theory. Prentice-Hall of India private Limited, NewDelhi (1999);
- [2]. M. Alkhateeb, on b-colorings and b-continuity of graphs. Ph.D. Thesis Techische UniversityBergakademie, Freiberg, Germany (2012).
- [3]. T.R. Jensen, B. Toft, Graph colouring problems, Wiley, New York (1995).
- [4]. C.A. Christen, S.M. Selkow, Some perfect coloring properties of graphs, J. Combin Theory Ser. B, 27 (1979), 49-59.
- [5]. E.Eskkiammel and B.Deepa, K.Thirusangu some labelling of square graph and comb graphSIVET, Chennai.
- [6]. M. Zaker, Inequalities for the Gundy chromatic number of graphs, Discrete Math, Discrete Applied Mathematics, 155 (2007), 2567-2572.
- [7]. M. Zaker, Results on the Grundy chromatiac number of graphs, Discrete Mathematics, 306(2006) 3166-3173.
- [8]. Victor Campos.et,al, New bounds on the Grundy number of products of graphs, HAL, ISSN0249-6399, April 2010.
- [9]. R.W Irving, D.F. Manlove, The b-chromatic number of graphs, Discrete. Appl. Math., 91(1991), 127-141.
- [10]. S.K. Vaidya et.al. B-chromatic number of some path related graphs, International Journal of Mathematics and Scientific computing, ISSN (2231-5330), 4, No.1 (2014).
- [11]. N.Parvathi.et.al, Grundy coloring of njoin of path and complete graph, International journal of pure and applied mathematics, vol 113,(2017),189-197
- [12]. N.Sujatha, C.Dharuman, K.Thirusangu, Triangular fuzzy gracefull labeling on star graph, Journal of physics, *PMTIA* (2019)