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ABSTRACT 
 

Here, we seek to prove some novel fractional integral inequalities for synchronous functions connected to the 

Chebyshev functional, involving the Gauss hypergeometric function. The final section presents a number of special 

instances as fractional integral inequalities involving Riemann-Liouville type fractional integral operators. 

Additionally, we take into account their applicability to other relevant, previous findings. 
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INTRODUCTION 

 

The most beneficial uses of fractional integral inequalities are in determining the uniqueness of solutions to fractional 

boundary value issues and fractional partial differential equations. Additionally, they offer upper and lower bounds for the 

solutions of the aforementioned equations. 

 

These factors have prompted a number of scholars working in the area of integral inequalities to investigate various 

extensions and generalisations by utilising fractional calculus operators. For instance, the book [1] and the publications [2-

11] both contain references to such works. 

 

Purohit and Raina [9] recently looked into some integral inequalities of the Chebyshev type [12] utilising Saigo fractional 

integral operators and established the q-extensions of the main findings. This study uses the fractional hypergeometric 

operator proposed by Curiel and Galue [13] to prove a few generalised integral inequalities for synchronous functions 

related to the Chebyshev functional. As special examples of our findings, the results attributed to Purohit and Raina [9] and 

Belarbi and Dahmani [2] are presented below. 

 

Definitions and Preliminaries Used In This Paper: 

 

Definition 1. Two functions f & gare said to be synchronous on [a, b] if  
 

(f(x) − f(y))(g(x) − g(y))[a, b] ………….(1) 
 

Definition 2. A real-valued functionf(t) (t> 0) is said to be in the space𝐶𝜇  (𝜇 ∈ R) if there exists a real number p > 𝜇, such 

that f(t) = tp∅(t), where ∅(t) ∈ C(0, ∞). 

 

Definition 3. Let 𝛂 > 0, 𝜇 >-1, β, η ∈ R; then a generalized fractional integral It
α,β,η,μ

(in terms of the Gauss hypergeometric ) 

of order α for a real valued continuous function f(t) is defined in [13] 

 

I0,𝑥
α,β,η

 f(𝑥) = 
x−α−β

Γα
 (𝑥 − t)α−1x

0 2F1 α + β, −η ; 1 −
t

𝑥
 f(t) dt,   ………(2) 
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Main Results: 

In this section we obtain certain Chebyshev type integral inequalities involving  the generalized fractional integral operator. 

The following lemma is used for our first result.  

 

Lemma 4: let 𝛂 > 0, 𝜇 >-1, β, η ∈ R; then the following image formula for the power function under the operator(2) holds 

true:  

I0,𝑥
α,β,η 𝑥τ−1 =  

Γ 𝜇 + τ Γ τ − β + η 

Γ τ − β Γ τ + 𝜇 + 𝛼 + η 
𝑥τ−β−μ−1 

 

Theorem: let  f & g  be  two synchronous  functions on(0, ∞) then  

 

I0,𝑥
α,β,η f(𝑥)g(𝑥) ≥

Γ 1 − β Γ 1 + μ + α + η 

Γ 1 + μ Γ 1 − β + η 
𝑥β+μ × I0,𝑥

α,β,η f(𝑥) I0,𝑥
α,β,η g(𝑥)  

 

For all  𝑥 > 0, α > max{0, −β − μ}, β < 1μ > −1, η < 0. 
 

Proof:  let  f&g  be  two synchronous  functions , then  using definition1, for all τ, ρϵ(0, t),t ≥ 0, we have 

 

{(f(τ) − f(ρ)(g(τ) − g(ρ)} ≥ 0, 
Which implies that  

 

(f(τ)g(τ) + f(ρ)g(ρ) ≥ f(τ)g(ρ)+f(ρ)g(τ). 

 

Consider  

 

F(𝑥, τ)= 
𝑥−α−β−2μτμ(𝑥−t)α−1

Γα
2F1 α + β + μ, −η ; 1 −

τ

𝑥
 f(t) dt,=  

 

τμ(𝑥 − τ)α−1

Γα𝑥α+β+2μ
+ 

τμ(α + β + μ)(−η)(𝑥 − τ)α

Γ(α + 1)  𝑥α+β+2μ
+

τμ(α + β + μ)(α + β + μ + 1)(𝑥 − τ)α−1

Γ(α + 2) 
×

(𝑥 − τ)α+1

𝑥α+β+2μ+2
 

 

Our observation is that each term of the above series is positive in view of the conditions stated with Theorem 1, 

 

I0,𝑥
α,β,η f(𝑥)g(𝑥) ≥

Γ 1 − β Γ 1 + μ + α + η 

Γ 1 + μ Γ 1 − β + η 
𝑥β+μ × I0,𝑥

α,β,η f(𝑥) I0,𝑥
α,β,η g(𝑥)  

 
Special cases:  
Here, we take a quick look at a few implications of the findings in the preceding section. The operator (2) would instantly 

decrease to the thoroughly studied, Erdelyi-Kober, and Riemann-Liouville type fractional integral operators, respectively, 

according to Curiel and Galué [13], given by the relationships below (see also [14, 16])  

 

I0,𝑥
α,β,η

 f(𝑥) =I0,𝑥
α,β,η,0

 f(𝑥)= 

 
x−α−β

Γα
 (𝑥 − τ)α−1x

0 2F1 α + β, −η ; 1 −
τ

𝑥
 f(τ) d(τ) , 

 

Here we get , Erdelyi-Kober fractional operator. 

 

= I0,𝑥
α,η

 f(𝑥) = I0,𝑥
α,0,η,0

 f(𝑥)= 
x−α−η

Γα
 (𝑥 − τ)α−1x

0
τn f(τ) d(τ) 

 

Here we get, Riemann-Liouville fractional operator 

 

= Rα  f(𝑥)= I𝑥
α,−α,η,0

f(𝑥)=   
1

Γα
 (𝑥 − τ)α−1x

0
f(τ) d(τ). 
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