

Green Synthetic Pathways for Nitrogen and Sulfur-Containing Heterocycles: A Sustainable Approach to Medicinal Chemistry

Dr. Swati Sharma

Department of Chemistry, LBS Government College, Kotputli, Rajasthan

ABSTRACT

The increasing global emphasis on sustainability and environmental protection has driven a paradigm shift toward green chemistry in pharmaceutical synthesis. Nitrogen and sulfur-containing heterocycles constitute a crucial class of compounds exhibiting diverse pharmacological properties, including antimicrobial, anticancer, and anti-inflammatory activities. Traditional synthesis routes for these compounds often involve toxic solvents, hazardous reagents, and energy-intensive conditions. This research explores eco-friendly synthetic methodologies, including solvent-free reactions, microwave-assisted techniques, and green catalysis, to develop nitrogen and sulfur heterocycles with medicinal potential. The study demonstrates that these methods not only reduce waste and reaction time but also enhance yield and purity. The results validate green synthesis as a viable, scalable, and sustainable alternative for modern medicinal chemistry.

Keywords: Green chemistry, heterocycles, nitrogen compounds, sulfur compounds, microwave synthesis, sustainable catalysis, medicinal chemistry.

INTRODUCTION

Heterocyclic compounds are among the most significant and versatile chemical entities in modern organic and medicinal chemistry. They are characterized by the presence of at least one heteroatom—such as nitrogen, oxygen, or sulfur—within their cyclic framework. These heteroatoms impart distinct electronic, structural, and biological properties, making heterocycles a vital component in the design and synthesis of bioactive molecules. Among them, nitrogen and sulfur-containing heterocycles hold particular importance due to their extensive occurrence in natural products, pharmaceuticals, dyes, and agricultural chemicals. Compounds such as thiazoles, thiophenes, imidazoles, and benzothiazoles represent fundamental scaffolds in drug discovery and development. Their unique electronic configuration enables them to interact effectively with biological targets through hydrogen bonding, π – π stacking, and coordination with metal ions. Consequently, these heterocycles exhibit a wide range of pharmacological properties, including antimicrobial, anti-inflammatory, antitumor, antiviral, and antioxidant activities. Many clinically important drugs, such as penicillin (a β -lactam antibiotic containing a thiazolidine ring), omeprazole (a proton pump inhibitor containing a benzimidazole moiety), and thiamine (vitamin B₁ with a thiazolium ring), are classical examples that demonstrate the medicinal significance of nitrogen and sulfur heterocycles. Despite their broad applicability, the conventional synthetic methodologies for producing these heterocyclic systems often pose serious environmental and safety concerns. Traditional organic syntheses commonly employ chlorinated solvents such as dichloromethane, chloroform, or carbon tetrachloride, which are not only toxic but also non-biodegradable and volatile, contributing to atmospheric and groundwater pollution. Moreover, these reactions typically require the use of strong acids, metal-based catalysts, or stoichiometric reagents in large excess, generating considerable chemical waste and by-products. In addition, prolonged reflux at elevated temperatures consumes substantial energy, thereby increasing the carbon footprint of the overall process. Such practices conflict with modern environmental priorities and regulatory frameworks aimed at achieving sustainable chemical production.

In response to these challenges, the concept of green chemistry has emerged as a guiding principle for transforming chemical processes to be more sustainable and less harmful to both humans and the environment. Formulated by Anastas and Warner in 1998, the twelve principles of green chemistry advocate for waste minimization, atom economy, safer solvents, energy efficiency, the use of renewable feedstocks, and the design of degradable products. Applying these principles to heterocyclic synthesis promotes the adoption of cleaner, more efficient methods—such as solvent-free reactions, microwave-assisted synthesis, mechanochemical approaches, and the use of eco-friendly catalysts or ionic liquids. These innovations not only reduce the ecological impact of chemical processes but often result in higher

yields, shorter reaction times, and simplified work-up procedures. Over the past decade, significant research has been directed toward integrating these green methodologies into the synthesis of bioactive heterocyclic compounds. Solvent-free conditions and solid-state reactions minimize hazardous waste and simplify purification, while microwave-assisted synthesis drastically reduces reaction times and enhances product selectivity. Similarly, the introduction of recyclable catalysts—such as natural clay minerals, biogenic metals, or ionic liquids—has improved process sustainability by allowing repeated use without significant loss of activity. In this context, the present study aims to explore the synthesis of nitrogen and sulfur-containing heterocycles through environmentally benign methods that align with the principles of green chemistry. The research emphasizes the development of solvent-free and catalyst-based synthetic routes and evaluates their efficiency in terms of yield, energy consumption, atom economy, and environmental footprint. Additionally, the work assesses how these green synthetic approaches can serve as practical alternatives to traditional procedures in medicinal chemistry, ultimately contributing to sustainable innovation in pharmaceutical development.

LITERATURE REVIEW

During the early 2010s, considerable research attention was directed toward developing environmentally sustainable methodologies for the synthesis of nitrogen and sulfur-containing heterocycles. The growing awareness of environmental pollution caused by traditional chemical processes encouraged chemists to explore alternatives that adhered to the fundamental principles of green chemistry. Between 2011 and 2014, numerous studies demonstrated the feasibility of synthesizing bioactive heterocyclic compounds using solvent-free systems, alternative energy sources such as microwaves, and reusable catalytic media. In one of the early investigations, Kumar et al. (2012) reported a highly efficient and environmentally friendly method for the synthesis of thiazole derivatives using solvent-free conditions under microwave irradiation. The study highlighted that the application of microwave energy significantly reduced reaction times from several hours to a few minutes, while simultaneously increasing yields to approximately 90 percent.

This not only minimized solvent waste but also eliminated the need for prolonged heating and complex purification processes. The research established microwave-assisted synthesis as a promising green alternative to conventional reflux methods for heterocyclic construction, particularly in the case of sulfur-containing compounds such as thiazoles. Further advancements in this direction were presented by Patil and Deshmukh (2014), who explored the use of ionic liquids as green reaction media for the synthesis of pyrimidine derivatives. Ionic liquids, being non-volatile and thermally stable, served as both solvent and catalyst, thereby replacing hazardous organic solvents like dichloromethane and acetone. Their ability to be reused across multiple reaction cycles without significant loss of efficiency demonstrated their economic and ecological advantages. The study revealed that ionic liquids not only improved reaction selectivity but also facilitated cleaner work-up processes, aligning closely with the goals of sustainable and atom-economic chemistry. The authors emphasized that the elimination of volatile organic compounds (VOCs) in such reactions could drastically reduce the ecological footprint of large-scale pharmaceutical synthesis. These pioneering studies, covering the period up to 2014, marked a significant transition from conventional solvent-based organic reactions toward greener methodologies.

Researchers began recognizing that the implementation of sustainable practices such as solvent-free synthesis, microwave activation, and the use of recyclable catalytic systems could offer dual benefits—environmental safety and synthetic efficiency. The findings of Kumar et al. (2012) and Patil and Deshmukh (2014) collectively laid the groundwork for further exploration into eco-friendly synthesis routes of nitrogen and sulfur heterocycles, which later studies expanded upon using water-based media, deep eutectic solvents, and biogenic catalysts. Thus, by 2014, the field had already established a clear trend toward integrating energy-efficient, low-toxicity, and waste-minimizing approaches into medicinal and heterocyclic chemistry.

3. Objectives

The main objectives of this research are:

1. To explore solvent-free and catalyst-based synthetic pathways for nitrogen and sulfur-containing heterocycles.
2. To compare the yield, reaction time, and purity of products obtained from green versus conventional methods.
3. To assess the environmental footprint and atom economy of the proposed reactions.
4. To demonstrate the medicinal potential of synthesized compounds via literature-supported biological activity.

MATERIALS AND METHODS

4.1 Chemicals

All reagents used in the present study were of analytical grade and used without further purification. Substituted anilines (such as 4-chloroaniline and 4-methoxyaniline), aromatic aldehydes (such as benzaldehyde and p-chlorobenzaldehyde), thioglycolic acid, and ammonium acetate were procured from Merck India Ltd. and SRL Laboratories, Mumbai. Ethanol (95%) was used for recrystallization, and distilled water was used throughout the reactions. Each reaction was designed to employ stoichiometric molar ratios (1:1:1) of aniline, aldehyde, and

thioglycolic acid. Unless otherwise stated, all experiments were conducted under solvent-free conditions in order to minimize the use of volatile organic compounds and to adhere to green chemistry principles.

4.2 Equipment

A laboratory-grade microwave reactor (Catawave MW-600, 600 W) was employed for the synthesis, ensuring uniform energy distribution and controlled heating. The reaction progress was monitored using thin-layer chromatography (TLC) with silica gel plates and ethyl acetate–hexane solvent systems. The melting points of the purified compounds were determined using a digital melting point apparatus (SMP-10 Stuart). Infrared spectra (FTIR) were recorded using a Bruker Alpha FTIR spectrometer in the range of 4000–400 cm⁻¹. Nuclear magnetic resonance (¹H-NMR and ¹³C-NMR) spectra were recorded on a Bruker Avance 400 MHz spectrometer using deuterated DMSO as solvent. Mass spectral analysis (GC-MS) was performed using a Shimadzu QP-2010 Plus system to confirm the molecular ion peaks.

4.3 Green Synthetic Procedure

The model reaction chosen for this study was the synthesis of thiazolidinone derivatives through a condensation-cyclization pathway involving substituted aniline, aromatic aldehyde, and thioglycolic acid. A stoichiometric mixture containing substituted aniline (1 mmol), aldehyde (1 mmol), and thioglycolic acid (1 mmol) was ground manually in a porcelain mortar for 10 minutes until a uniform paste was obtained. The mixture was then transferred into a 50 mL round-bottom flask and subjected to microwave irradiation at 80°C for 5 minutes under solvent-free conditions. After completion of the reaction (as confirmed by TLC), the solid mass was allowed to cool and was washed thoroughly with cold water to remove unreacted residues. The crude product obtained was recrystallized using ethanol to yield pure thiazolidinone derivatives. The overall process required minimal solvent, no external catalyst (in the control run), and negligible post-reaction waste.

4.4 Catalyst Variation

To further enhance the efficiency and sustainability of the process, reactions were also carried out in the presence of various eco-friendly catalysts. Three types of catalysts were investigated:

- (a) natural kaolin clay,
- (b) bio-derived ionic liquid (a mixture of choline chloride and glycerol in 1:2 molar ratio), and
- (c) zeolite-supported copper nanoparticles.

Each catalyst was added in a small amount (5 mol% with respect to the aldehyde) to the same reaction mixture described above. All reactions were carried out under identical conditions of microwave irradiation (600 W, 5 minutes). The reactions were performed in triplicate, and the average yield was calculated for each catalyst system.

Table 1: Reaction Conditions and Yield of Thiazolidinone Derivatives Using Different Green Catalysts

Entry	Catalyst Type	Reaction Time (min)	Temperature (°C)	Product Yield (%)	Melting Point (°C)	Observations
1	None (control, solvent-free)	10	80	82	168–170	Smooth paste formation, no external catalyst used
2	Natural Kaolin Clay	8	80	85	169–171	Faster solidification, slightly higher yield
3	Ionic Liquid (Choline chloride + Glycerol)	5	80	88	170–172	Excellent homogeneity, easier product separation
4	Zeolite-supported Cu Nanoparticles	5	80	90	171–173	Highest yield, fine crystalline product, reusable catalyst up to 4 cycles

The data presented in Table 1 clearly indicates the influence of catalyst type on the efficiency of thiazolidinone synthesis. The solvent-free control reaction yielded 82 percent product in 10 minutes, confirming that heterocyclic formation can occur without any solvent medium. The introduction of natural kaolin clay marginally improved the yield to 85 percent, possibly due to its surface acidity and adsorption capability, which promote the condensation reaction between the aldehyde and amine. The ionic liquid system provided superior performance with 88 percent yield and reduced reaction time to just 5 minutes. This enhancement can be attributed to the dual role of the ionic liquid as both solvent and catalyst, facilitating effective molecular interactions and heat transfer. The most significant improvement was observed with zeolite-supported copper nanoparticles, which achieved 90 percent yield and produced a highly crystalline product. The heterogeneous catalyst was found to be reusable up to four consecutive reaction cycles without substantial loss of activity, confirming its sustainability and cost-effectiveness. Overall, the results demonstrate that the microwave-assisted synthesis under solvent-free or catalyst-based conditions offers a rapid, high-yielding, and environmentally friendly alternative to traditional reflux-based methods. The observed data strongly supports the hypothesis that integrating green catalysts and alternative energy sources can significantly reduce the environmental impact of heterocyclic synthesis while improving process efficiency.

RESULTS AND DISCUSSION

5.1 Reaction Efficiency

The efficiency of various synthetic methods for the preparation of thiazolidinone derivatives was evaluated based on reaction time, product yield, solvent requirement, and energy utilization. Four different synthetic pathways—conventional reflux, solvent-free grinding, microwave-assisted, and ionic liquid catalysis—were compared under similar stoichiometric conditions. The performance of each method is presented in Table 2.

Table 2: Comparison of Reaction Efficiency under Different Synthetic Conditions

Method	Reaction Time (min)	Yield (%)	Solvent Used	Energy Consumption (kJ)	Observations
Conventional Reflux	120	65	Ethanol	540	Moderate yield, required prolonged heating and reflux
Solvent-Free Grinding	15	82	None	85	Rapid reaction, minimal energy usage, easy work-up
Microwave-Assisted	5	90	None	45	Excellent yield, very short reaction time, uniform heating
Ionic Liquid Catalysis	20	88	Choline chloride-glycerol	70	High yield, reusable catalyst, easier product separation

The results in Table 2 clearly indicate that microwave-assisted synthesis is the most efficient method for producing thiazolidinone derivatives. The reaction completed within 5 minutes with an average yield of 90 percent, while the solvent-free grinding method achieved an 82 percent yield within 15 minutes. Both methods eliminated the use of toxic organic solvents, aligning well with green chemistry principles. In contrast, the conventional reflux process, which used ethanol as a solvent, required 120 minutes to complete and produced only a 65 percent yield. The energy requirement for the reflux reaction was estimated at 540 kJ, making it the least sustainable among the compared methods. The ionic liquid system, utilizing a choline chloride-glycerol mixture, also demonstrated a favorable yield (88 percent) and an intermediate energy requirement of 70 kJ, with the added benefit of catalyst reusability for up to four cycles. Overall, microwave irradiation and ionic liquid-mediated syntheses outperformed conventional methods in both time and yield, confirming their suitability for environmentally sustainable and industrially viable heterocyclic synthesis.

5.2 Spectroscopic Confirmation

The structural confirmation of synthesized thiazolidinone derivatives was carried out using FTIR, ¹H-NMR, and ¹³C-NMR spectroscopy. The observed spectral data for representative compound 2-(4-chlorophenyl)-3-phenylthiazolidin-4-one are summarized in Table 3.

Table 3: Spectroscopic Data for Synthesized Thiazolidinone Derivative

Spectroscopic Technique	Observed Frequency/Shift	Assigned Functional Group or Signal	Interpretation
FTIR (cm ⁻¹)	1680	C=O (carbonyl group of thiazolidinone ring)	Confirms presence of lactam-type carbonyl
FTIR (cm ⁻¹)	1605	C=N (imine group)	Indicates condensation between amine and aldehyde
FTIR (cm ⁻¹)	690	C–S (thiazolidine ring)	Confirms cyclization forming thiazolidinone framework
¹ H-NMR (δ ppm)	7.10–7.60	Aromatic protons	Confirms presence of substituted phenyl rings
¹ H-NMR (δ ppm)	4.25	CH–S proton	Confirms heterocyclic proton attached to sulfur
¹³ C-NMR (δ ppm)	173.5	C=O carbon	Confirms carbonyl carbon within thiazolidinone ring
¹³ C-NMR (δ ppm)	62.4	C–S carbon	Supports ring formation involving sulfur linkage

The FTIR spectrum displayed a sharp absorption band at 1680 cm⁻¹, characteristic of the carbonyl stretching vibration in the thiazolidinone ring. The presence of a strong band near 1605 cm⁻¹ corresponded to the C=N stretching mode, confirming imine formation during condensation. The low-frequency band observed around 690 cm⁻¹ indicated the presence of a C–S bond, validating the successful cyclization of the thioglycolic acid moiety with the substituted aniline and aldehyde. The ¹H-NMR and ¹³C-NMR spectra provided further confirmation. Signals between 7.10 and 7.60 ppm in the ¹H-NMR spectrum confirmed the aromatic environment, while the peak at 4.25 ppm corresponded to the CH–S proton of the thiazolidinone ring. The ¹³C-NMR signal at 173.5 ppm validated the carbonyl carbon of the lactam structure, and a signal at 62.4 ppm confirmed the C–S linkage. Together, these spectroscopic results verified the successful synthesis of the desired heterocyclic product with the expected molecular structure.

5.3 Environmental Assessment

To evaluate the sustainability of each synthetic approach, environmental parameters such as the E-factor (kg waste per kg product), atom economy, and reaction mass efficiency (RME) were calculated. The results are summarized in Table 4.

Table 4: Environmental Assessment Metrics for Different Synthetic Methods

Method	E-Factor (kg waste/kg product)	Atom Economy (%)	Reaction Mass Efficiency (%)	Waste Reduction (%)
Conventional Reflux	3.2	72	58	—
Solvent-Free Grinding	0.2	88	79	94
Microwave-Assisted	0.4	90	82	88
Ionic Liquid Catalysis	0.5	87	80	84

The E-factor analysis reveals a significant reduction in waste generation through the application of green methodologies. The conventional reflux process produced the highest waste with an E-factor of 3.2, indicating that for every kilogram of product, over 3 kilograms of by-products or solvent waste were generated. In contrast, the solvent-free grinding method achieved an exceptionally low E-factor of 0.2, representing a 94 percent reduction in waste. Microwave-assisted synthesis showed a slightly higher E-factor (0.4) but achieved the best atom economy (90 percent), owing to the complete conversion of starting materials into the desired product with minimal by-product formation. The ionic liquid-mediated synthesis also demonstrated high atom economy (87 percent) and excellent recyclability of the catalytic medium, further contributing to sustainability. Collectively, these results show that adopting solvent-free and microwave-assisted strategies significantly enhances process greenness, improves yield efficiency, and minimizes chemical waste and environmental impact compared to traditional methods.

5.4 Biological Relevance

The synthesized thiazolidinone derivatives were evaluated for their potential biological activity through literature comparison and preliminary in-silico assessment. Based on molecular structure and previously reported data, these compounds are expected to exhibit antimicrobial, antifungal, and anticancer properties. Thiazolidinone moieties are

known to inhibit bacterial enzymes such as DNA gyrase and dihydrofolate reductase, while substituted phenyl groups enhance lipophilicity and facilitate cell membrane penetration. The literature survey supports this hypothesis. For example, Shah et al. (2012) reported that 4-thiazolidinone derivatives exhibited strong antibacterial activity against *Staphylococcus aureus* and *Escherichia coli*. Similarly, Patel and Sharma (2014) observed notable antifungal and anti-inflammatory potential in benzothiazolidinone analogs. Based on these correlations, the compounds synthesized in this study are expected to possess comparable pharmacological effects, making them viable candidates for further biological evaluation and drug development studies.

CONCLUSION

The present study demonstrates that the synthesis of nitrogen and sulfur-containing heterocycles, specifically thiazolidinone derivatives, can be efficiently achieved through green and sustainable methodologies. By employing solvent-free, microwave-assisted, and ionic liquid-mediated pathways, the research successfully minimized the use of hazardous organic solvents and significantly reduced both reaction time and energy consumption compared to conventional reflux methods. The experimental results confirmed that microwave-assisted synthesis was the most effective approach, yielding 90 percent of the target compound within five minutes while maintaining high atom economy and minimal environmental impact. The solvent-free method also performed remarkably well, producing 82 percent yield with almost negligible waste generation. The use of ionic liquids such as choline chloride-glycerol mixtures provided an additional advantage of catalyst recyclability, thus aligning with the principles of waste prevention and resource efficiency.

Spectroscopic characterization through FTIR, ¹H-NMR, and ¹³C-NMR techniques validated the formation of the desired thiazolidinone structure, confirming the successful condensation and cyclization reactions. Environmental assessment using sustainability metrics, including E-factor and reaction mass efficiency, further highlighted the superior ecological performance of green synthesis over traditional methods, with an overall waste reduction exceeding 85 percent. In essence, the study provides compelling evidence that eco-friendly synthetic techniques can serve as viable alternatives to traditional organic syntheses for heterocyclic compounds of medicinal relevance. These methods not only enhance process efficiency and reduce environmental burden but also support the broader objective of sustainable development in chemical and pharmaceutical industries. The findings emphasize that adopting green chemistry principles is not merely an ethical or environmental choice but also a scientifically and economically advantageous approach to modern drug synthesis.

REFERENCES

- [1]. Anastas, P. T., & Warner, J. C. (1998). *Green Chemistry: Theory and Practice*. Oxford University Press, New York.
- [2]. Kumar, R., Sharma, P., & Sinha, A. (2012). Microwave-Assisted Solvent-Free Synthesis of Thiazoles: An Efficient and Eco-friendly Approach. *Journal of Green Chemistry*, 14(8), 2321–2328.
- [3]. Shah, P., Patel, A., & Singh, R. (2012). Synthesis and Antimicrobial Screening of 4-Thiazolidinone Derivatives under Solvent-Free Conditions. *Indian Journal of Chemistry*, 51B(4), 567–573.
- [4]. Patel, J. R., & Sharma, N. (2013). Green Synthesis of Heterocyclic Compounds: An Overview of Solvent-Free and Catalytic Methods. *International Journal of Chemical Sciences*, 11(3), 1327–1335.
- [5]. Rao, G. V., & Kulkarni, S. D. (2013). Environmentally Benign Synthesis of Thiazolidinones Using Natural Clay Catalysts. *Asian Journal of Chemistry*, 25(2), 987–993.
- [6]. Patil, A. R., & Deshmukh, V. D. (2014). Use of Ionic Liquids in Heterocyclic Synthesis: A Green Perspective. *Organic Process Research and Development*, 18(5), 675–682.
- [7]. Dey, S., & Banerjee, R. (2014). Energy-Efficient Synthesis of Bioactive Heterocycles Using Microwave Irradiation. *Green Chemistry Letters and Reviews*, 7(2), 101–110.
- [8]. Das, S. K., & Mukherjee, P. (2014). Application of Green Chemistry Principles in Heterocyclic Drug Design. *Current Organic Chemistry*, 18(9), 1159–1171.