

“Principles of Fluid and Electrolyte Management in Surgical Patients”

Dr. P. Dhivyaprasath^{1*}, S. Jayavathi¹, M. Kanishghasriee¹,
G. Krupadevi¹, P. Lakshaya¹, E. Lavanya¹

^{1*} Assistant Professor, Department of Pharmacy Practice, Swamy Vivekanandha College of Pharmacy, Namakkal

¹Department of Pharmacy Practice, Swamy Vivekanandha College of Pharmacy, Namakkal

ABSTRACT

Fluid and electrolyte management is an essential part of perioperative treatment and a significant predictor of surgical outcomes. Surgical stress, anaesthesia, blood loss, and inflammatory responses all significantly disrupt normal fluid distribution, electrolyte balance, and acid-base homeostasis, putting patients at risk for complications like acute kidney injury, pulmonary edema, cardiovascular instability, ileus, and delayed wound healing. This overview discusses the physiological principles that govern bodily fluid compartments, electrolyte regulation, and acid-base balance, with a focus on the kidneys, lungs, and endocrine systems' roles in maintaining homeostasis. It highlights the pathophysiological changes caused by surgery, such as neurohormonal activation, capillary leak, and third-space fluid shifts, which require careful preoperative evaluation and customized fluid management. The principles of preoperative evaluation, intraoperative fluid administration, and postoperative treatment are discussed, as well as the indications, benefits, and limitations of routinely used intravenous fluids. Current research supports the preferential use of balanced crystalloid solutions and cautions against indiscriminate liberal fluid administration due to its link with negative results. Modern approaches, such as restrictive fluid regimes and goal-directed fluid treatment guided by dynamic hemodynamic monitoring, are highlighted for maximizing tissue perfusion while avoiding both hypovolemia and fluid overload. The incorporation of fluid management principles into Enhanced Recovery After Surgery (ERAS) protocols has been proven to reduce postoperative morbidity, shorten hospital stays, and enhance functional outcomes. Special considerations for high-risk populations, such as the elderly, children, critically sick patients, and those with cardiac, renal, or hepatic disorders, are also addressed. Overall, a physiology-guided, patient-centred approach to fluid and electrolyte management is critical for increasing perioperative safety and surgical success.

Keywords: Enhanced Recovery After Surgery, Goal-directed fluid therapy, Antidiuretic hormone, Renin-angiotensin-aldosterone system, Nasogastric, Carbon dioxide

INTRODUCTION

A key component of perioperative care for surgical patients is fluid and electrolyte control. Deliberate and evidence-based fluid therapy is crucial for preserving tissue perfusion, organ function, and metabolic balance since surgery, anaesthesia, and physiological stress significantly disturb the body's fluid compartments and electrolyte homeostasis. In addition to maintaining intravascular volume and effective circulatory status, adequate fluid and electrolyte management attempts to reduce physiological disturbances that may result in postoperative consequences such as acute renal injury, pulmonary edema, ileus, and delayed recovery. Inadequate treatment of hypovolemia or fluid overload has been repeatedly linked to negative consequences, such as elevated morbidity, extended hospital stays, and compromised organ performance.^[1]

Modern improved recovery techniques and better surgery results depend on optimal fluid management. While intraoperative and postoperative treatments seek to maintain euolemia and physiologic stability by balanced fluid selection and customized administration guided by individual goals, preoperative assessment concentrates on treating current dehydration and electrolyte imbalances. This strategy encourages earlier mobilization and discharge, enhances pulmonary and gastrointestinal function, and lessens needless fluid accumulation.^[2]

In the past, perioperative fluid management was predicated on a liberal, high-volume paradigm that replaced protracted fasting deficits and anticipated third-space losses. In order to prevent hypovolemia and hypotension, large amounts of

crystalloids were frequently given. However, decades of clinical research have demonstrated that excessive fluid intake can result in tissue edema, lung issues, delayed bowel function recovery, and extended hospital stays. ^[3]

The idea of restrictive fluid tactics arose as a result. Reducing positive fluid balance is the main goal of restrictive therapy, which frequently strives for a zero-balance strategy in which excessive fluid administration is avoided unless physiologically necessary. More conservative fluid usage has been shown to reduce postoperative morbidity and shorten hospital stays in numerous clinical trials comparing liberal and restrictive regimens. ^[4]

Goal-Directed Fluid Therapy (GDFT), which builds on these discoveries, is the most recent advancement in perioperative fluid management. GDFT customizes treatment based on ongoing hemodynamic monitoring and predetermined physiological goals, such as stroke volume optimization and dynamic preload indices, rather than following set fluid quantities. This approach aims to prevent both under- and over-resuscitation while optimizing tissue perfusion and oxygenation. When compared to non-goal directed liberal techniques, meta-analyses and randomized studies indicate that GDFT may shorten hospital stays and lessen consequences including pneumonia and renal failure. ^[5]

In the end, the history of fluid treatment for postoperative patients shows a move away from empirical high-volume resuscitation and toward physiology-based, customized care that is included into more comprehensive improved recovery pathways. In order to improve surgical results and hasten recovery, current best practice places a strong emphasis on preserving euvoolemia, reducing electrolyte imbalances, and customizing treatment to each patient's particular hemodynamic profile. ^[6]

PHYSIOLOGY OF BODY FLUIDS AND ELECTROLYTES

Compartments of bodily fluids

Depending on age, sex, and body fat percentage, total body water (TBW) makes up roughly 60% of body weight in adult males and 50–55% in adult females. TBW is separated into compartments for extracellular fluid (ECF) and intracellular fluid (ICF). Maintaining cellular structure, metabolism, and electrical activity requires the ICF, which makes up over two-thirds of TBW (almost 40% of body weight). The interstitial fluid ($\approx 15\%$), which envelops tissue cells, and plasma ($\approx 5\%$), which is the intravascular component, make up the ECF, which makes up approximately one-third of TBW ($\approx 20\%$ of body weight). ^[6] The electrolyte content of the two compartments varies significantly: ECF is rich in sodium, chloride, and bicarbonate, whereas ICF is rich in potassium, magnesium, phosphate, and proteins. Selective membrane permeability and active transport mechanisms specifically, the Na^+/K^+ -ATPase pump, which is essential for osmotic balance and cell volume regulation-maintain these compartmental distinctions. ^[7]

Fluid Shifts Between Compartments, Osmosis, and Osmolality

Osmosis, which is fueled by variations in effective osmolality (tonicity) across semipermeable membranes, is the main mechanism by which fluid moves between bodily compartments. The main factors influencing plasma osmolality, which is strictly controlled at 285–295 mOsm/kg, are sodium and its related anions. Predictable fluid changes come from variations in extracellular sodium concentration: hyponatremia induces water to enter cells, causing cellular swelling, while hypernatremia promotes cellular dehydration by water efflux. ^[8] Cell membranes allow for fine control of intracellular volume because they are selectively permeable to electrolytes but freely permeable to water through aquaporin channels. In the brain, where abrupt osmotic changes might result in cerebral edema or osmotic demyelination syndrome, these mechanisms are especially important. ^[9]

Capillary Fluid Exchange and Starling Forces

The Starling forces-capillary hydrostatic pressure (P_c), interstitial hydrostatic pressure (P_i), plasma oncotic pressure (π_c), and interstitial oncotic pressure (π_i)-control the fluid exchange between plasma and interstitial spaces at the capillary level. Reabsorption takes place at the venular end of capillaries, whereas fluid filtration often takes place at the arteriolar end. The endothelium glycocalyx layer, which functions as a molecular filter controlling the passage of proteins and fluids, is highlighted by the updated Starling principle. This model states that instead of direct venous reabsorption, the majority of filtered fluid is returned to the circulation through the lymphatic system. Edema development, a prevalent clinical issue in heart failure, liver illness, nephrotic syndrome, and sepsis, is caused by disruption of Starling forces, such as increased capillary hydrostatic pressure, decreased plasma oncotic pressure, or increased capillary permeability. ^[10]

The Kidneys' Function in Electrolyte and Fluid Homeostasis

The main organs in charge of long-term control over bodily fluid volume, osmolality, and electrolyte composition are the kidneys. The kidneys accurately regulate the excretion of sodium, water, potassium, hydrogen ions, calcium, and phosphate by tubular reabsorption, tubular secretion, and glomerular filtration. Because sodium processing affects blood pressure and extracellular fluid volume, it is very crucial. ^[11] Additionally, the kidneys govern the creation of ammonium, the reabsorption of bicarbonate, and the secretion of hydrogen ions. The kidney's crucial role in homeostasis is highlighted by the fact that even minor deficiencies in renal function can cause quick disruptions in fluid balance, leading to volume overload, dehydration, Hyperkalemia, or metabolic acidosis. ^[12]

The Lungs' Function in Acid-Base and Fluid Balance

By controlling the removal of carbon dioxide (CO_2), a volatile acid generated by cellular metabolism, the lungs are essential for preserving acid-base equilibrium. The lungs can quickly correct arterial pH by modifications in alveolar ventilation, offering prompt compensation for metabolic acid-base imbalances. Alveolar epithelial sodium channels and pulmonary capillary integrity are also crucial for avoiding fluid buildup in alveoli. When these systems malfunction, pulmonary edema results, which hinders gas exchange and results in hypoxemia. As a result, the kidneys and lungs collaborate closely to preserve fluid balance and PH. ^[13]

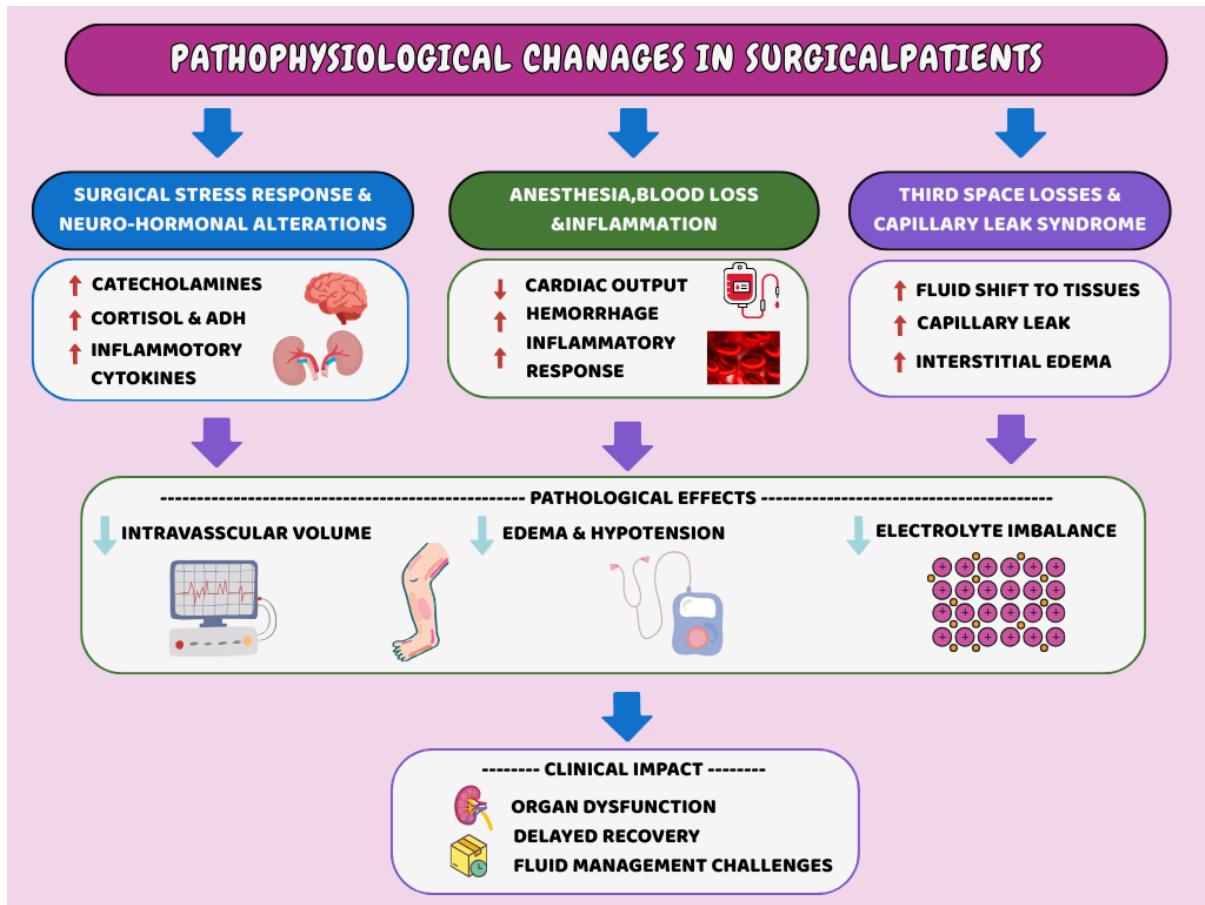
Endocrine Control of Body Fluids: ANP, ADH, and RAAS

Endocrine systems precisely control the balance of fluids and electrolytes. Reduced renal perfusion, hypotension, or hyponatremia trigger the renin-angiotensin-aldosterone system (RAAS), which raises blood pressure and causes sodium and water retention. Through aquaporin-2 channels, antidiuretic hormone (ADH), which is released by the posterior pituitary in reaction to elevated plasma osmolality or decreased blood volume, improves water reabsorption in the collecting ducts. On the other hand, atrial stretch causes the production of atrial natriuretic peptide (ANP), which counteracts RAAS by encouraging natriuresis, diuresis, and vasodilation. Under both healthy and pathological circumstances, the coordinated actions of these hormones provide strict regulation of blood pressure, osmolality, and circulation volume. ^[14]

PATOPHYSIOLOGICAL ALTERATIONS IN PATIENTS UNDERGOING SURGERY

The surgical stress response, which strives to preserve homeostasis but frequently contributes to fluid, electrolyte, and metabolic disruptions that affect postoperative outcomes, is the primary cause of the complex pathophysiological alterations that surgery patients experience as depicted in fig 1.

Neurohormonal Changes And The Surgical Stress Response:


Surgical tissue damage triggers the sympathetic nervous system and the hypothalamic-pituitary-adrenal axis, which increases the release of growth hormone, cortisol, glucagon, and catecholamines. Concurrent release of antidiuretic hormone (ADH) and activation of the renin-angiotensin-aldosterone system (RAAS) increase salt and water retention while decreasing excretion of free water. Patients are frequently at risk for perioperative fluid imbalance and electrolyte abnormalities as a result of these adaptations, which cause hyperglycaemia, an increase in metabolic rate, and a redistribution of bodily fluids. ^[15]

Anesthesia, Blood Loss, Inflammation And Other Trauma Effects:

By lowering cardiac contractility and systemic vascular resistance, general and regional anaesthesia change cardiovascular tone and may jeopardize effective circulation volume. Compensatory vasoconstriction and fluid shifts result from surgical blood loss, which further reduces intravascular volume and oxygen-carrying capacity. Surgical trauma also causes a systemic inflammatory response that is marked by increased vascular permeability, endothelial activation, and the release of cytokines such $\text{TNF-}\alpha$ and IL-6 . If left untreated, these alterations worsen microcirculatory perfusion and lead to organ failure and postoperative edema. ^[16]

Capillary Leak Syndrome And Third Space Losses:

Inflammation during surgery causes fluid to move from the intravascular compartment into the interstitial and potential spaces, also known as the "third space," where it is momentarily inaccessible for circulation. This process is made worse by capillary leak syndrome, which is characterized by breakdown of the endothelium glycocalyx and allows fluid and plasma proteins to escape into the interstitial, resulting in intravascular hypovolemia despite an apparent surplus of bodily fluid. Tissue edema, decreased urine production, and hypotension are clinical manifestations of this, highlighting the significance of prudent, goal-directed fluid therapy in postoperative patients. ^[17]

Fig 1: Pathophysiological Alterations In Patients Undergoing Surgery

FLUID AND ELECTROLYTE ASSESSMENT PRIOR TO SURGERY

A key element of peri-operative optimization is pre-operative fluid and electrolyte monitoring, which aims to detect and address anomalies that could negatively impact anaesthesia, surgical stress response, and postoperative recovery. Due to decreased intake, persistent losses, coexisting conditions, or long-term medication use, surgical patients often exhibit overt or covert abnormalities. The risk of peri-operative hypotension, arrhythmias, renal failure, and an extended hospital stay increases if these imbalances are not identified.

Clinical Evaluation of Volume Status

The initial and most crucial stage of pre-operative examination is still clinical evaluation. A thorough medical history is included, with particular attention paid to recent fluid consumption, vomiting, diarrhea, fever, bleeding, the use of laxatives or diuretics, and the existence of third-space losses like ascites or bowel blockage. Vital signs and systemic findings are used in the physical examination to measure intravascular and interstitial volume.

Tachycardia, postural hypotension, delayed capillary refill, decreased skin turgor, dry mucous membranes, oliguria, and altered sensorium are all indicators of hypovolemia. On the other hand, peripheral edema, pulmonary crackles, elevated jugular vein pressure, and weight gain are symptoms of fluid overload. Measurements of urine output and daily body weight trends are objective indicators of fluid balance and aid in the development of corrective plans.

Laboratory Assessment of Acid-Base Balance and Electrolytes

By detecting concealed electrolyte abnormalities and assessing renal and metabolic state before surgery, laboratory tests are essential to pre-operative evaluation. Analysis of serum electrolytes offers important details about homeostatic equilibrium. Sodium (Na^+) is a measure of body water balance rather than total sodium stores; hyponatremia is typically linked to excess free water states, such as chronic illness or syndrome of inappropriate antidiuretic hormone secretion (SIADH), whereas hypernatremia is linked to free water deficit and dehydration, both of which are linked to increased neurological morbidity during surgery. Both hypokalaemia and hyperkalaemia can cause severe cardiac arrhythmias during anaesthesia; common causes include gastrointestinal losses, renal impairment, and pharmaceutical agents like diuretics and angiotensin-converting enzyme inhibitors. Therefore, even mild potassium (K^+) abnormalities are particularly concerning. Chloride (Cl^-) and acid-base homeostasis are intimately related, and disruptions may be a sign of underlying metabolic problems or excessive chloride-rich fluid administration. Neuromuscular irritability,

hypotension, and cardiac arrhythmias can result from calcium (Ca^{2+}) and magnesium (Mg^{2+}) shortages, which are commonly seen in malnourished or severely unwell patients. Serum creatinine and urea tests are crucial for assessing renal function in order to determine renal perfusion and excretory capacity, which influences the choice of perioperative fluids and medication dosage. Because it allows for the early detection of acid-base disturbances such as metabolic acidosis caused by hypoperfusion or renal dysfunction and metabolic alkalosis frequently resulting from prolonged vomiting or diuretic therapy, arterial blood gas (ABG) analysis is especially recommended in major surgical procedures and critically ill patients.^[18]

High-Risk Patients' Risk Stratification

Because some patient populations are more susceptible to fluid and electrolyte imbalances, rigorous pre-operative evaluation and customized peri-operative treatment are necessary. Elderly individuals are more vulnerable to dehydration, electrolyte imbalance, and fluid overload due to decreased thirst sensitivity, poor renal concentrating ability, and polypharmacy. Despite having acceptable serum levels, malnourished patients frequently have depleted intracellular electrolyte storage, which raises the risk of arrhythmias and hemodynamic instability during peri-operative correction. In order to prevent hyperkalaemia, volume overload, and acute renal injury, patients with chronic kidney disease require careful fluid administration and regular biochemical monitoring due to their impaired regulation of sodium, potassium, and water. Both hypovolemia and excess fluid can cause myocardial ischemia or heart failure in people with heart disease. Similarly, despite intravascular volume decrease, hepatic illness is linked to aberrant fluid distribution, altered oncotic pressure, and sodium retention, which result in ascites and edema. In these high-risk groups, systematic risk categorization enables proper fluid therapy and monitoring customization, which lowers peri-operative morbidity and enhances surgical results.^[19]

Clinical Importance and Results

Enhancing responsiveness to surgical stress, maintaining cellular function, and improving tissue perfusion are all made possible by adequate pre-operative fluid and electrolyte management. Acute renal injury, ileus, wound infection, and extended hospital stays are among the surgical consequences that are regularly reduced by proper assessment and repair.^[19]

TYPES OF FLUIDS USED IN SURGICAL PRACTICE

Optimal fluid therapy is a cornerstone of perioperative management, aiming to maintain intravascular volume, ensure adequate tissue perfusion, and preserve electrolyte and acid-base balance.^[20] Fluids used in surgical practice are broadly classified into crystalloids, colloids, and blood and blood products, each with specific indications, advantages, and limitations.^[21]

Crystalloids

Crystalloids are aqueous solutions of mineral salts or other water-soluble molecules and are the most commonly used fluids in surgical patients.^[20] Normal saline (0.9% sodium chloride) is isotonic and widely used for intravascular volume replacement, correction of hypovolemia, and perioperative resuscitation.^[22] Its advantages include low cost, wide availability, and compatibility with blood transfusions. However, large-volume administration is associated with hyperchloremic metabolic acidosis, renal vasoconstriction, and an increased risk of postoperative renal dysfunction.^{[23][24]}

Balanced salt solutions (e.g., Ringer's lactate, Plasma-Lyte) more closely resemble plasma electrolyte composition and contain buffer anions such as lactate or acetate.^[25] These solutions are associated with improved acid-base balance, reduced chloride load, and better renal outcomes compared with normal saline.^{[26][27]} Their use may require caution in specific clinical settings such as severe Hyperkalemia or advanced liver failure.

Crystalloids are indicated for maintenance therapy, replacement of extracellular fluid losses, and perioperative resuscitation in surgical patients. They are inexpensive, widely available, and associated with a low risk of allergic reactions, making them the first-line fluids in most perioperative settings. However, effective plasma volume expansion often requires the administration of large volumes, which may lead to interstitial fluid accumulation and tissue edema, particularly when used excessively or in patients with compromised cardiac or renal function.

Colloids

Colloids contain large molecules that predominantly remain within the intravascular space, thereby exerting oncotic pressure and providing more efficient plasma volume expansion.^[2] Albumin, a natural plasma protein, is used for volume expansion in selected surgical patients, particularly those with hypoalbuminemia, liver disease, or major fluid shifts.^[28] Albumin provides effective intravascular volume expansion with smaller infused volumes and minimal disturbance of acid-base balance.^[29] However, its high cost and lack of consistent evidence demonstrating superiority over crystalloids in routine surgical care limit its widespread use.^[30]

Synthetic colloids, including hydroxyethyl starch (HES), gelatin, and dextran, were previously used for rapid plasma volume expansion.^{[31][32]} However, multiple large trials and meta-analyses have demonstrated increased risks of acute kidney injury, coagulopathy, and mortality, particularly in critically ill and septic patients.^[33] Consequently, current guidelines discourage or restrict their use in surgical and intensive care practice.

Colloids are indicated in selected cases of acute intravascular volume depletion where rapid plasma volume expansion is required. They provide greater intravascular volume expansion per unit infused compared with crystalloids, thereby reducing the total volume of fluid needed. However, their use is limited by high cost and safety concerns, particularly with synthetic colloids, which have been associated with renal toxicity, coagulation abnormalities, and adverse clinical outcomes.

Blood and Blood Products

Blood and blood products are indicated when fluid loss is associated with a significant reduction in oxygen-carrying capacity or coagulation factors.^[21] Packed red blood cells (PRBCs) are administered for acute blood loss and symptomatic anemia to restore tissue oxygen delivery. Fresh frozen plasma (FFP) is used to correct coagulation factor deficiencies, platelets for thrombocytopenia or platelet dysfunction, and cryoprecipitate for fibrinogen deficiency.^[34] Although transfusion can be life-saving, it is associated with potential complications including transfusion reactions, transfusion-related acute lung injury (TRALI), infection transmission, and immunomodulation. Therefore, restrictive transfusion strategies guided by haemoglobin thresholds and clinical assessment are recommended for most surgical patients.^{[35][36][37]}

Blood and blood products are indicated in situations of major haemorrhage, coagulopathy, and severe anaemia where rapid restoration of circulating blood volume, oxygen-carrying capacity, or coagulation factors is required. Their administration is essential for re-establishing adequate tissue oxygen delivery and achieving haemostasis. However, their use is limited by potential transfusion-related complications, restricted availability, and higher cost, necessitating judicious and evidence-based transfusion practices in surgical patients.

PRINCIPLES OF PERI-OPERATIVE FLUID THERAPY

Peri-operative fluid therapy aims to maintain euvoolemia, optimize tissue perfusion, and prevent both hypovolemia and fluid overload.^[20] Contemporary approaches emphasize individualized fluid administration based on physiological needs, surgical stress, and dynamic monitoring rather than fixed-volume replacement strategies.^[21]

Maintenance, Replacement, and Resuscitation Fluids

Maintenance fluids are administered to meet basal physiological requirements for water and electrolytes during periods of fasting and limited oral intake. Replacement fluids are used to compensate for measurable losses such as blood loss, third-space losses, and evaporative losses during surgery. Resuscitation fluids are indicated in acute circulatory compromise to rapidly restore intravascular volume and tissue perfusion. Clear differentiation among these indications is essential to avoid inappropriate fluid loading and postoperative complications.^[2]

Traditional versus Restrictive Fluid Strategies

Traditional peri-operative fluid management favoured liberal fluid administration to prevent hypovolemia and organ hypoperfusion. However, growing evidence has demonstrated that excessive fluid administration is associated with tissue edema, impaired wound healing, delayed gastrointestinal recovery, and increased cardiopulmonary complications.^{[25][27]}

Restrictive or “zero-balance” fluid strategies aim to maintain near-normal fluid balance by minimizing unnecessary fluid administration while ensuring adequate perfusion. Multiple studies have shown that restrictive strategies are associated with reduced postoperative morbidity, shorter hospital stay, and improved recovery, particularly within enhanced recovery after surgery (ERAS) protocols.^{[2][26]}

Goal-Directed Fluid Therapy (GDFT)

Goal-directed fluid therapy represents a shift toward individualized peri-operative fluid management using dynamic hemodynamic parameters to guide fluid administration. GDFT utilizes minimally invasive or non-invasive monitoring tools to optimize stroke volume, cardiac output, and oxygen delivery. Evidence suggests that GDFT reduces postoperative complications, improves tissue perfusion, and shortens hospital stay, especially in high-risk surgical patients.^{[20][2][25]}

Monitoring Endpoints of Fluid Therapy

Effective peri-operative fluid management relies on continuous assessment of physiological endpoints. Urine output remains a simple and widely used indicator of renal perfusion, although it should be interpreted in conjunction with other parameters.^{[35][21]} Serum lactate levels serve as markers of global tissue hypoxia and adequacy of resuscitation. Hemodynamic variables, including heart rate, blood pressure, stroke volume variation, and cardiac output, provide

dynamic insights into fluid responsiveness and circulatory status. Integration of these endpoints allows for timely adjustment of fluid therapy and avoidance of both under- and over-resuscitation.^{[36][37]}

Intra-operative Fluid Management

Intra-operative fluid management plays a critical role in maintaining hemodynamic stability, ensuring adequate organ perfusion, and minimizing peri-operative complications. Fluid administration during surgery should be tailored to the magnitude of surgical stress, anticipated blood loss, and the patient's physiological reserve, with continuous reassessment throughout the operative period.^[2]

Fluid Requirements During Minor versus Major Surgery

During minor surgical procedures with minimal tissue trauma and blood loss, fluid requirements are generally limited to maintenance needs and replacement of insensible losses. Excessive fluid administration in such cases may contribute to unnecessary fluid overload without clinical benefit. In contrast, major surgery is associated with significant fluid shifts, inflammatory responses, and potential blood loss, necessitating careful replacement of intravascular volume and ongoing losses.^[25] Individualized fluid therapy guided by hemodynamic monitoring is essential to maintain euvolemia while avoiding both hypovolemia and fluid excess.^[20]

Management of Blood Loss and Massive Transfusion Protocols

Intra-operative blood loss should be promptly recognized and managed using a stepwise approach that includes volume replacement, haemostatic control, and blood component therapy when indicated. Crystalloids and colloids may be used initially for volume support; however, significant haemorrhage requires early administration of blood and blood products to restore oxygen-carrying capacity and coagulation factors.

Massive transfusion protocols (MTPs) emphasize the early, balanced administration of packed red blood cells, plasma, and platelets, commonly in a 1:1:1 ratio, to prevent dilutional coagulopathy and improve outcomes.^{[34][35]} The use of restrictive transfusion thresholds, point-of-care coagulation testing, and patient blood management strategies is recommended to minimize transfusion-related complications.^{[36][37]}

Role of Invasive and Non-invasive Monitoring

Advanced monitoring techniques play a pivotal role in guiding intra-operative fluid therapy, particularly in high-risk and major surgical procedures. Invasive monitoring methods, such as arterial cannulation and central venous catheterization, provide continuous blood pressure measurement, blood gas analysis, and assessment of volume status.^[20]

Non-invasive and minimally invasive modalities, including oesophageal Doppler, pulse contour analysis, and ultrasound-based assessments, enable dynamic evaluation of fluid responsiveness by measuring stroke volume and cardiac output.^[2] The integration of these monitoring tools allows for goal-directed fluid therapy, facilitating timely interventions and reducing postoperative morbidity.^[25]

Post-operative Fluid Management

Effective post-operative fluid management is fundamental to maintaining hemodynamic stability, ensuring adequate tissue perfusion, and preventing complications related to both fluid deficit and excess. The post-operative period is characterized by significant physiological alterations driven by surgical stress, inflammation, capillary leak, and neuroendocrine activation including increased secretion of antidiuretic hormone (ADH), aldosterone, and cortisol, leading to sodium and water retention with reduced urine output.^{[38][39]} Inappropriate fluid administration during this phase may precipitate fluid overload, electrolyte imbalance, and organ dysfunction.

A structured, goal-directed approach to fluid therapy is therefore essential to avoid hypovolemia, electrolyte imbalance, and fluid overload.

Transition from Intravenous to Oral Fluids:

Early transition from intravenous (IV) to oral fluid intake is a cornerstone of modern peri-operative care. Early enteral hydration promotes gastrointestinal motility, preserves mucosal integrity, reduces bacterial translocation, and decreases catheter-related infections and hospital length of stay.^{[40][41]}

Clinical criteria for safe transition include:

- Hemodynamic stability without vasopressor support
- Adequate urine output (>0.5 mL/kg/hour)
- Return of bowel sounds or passage of flatus
- Absence of persistent nausea, vomiting, or paralytic ileus
- Intact swallowing reflex and alert mental status

In practice, clear liquids are initiated first, followed by stepwise advancement to full oral intake as tolerated. IV fluids should be tapered gradually, rather than abruptly discontinued, to prevent rebound hypovolemia, especially

in elderly or high-risk patients. ^[43] ERAS guidelines recommend initiation of oral fluids within 24 hours post-surgery, even after major abdominal procedures, provided no contraindications exist. ^[41]

Practical considerations:

- Reduce IV fluids once oral intake exceeds 50–60% of daily requirements
- Avoid unnecessary prolonged IV maintenance fluids
- Monitor urine output (>0.5 mL/kg/h in adults) as a marker of adequate hydration

Management of Ongoing Losses

Post-operative patients frequently experience ongoing fluid and electrolyte losses through surgical drains, nasogastric (NG) suction, stomas, fistulas, and excessive wound exudates. Failure to recognize and appropriately replace these losses can result in hypovolemia, electrolyte derangements, and acid–base disturbances. These losses should be measured accurately and replaced on a millilitre-for-millilitre basis, using fluids that approximate the electrolyte composition of the lost fluid.

Electrolyte characteristics of common losses:

NG aspirates are rich in sodium, potassium, hydrogen, and chloride, predisposing to hypochloremic metabolic alkalosis
Ileostomy output contains high sodium and bicarbonate, increasing the risk of dehydration and metabolic acidosis ^[43]

Practical management:

- Replace gastric losses with isotonic saline plus potassium supplementation
- Monitor stoma output daily and adjust sodium intake accordingly
- Review fluid prescriptions at least every 24 hours

Failure to appropriately replace ongoing losses increases the risk of circulatory instability, renal dysfunction, and delayed recovery ^[43]

Prevention of Fluid Overload and Electrolyte Imbalance

Excessive fluid administration in the post-operative period is associated with pulmonary edema, impaired wound healing, prolonged ileus, abdominal compartment syndrome, and increased cardiac workload. ^[44] Elderly patients and those with cardiac or renal disease are particularly vulnerable.

Preventive strategies include:

- Daily review of fluid balance charting
- Monitoring daily body weight (a sensitive indicator of fluid accumulation)
- Target urine output of ≥ 0.5 mL/kg/hour
- Early de-escalation of IV fluids once oral intake is adequate
- Avoidance of unnecessary hypotonic solutions
- Judicious use of maintenance fluids (typically 25–30 mL/kg/day)

Goal-directed or restrictive fluid strategies have been shown to reduce post-operative complications compared to liberal fluid administration. ^[45] Regular monitoring of serum electrolytes is essential, especially after major surgery or in high-risk patients. ^[44]

Electrolyte Disorders in Surgical Patients

Electrolyte disturbances are common in surgical patients due to fluid shifts, blood loss, altered renal perfusion, hormonal changes, and the effects of medications such as diuretics and intravenous fluids. ^[38] Early recognition and appropriate correction are vital to prevent neuromuscular, cardiovascular, and neurological complications.

Table 1: Electrolyte Disorders in Surgical Patients

Electrolyte Disorder	Common Causes in Surgical Patients	Clinical Features	Key Investigations	Treatment
Hyponatremia ($\text{Na}^+ < 135$ mEq/L)	Excess hypotonic fluids, SIADH, postoperative stress, GI losses	Nausea, headache, confusion, seizures (severe)	Serum Na^+ , serum osmolality, urine Na^+	<ul style="list-style-type: none">• Fluid restriction (mild/asymptomatic)• 0.9% NS if hypovolemic• 3% hypertonic saline for severe symptomatic cases (slow correction ≤ 8–10 mEq/L/day)
Hypernatremia ($\text{Na}^+ > 145$ mEq/L)	Free water loss, fever, high-output stomas, poor intake	Thirst, lethargy, confusion, seizures	Serum Na^+ , urine osmolality	<ul style="list-style-type: none">• Gradual free water replacement• Oral water or IV 5% dextrose / 0.45% saline• Avoid rapid correction (risk of

cerebral edema)				
Hypokalaemia (K ⁺ < 3.5 mEq/L)	Vomiting, NG suction, diuretics, insulin therapy	Muscle weakness, ileus, arrhythmias	Serum K ⁺ , ECG	<ul style="list-style-type: none"> Oral KCl for mild cases IV KCl for severe/symptomatic (max 10–20 mEq/hr with ECG monitoring) Correct Mg²⁺ deficiency if present
Hyperkalemia (K ⁺ > 5.5 mEq/L)	Renal failure, tissue injury, acidosis, K ⁺ -sparing drugs	ECG changes, muscle weakness, arrhythmias	Serum K ⁺ , ECG	<ul style="list-style-type: none"> IV calcium gluconate (cardiac protection) Insulin + glucose Nebulized β_2-agonists Loop diuretics or dialysis if severe
Hypocalcemia (Ca ²⁺ < 8.5 mg/dL)	Massive transfusion (citrate), thyroid/parathyroid surgery	Perioral tingling, tetany, seizures	Serum Ca ²⁺ , albumin	<ul style="list-style-type: none"> IV calcium gluconate (symptomatic) Oral calcium + vitamin D for mild cases
Hypercalcemia (Ca ²⁺ > 10.5 mg/dL)	Malignancy, prolonged immobilization	Polyuria, confusion, arrhythmias	Polyuria, confusion, arrhythmias	<ul style="list-style-type: none"> IV isotonic saline hydration Loop diuretics Bisphosphonates if indicated
Hypomagnesemia (Mg ²⁺ < 1.7 mg/dL)	Poor intake, GI losses, diuretics	Tremors, arrhythmias, refractory hypokalaemia	Serum Mg ²⁺	<ul style="list-style-type: none"> IV magnesium sulfate (severe) Oral magnesium salts (mild)
Hypophosphatemia (PO ₄ ³⁻ < 2.5 mg/dL)	Refeeding syndrome, malnutrition, insulin therapy	Muscle weakness, respiratory failure	Serum phosphate	<ul style="list-style-type: none"> Oral phosphate replacement (mild) IV phosphate for severe cases

Acid-Base Disorders in the Surgical Setting

Acid-base disorders are frequently encountered in surgical patients due to perioperative physiological stress, altered ventilation, tissue hypoperfusion, renal dysfunction, and the type and volume of intravenous fluids administered. These disturbances significantly affect enzymatic reactions, cardiovascular stability, oxygen delivery, and drug efficacy; therefore, timely recognition and appropriate correction are essential to improve surgical outcomes. ^[45]

Metabolic Acidosis and Metabolic Alkalosis

Metabolic Acidosis

Metabolic acidosis in surgical patients most commonly results from tissue hypoperfusion and hypoxia leading to lactic acidosis, particularly in conditions such as haemorrhage, sepsis, and shock. Another important cause is hyperchloremic metabolic acidosis following large-volume administration of chloride-rich fluids such as 0.9% normal saline. ^[45]

Clinical consequences include reduced myocardial contractility, vasodilation, impaired response to catecholamines, and increased risk of arrhythmias.

Practical management principles include:

- Rapid identification and correction of the underlying cause (e.g., control bleeding, treat sepsis)
- Optimization of intravascular volume and tissue perfusion
- Preference for balanced crystalloids over normal saline during resuscitation
- Bicarbonate therapy is reserved for severe acidosis (pH < 7.1) with hemodynamic instability, as routine use may worsen intracellular acidosis and increase CO₂ generation ^[45,48]

Metabolic Alkalosis

Metabolic alkalosis is commonly observed in post-operative patients due to loss of hydrogen ions from prolonged vomiting or nasogastric suction, excessive diuretic use, or hypokalaemia. Volume contraction further perpetuates alkalosis by increasing renal bicarbonate reabsorption. ^[47]

Clinical features may include neuromuscular irritability, hypoventilation, and cardiac arrhythmias.

Management strategies include:

- Volume repletion with chloride-containing fluids (e.g., normal saline)
- Correction of associated hypokalaemia and hypochloraemia
- Reducing or discontinuing causative agents such as diuretics or NG suction when feasible
- In refractory cases, acetazolamide may be used to enhance renal bicarbonate excretion ^[47]

Respiratory Acid–Base Disturbances

Respiratory Acidosis

Respiratory acidosis arises from alveolar hypoventilation leading to carbon dioxide retention. In surgical patients, this may occur due to residual anaesthetic effects, opioid-induced respiratory depression, neuromuscular weakness, or underlying pulmonary disease

Clinical implications include increased intracranial pressure, reduced myocardial performance, and sympathetic stimulation.

Management focuses on:

- Ensuring adequate airway patency
- Optimizing ventilatory support (non-invasive or invasive ventilation as required)
- Judicious use of opioids and sedatives
- Treating underlying pulmonary pathology ^[48]

Respiratory Alkalosis

Respiratory alkalosis is frequently caused by hyperventilation due to pain, anxiety, hypoxemia, or early sepsis. It is often the earliest acid–base abnormality observed in septic surgical patients.

Management involves:

- Adequate analgesia and anxiolysis
- Treatment of hypoxemia or sepsis
- Avoidance of unnecessary mechanical hyperventilation ^[49]

Role of Fluids in Acid–Base Balance

Intravenous fluid therapy plays a pivotal role in influencing acid–base homeostasis. Chloride-rich solutions such as normal saline reduce the strong ion difference, predisposing patients to hyperchloremic metabolic acidosis. In contrast, balanced crystalloids (e.g., Ringer's lactate, Plasma-Lyte) more closely resemble plasma electrolyte composition and contain buffers that mitigate acid–base disturbances ^{[46][22]}

Current evidence supports the preferential use of balanced crystalloids in surgical and critically ill patients, as they are associated with lower rates of metabolic acidosis, acute kidney injury, and mortality.

Best practices include:

- Selecting IV fluids based on patient physiology and acid–base status
- Avoiding unnecessary large-volume resuscitation
- Regular monitoring of arterial blood gases and serum electrolytes
- Early de-escalation of IV fluids as clinical condition improves ^{[45][46]}

COMPLICATIONS OF INAPPROPRIATE FLUID THERAPY:

Table 2: Complication of inappropriate fluid therapy ^{[44][50]}

Complications	Cause	Pathophysiology	Clinical Manifestations	Outcomes
Fluid overload	Excessive crystalloid or colloid administration	Increased hydrostatic pressure and capillary leak causing interstitial edema	Weight gain, peripheral edema, raised JVP	Delayed wound healing, prolonged hospital stay
Pulmonary edema	Liberal perioperative fluid therapy	Transudation of fluid into alveoli due to increased capillary permeability	Dyspnea, hypoxia, crackles, reduced lung compliance	Respiratory failure, prolonged ventilation, ICU admission
Acute kidney injury (AKI)	Hypovolemia or fluid overload	Renal hypoperfusion or interstitial edema impairing GFR	Oliguria, rising serum creatinine	Increased morbidity, progression to CKD, higher mortality
Electrolyte imbalance	Inappropriate fluid composition or rapid infusion	Dilutional or concentration changes in serum electrolytes	Weakness, confusion, muscle cramps	Neurological complications, delayed recovery
Electrolyte-	Hypo/Hyperkalemia,	Altered myocardial	Palpitations, ECG	Life-threatening arrhythmias,

Complications	Cause	Pathophysiology	Clinical Manifestations	Outcomes
induced arrhythmias	hypocalcaemia, hypomagnesemia	excitability and conduction	changes, syncope	cardiac arrest
Metabolic acidosis	Excessive normal saline administration	Hyperchloremic acidosis due to chloride overload	Tachypnoea, fatigue	Impaired organ function, worsened outcomes
Abdominal compartment syndrome (ACS)	Aggressive fluid resuscitation	Visceral and retroperitoneal edema increasing intra-abdominal pressure	Abdominal distension, oliguria, respiratory compromise	Multi-organ dysfunction, increased mortality
Tissue edema	Positive fluid balance	Increased interstitial fluid accumulation	Swollen tissues, impaired mobility	Poor wound healing, surgical site infection
Delayed gastrointestinal recovery	Fluid overload	Bowel wall edema reducing motility	Ileus, nausea, vomiting	Prolonged fasting, longer hospital stays
Coagulopathy	Haemodilution from excessive fluids	Dilution of clotting factors and platelets	Bleeding, oozing from surgical sites	Increased transfusion requirement

FLUID MANAGEMENT IN SPECIAL SURGICAL POPULATION

Elderly Patients:

Due to age-related physiological changes, managing fluids and electrolytes is particularly difficult for elderly surgical patients. Their ability to withstand quick fluid changes is restricted by decreased cardiac compliance, decreased renal concentrating capacity, and changed baroreceptor sensitivity. Even with low quantities, the danger of fluid overload increases as one age due to a decrease in total body water. While insufficient resuscitation can lead to hypotension, AKI, and cerebral hypoperfusion, excessive fluid administration can cause heart failure, pulmonary edema, and psychosis. Comorbidities and polypharmacy make management even more difficult. Research has shown that goal-directed fluid therapy with dynamic parameters enhances results by customizing fluid delivery to each patient's requirements. To prevent problems in this susceptible population, careful monitoring of serum electrolytes, body weight, and urine output is crucial.

Pediatric Surgical Patients:

The fluid and electrolyte physiology of paediatric patients is very different from that of adult individuals. Children are more susceptible to rapid fluid and electrolyte imbalance due to higher metabolic rates, increased insensible losses, and immature renal function. Conventional hypotonic maintenance fluids have been linked to neurological issues and hospital-acquired hyponatremia. The use of isotonic fluids for perioperative maintenance therapy is supported by available data. Long-term fasting and surgical stress raise the risk of hypoglycaemia, especially in newborns and infants. Serum electrolyte monitoring, periodic re-evaluation, and weight-based dosing are essential. In paediatric surgical patients, proper fluid management lowers the risk of postoperative morbidity, cardiovascular instability, and cerebral edema. ^[51]

Patient With Renal, Cardiac Or Liver Disease:

Individualized fluid management techniques are necessary for patients with underlying cardiac, hepatic, or renal diseases. Impaired fluid excretion raises the risk of electrolyte buildup, especially potassium and phosphate, and volume overload in chronic renal disease. Excessive fluid intake can exacerbate myocardial dysfunction and cause pulmonary edema in cardiac patients, who are sensitive to changes in preload. Portal hypertension, hypoalbuminemia, and systemic vasodilation all contribute to the development of ascites and third spacing in liver disease. It is best to use cautious fluid titration and balanced crystalloids. In order to prevent decompensation and guide therapy, advanced monitoring techniques are used. For these complicated cases, multidisciplinary cooperation is frequently necessary to maximize results. ^[52]

Trauma And Critically Ill Surgical Patients:

Hypovolemia, bleeding, and systemic inflammatory reactions are common presentations in trauma and critically ill surgery patients. Although early vigorous fluid resuscitation was once recommended, it is now known to raise the risk of organ failure, tissue edema, and coagulopathy. Permissive hypotension, early blood product administration, and restricted crystalloid use are key components of damage control resuscitation. Significant third spacing results from capillary leak syndrome, which significantly impairs fluid balance in critical sickness. Increased ventilator days, AKI,

and death are linked to persistent fluid overload. Early de-escalation techniques and dynamic fluid responsiveness assessment are crucial elements of contemporary critical care fluid management. ^{[51][52]}

ENHANCED RECOVERY AFTER SURGERY (ERAS) AND FLUID THERAPY

Eras Principle Related To Fluid Management:

Protocols for Enhanced Recovery After Surgery (ERAS) place a strong emphasis on multimodal, evidence-based techniques to lessen postoperative stress and hasten recovery. A key element of ERAS is fluid management, which focuses on preserving euvoolemia during the perioperative phase. To lessen dehydration and insulin resistance, prolonged preoperative fasting is discouraged and carbohydrate loading is recommended. To avoid fluid depletion, routine bowel preparation is avoided. Using dynamic hemodynamic factors, goal-directed treatment directs intraoperative fluid administration. To restore physiological balance after surgery, early oral intake and early cessation of intravenous fluids are encouraged. Together, these ideas improve recovery and lessen fluid-related problems. ^[53]

Evidence Supporting Euvoolemia:

There is mounting evidence that maintaining euvoolemia is preferable to giving large amounts of fluids. Restrictive or goal-directed fluid methods lower postoperative sequelae such as ileus, surgical site infections, and cardiac events, according to randomized controlled trials and meta-analyses. Euvoolemia promotes wound healing, reduces tissue edema, and increases microcirculatory flow. To lower the risk of renal failure and hyperchloremic metabolic acidosis, balanced crystalloids are recommended. It has been demonstrated that avoiding both fluid excess and deficit enhances patient satisfaction and functional recovery within ERAS routes. ^[54]

Impact On Length Of Stay And Complications:

The use of ERAS-based fluid treatment has continuously been linked to shorter hospital stays and lower medical expenses. Improved fluid management enables earlier mobilization and eating by reducing postoperative nausea, ileus, and pulmonary problems. Patients have reduced readmission rates and a quicker recovery of bowel function. Additionally, studies show decreases in overall morbidity and ICU hospitalizations. Individualized fluid therapy's crucial significance in enhancing surgical outcomes, patient safety, and resource usage is highlighted by its incorporation into ERAS procedures. ^[54]

Current Guidelines and Evidence-Based Recommendations:

In contrast to typical fixed-volume regimens, emphasize a customized, physiology-guided approach to fluid and electrolyte management in surgical patients. International consensus statements, including the Perioperative Quality Initiative (POQI) and Enhanced Recovery After Surgery (ERAS) guidelines, recommend maximizing volume status preoperatively, avoiding prolonged fasting, and using balanced crystalloid solutions as first-line fluids to maintain euvoolemia and reduce acid-base and renal complications. ^[58] High-risk patients and major surgeries should get goal-directed fluid therapy (GDFT), which is guided by dynamic hemodynamic data, to improve tissue perfusion while preventing fluid excess. A restrictive or zero-balance technique is recommended intraoperatively to reduce postoperative pulmonary problems, ileus, and delayed wound healing. The routine use of synthetic colloids is discouraged due to their limited benefits and probable damage. To prevent morbidity and enhance recovery after surgery, early oral intake, regular fluid balance monitoring, and quick correction of electrolyte abnormalities, notably sodium, potassium, magnesium, and phosphate, are recommended. ^[56]

International and national guidelines

International and national recommendations both strongly support evidence-based, tailored hydration and electrolyte therapy in surgical patients in order to improve outcomes and reduce complications. Internationally, consensus recommendations from the Perioperative Quality Initiative (POQI) and Enhanced Recovery After Surgery (ERAS) protocols emphasize tailoring perioperative fluid therapy including balanced crystalloid use, fluid overload avoidance, and goal-directed fluid therapy implementation where appropriate throughout the preoperative to postoperative continuum for elective and emergency surgeries. Instead of a one-size-fits-all strategy, these guidelines advocate for preserving euvoolemia, reducing unnecessary fasting, and employing hemodynamic monitoring to guide therapy. ^[57] National and regional guidelines, such as the Clinical Practice Guidelines for Perioperative Fluid Therapy in Chinese Adult Patients from the Chinese Society of Anaesthesiology, adapt these principles to local practice by providing specific evidence-based recommendations on fluid selection, fasting, goal-directed and restrictive strategies, management of high-risk patients, and perioperative volume assessment to optimize surgical outcomes. ^[58] These international and national frameworks promote balanced crystalloids, early oral intake, if possible, diligent electrolyte monitoring, and personalized techniques to improve recovery, reduce postoperative complications, and standardize perioperative care.

Key clinical trials and meta-analyses

Clinical evidence from randomized controlled trials and meta-analyses has influenced contemporary perioperative fluid management strategies, particularly goal-directed fluid therapy (GDFT) and fluid type selection. Multiple meta-

analyses of randomized trials have shown that GDFT, which uses hemodynamic monitoring to tailor fluid administration, significantly reduces postoperative complications and morbidity, and is associated with shorter hospital stays and improved gastrointestinal recovery in major abdominal and oncologic surgery compared to conventional fluid strategies, though the effects on mortality are inconsistent.^[59] A thorough analysis conducted over two decades discovered that GDFT consistently reduces overall postoperative complication rates, even when total fluid amounts fluctuate.^[60] Meta-analyses have also looked at fluid type, and there is no obvious mortality advantage for colloids over crystalloids with GDFT, with some data suggesting fewer digestive issues with colloids but overall equivalent results across systems.^[61] A recent cardiac surgery-focused network meta-analysis demonstrated no substantial advantage of specific perioperative fluids (colloids versus crystalloids) on critical outcomes such as mortality or duration of stay, underlining the need for future high-quality trials.^[62] Furthermore, a 2024 meta-analysis of cardiac surgery patients found no significant differences in mortality or major postoperative outcomes between the colloid and crystalloid groups, albeit crystalloid treatment lowered postoperative chest tube output.^[63] These study results show that physiologically guided fluid strategies and cautious fluid type selection are essential components of evidence-based perioperative treatment.

Areas of controversy and ongoing research

Despite advances in understanding and monitoring, perioperative fluid and electrolyte management remains an active source of debate and research; key unresolved issues include the optimal fluid type (balanced crystalloids vs colloids), the best strategies for different surgical populations, and the precise role and implementation of goal-directed fluid therapy (GDFT). The debate over whether colloids provide major clinical advantages over crystalloids in postoperative patients continues, with inconsistent findings from studies and meta-analyses and remaining safety concerns, notably with hydroxyethyl starch (HES) solutions.^[64] The topic of crystalloid vs colloid continues to generate contradictory results in outcome trials, with some suggesting reduced fluid balance or problems with colloid-based GDFT, while others indicate no obvious improvement in important endpoints such as death or organ dysfunction.^[62] Similarly, fluid volume strategies whether restrictive, liberal, or customized based on dynamic hemodynamic aims are still being discussed, with data supporting hemodynamic optimization but no universal agreement on precise targets and threshold.^[66] Research also focuses on variability in practice, monitoring technology, and patient-specific characteristics (e.g., high-risk vs low-risk surgical cohorts) to establish when and how to implement tailored procedures safely and effectively.^[67]

FUTURE DIRECTIONS

Future trends in fluid and electrolyte management for surgical patients will focus on developing precision-based, patient-specific therapy by improved monitoring, technology integration, and greater evidence from high-quality studies. Ongoing research seeks to improve personalized fluid strategies by combining dynamic hemodynamic monitoring with biomarkers of tissue perfusion, renal function, and endothelial integrity in order to better anticipate fluid response and minimize hypovolemia and fluid overload. Artificial intelligence and machine-learning-based decision support systems are increasingly being used to aid doctors with real-time fluid and electrolyte management, particularly in high-risk and complex procedures.^[68] Further research is being conducted into the appropriate composition of balanced crystalloids, the selective role of albumin, and electrolyte-specific protocols geared to vulnerable populations such as the elderly, critically ill, and patients with renal or cardiac failure. Furthermore, future research under ERAS pathways aims to standardize outcome-driven endpoints rather than volume-based targets, providing safer, more uniform perioperative treatment and improved long-term surgical results.^[69]

Personalized fluid therapy

Personalized fluid therapy offers a paradigm shift in perioperative care, replacing fixed-volume, one-size-fits-all regimes with individualized, physiology-guided fluid and electrolyte management based on patient characteristics, surgical risk, and real-time hemodynamic responses. This technique combines criteria such as age, comorbidities (cardiac, renal, and hepatic illness), baseline volume status, and kind of surgery with dynamic monitoring technologies (e.g., stroke volume, cardiac output, fluid responsiveness) to determine fluid type, dose, and timing.^[56] Goal-directed fluid therapy (GDFT) and Enhanced Recovery After Surgery (ERAS) pathways rely on personalized strategies to maintain near-zero fluid balance, maximize tissue perfusion, and limit problems linked to both hypovolemia and fluid overload.^[61] Evidence suggests that individualized fluid therapy reduces postoperative morbidity, shortens hospital stay, and improves functional recovery, particularly in high-risk and major surgical patients, while ongoing research refines biomarkers, monitoring technologies, and decision-support systems to improve fluid management precision.

Role of biomarkers and AI-guided fluid management

The use of biomarkers and AI-guided fluid management is a new and promising area of perioperative treatment that aims to improve the precision of individualized fluid and electrolyte therapy beyond traditional hemodynamic measures. Biomarkers like serum lactate, central venous oxygen saturation, urinary biomarkers of kidney stress (e.g., NGAL, TIMP-2, IGFBP7), and markers of endothelial glycocalyx injury are being studied to provide early insight into tissue perfusion, fluid responsiveness, and risk of organ dysfunction.^[70] These biomarkers can detect concealed hypoperfusion or early fluid overload, allowing for more prompt and focused therapies. Simultaneously, AI and

machine-learning-based decision support systems are being developed to integrate real-time physiologic data, laboratory values, and patient-specific variables to predict fluid responsiveness and guide goal-directed fluid therapy (GDFT) more consistently than clinician judgment alone.^[71] Early research indicates that AI-assisted closed-loop fluid management systems can improve hemodynamic stability, reduce variability in practice, and optimize fluid balance, especially in high-risk and complex surgical patients. Current research focuses on testing these technologies, identifying clinically useful objectives, and guaranteeing safety and interpretability prior to widespread clinical deployment.^[72]

Emerging monitoring technologies

Emerging monitoring technologies are revolutionizing perioperative fluid and electrolyte management by allowing for more precise, continuous, and less invasive assessments of a patient's hemodynamic condition and fluid responsiveness. Newer non-invasive and minimally invasive cardiac output monitoring technologies (e.g., pulse contour analysis, bioreactance, Doppler-based devices) provide real-time study of stroke volume, cardiac output, and dynamic preload indices without the dangers associated with pulmonary artery catheterization.^[73] Technologies for measuring microcirculatory perfusion, tissue oxygenation (near-infrared spectroscopy), and capillary refill dynamics are being investigated to supplement macro-hemodynamic data and better reflect end-organ perfusion. Furthermore, continuous electrolyte monitoring, wearable sensors, and the integration of multiparametric data into smart anaesthetic workstations are being developed to detect early derangements and guide prompt interventions.^[74] When combined with goal-directed fluid therapy protocols and decision-support algorithms, these emerging tools have the potential to reduce practice variability, improve hemodynamic stability, and enhance postoperative outcomes; however, more large-scale validation is required before routine adoption.^[75]

CONCLUSION

Fluid and electrolyte management is critical for safe and successful perioperative care, as surgical stress, anaesthesia, blood loss, and inflammation all disturb fluid distribution, electrolyte balance, and acid-base homeostasis. Because hypovolemia and fluid overload are independently related with increased morbidity, optimal outcomes require precise preoperative evaluation, continuous perioperative monitoring, and timely postoperative reassessment. Current research suggests a trend away from regular liberal fluid delivery and toward customized, physiology-guided regimens that aim to maintain euolemia, optimize tissue perfusion, and sustain organ function. Balanced crystalloid solutions are preferred as first-line fluids because they improve renal function and acid-base balance, but improper fluid composition and high chloride load should be avoided. Early detection and repair of electrolyte imbalances—particularly those involving sodium, potassium, magnesium, calcium, and phosphate—is critical for avoiding cardiovascular, neuromuscular, and neurological problems. Early de-escalation of IV fluids and quick transfer to oral intake improve gastrointestinal healing, reduce catheter-related hazards, and shorten hospital stay. High-risk populations, such as the elderly, children, and those suffering from cardiac, renal, or hepatic disease, necessitate personalized fluid prescriptions as well as more frequent biochemical and hemodynamic monitoring. The combination of goal-directed fluid treatment, dynamic monitoring, and Enhanced Recovery After Surgery (ERAS) protocols has consistently reduced postoperative complications, length of stay, and variability in care. Multidisciplinary teamwork, adherence to evidence-based recommendations, and continuing fluid practice audits all help to improve patient safety. Future advances in perioperative fluid management are expected to centre on personalized therapy, aided by emerging biomarkers, advanced monitoring technologies, and artificial intelligence-assisted decision-support systems, eventually shifting the emphasis away from volume-based prescriptions and toward outcome-driven, patient-centred surgical care. Variability in practice and improving patient safety across the perioperative continuum.

REFERENCES

- [1] Mythen MG, Webb AR. Perioperative plasma volume expansion reduces the incidence of gut mucosal hypoperfusion during cardiac surgery. *Archives of surgery*. 1995 Apr 1;130(4):423-9.
- [2] Miller TE, Roche AM, Mythen M. Fluid management and goal-directed therapy as an adjunct to Enhanced Recovery After Surgery (ERAS). *Canadian Journal of Anesthesia/Journal canadien d'anesthésie*. 2015 Feb;62(2):158-68.
- [3] Bennett VA, Cecconi M. Perioperative fluid management: From physiology to improving clinical outcomes. *Indian journal of anaesthesia*. 2017 Aug 1;61(8):614-21.
- [4] Lobo SM, Ronchi LS, Oliveira NE, Brandão PG, Froes A, Cunrath GS, Nishiyama KG, Netinho JG, Lobo FR. Restrictive strategy of intraoperative fluid maintenance during optimization of oxygen delivery decreases major complications after high-risk surgery. *Critical care*. 2011 Sep 23;15(5):R226.
- [5] Corcoran T, Rhodes JE, Clarke S, Myles PS, Ho KM. Perioperative Fluid Management Strategies in Major Surgery: A Stratified Meta-analysis. *Survey of Anesthesiology*. 2013 Oct 1;57(5):265-6.
- [6] Seifter JL. Body fluid compartments, cell membrane ion transport, electrolyte concentrations, and acid-base balance. *InSeminars in nephrology* 2019 Jul 1 (Vol. 39, No. 4, pp. 368-379). WB Saunders.
- [7] Henderson MA, Gillon S, Al-Haddad M. Organization and composition of body fluids. *Anaesthesia & Intensive Care Medicine*. 2024 Jun 1;25(6):432-8.

- [8] Bhave G, Neilson EG. Body fluid dynamics: back to the future. *Journal of the American Society of Nephrology*. 2011 Dec 1;22(12):2166-81.
- [9] Hui C, Khan M, Suheb MZ, Radbel JM. Arginine vasopressin disorder (diabetes insipidus). InStatPearls [Internet] 2024 Jan 11. StatPearls Publishing.
- [10] Levick JR, Michel CC. Microvascular fluid exchange and the revised Starling principle. *Cardiovascular research*. 2010 Jul 15;87(2):198-210.
- [11] Ogobuiro I, Tuma F. Physiology, renal. InStatPearls [Internet] 2023 Jul 24. StatPearls Publishing.
- [12] Shioji N, Hayashi M, Morimatsu H. Kidney, fluid, and acid-base balance. Masui. *The Japanese Journal of Anesthesiology*. 2016 May 1;65(5):503-10.
- [13] Tucker AM, Johnson TN. Breathing and balance: Clinical insights and management strategies of respiratory acid-base disorders. *Nutrition in Clinical Practice*. 2025 Aug;40(4):774-92.
- [14] Triebel H, Castrop H. The renin angiotensin aldosterone system. *Pflügers Archiv-European Journal of Physiology*. 2024 May;476(5):705-13.
- [15] Ivascu R, Torsin LI, Hostiuc L, Nitipir C, Corneci D, Dutu M. The surgical stress response and anesthesia: a narrative review. *Journal of Clinical Medicine*. 2024 May 20;13(10):3017.
- [16] Hahn RG. Fluid escapes to the “third space” during anesthesia, a commentary. *Acta Anaesthesiologica Scandinavica*. 2021 Apr;65(4):451-6.
- [17] Miller RD, Eriksson LI, Fleisher LA, Wiener-Kronish JP, Cohen NH, Young WL. *Miller's anesthesia e-book*. Elsevier Health Sciences; 2014 Oct 20.
- [18] Berend K, de Vries AP, Gans RO. Physiological approach to assessment of acid-base disturbances. *New England Journal of Medicine*. 2014 Oct 9;371(15):1434-45.
- [19] Rhee P. Noncolligative properties of intravenous fluids. *Current opinion in critical care*. 2010 Aug 1;
- [20] Myburgh, J. A., & Mythen, M. G. (2013). QUOTE. *N Engl J Med*, 369(13), 1243-51.
- [21] American Society of Anesthesiologists Task Force on Perioperative Blood Management. (2015). Practice guidelines for perioperative blood management: an updated report by the American Society of Anesthesiologists Task Force on Perioperative Blood Management. *Anesthesiology*, 122(2), 241-275.
- [22] Yunos, N. A. M., Bellomo, R., Hegarty, C., Story, D., Ho, L., & Bailey, M. (2012). Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. *Jama*, 308(15), 1566-1572.
- [23] Wilcox, C. S. (1983). Regulation of renal blood flow by plasma chloride. *The Journal of clinical investigation*, 71(3), 726-735.
- [24] Zayed, Y. Z., Aburahma, A. M., Barbarawi, M. O., Hamid, K., Banifadel, M. R., Rashdan, L., & Bachuwa, G. I. (2018). Balanced crystalloids versus isotonic saline in critically ill patients: systematic review and meta-analysis. *Journal of Intensive Care*, 6(1), 51.
- [25] Semler, M. W., Self, W. H., Wanderer, J. P., Ehrenfeld, J. M., Wang, L., Byrne, D. W., ... & Rice, T. W. (2018). Balanced crystalloids versus saline in critically ill adults. *New England Journal of Medicine*, 378(9), 829-839.
- [26] Young, P., Bailey, M., Beasley, R., Henderson, S., Mackle, D., McArthur, C., ... & Bellomo, R. (2015). Effect of a buffered crystalloid solution vs saline on acute kidney injury among patients in the intensive care unit: the SPLIT randomized clinical trial. *Jama*, 314(16), 1701-1710.
- [27] Raghunathan, K., Murray, P. T., Beattie, W. S., Lobo, D. N., Myburgh, J., Sladen, R., ... & Shaw, A. D. (2014). Choice of fluid in acute illness: what should be given? An international consensus. *British journal of anaesthesia*, 113(5), 772-783.
- [28] SAFE Study Investigators. (2004). A comparison of albumin and saline for fluid resuscitation in the intensive care unit. *New England Journal of Medicine*, 350(22), 2247-2256.
- [29] Vincent, J. L., Russell, J. A., Jacob, M., Martin, G., Guidet, B., Werner, J., ... & Gattinoni, L. (2014). Albumin administration in the acutely ill: what is new and where next?. *Critical care*, 18(4), 231.
- [30] Gille-Johnson, P. (2013). *Diagnostic and prognostic markers in sepsis*. Karolinska Institutet (Sweden).
- [31] Perner, A., Haase, N., Guttormsen, A. B., Tenhunen, J., Klemenzson, G., Åneman, A., ... & Wetterslev, J. (2012). Hydroxyethyl starch 130/0.42 versus Ringer's acetate in severe sepsis. *New England Journal of Medicine*, 367(2), 124-134.
- [32] Myburgh, J. A., Finfer, S., Bellomo, R., Billot, L., Cass, A., Gattas, D., ... & Webb, S. A. (2012). Hydroxyethyl starch or saline for fluid resuscitation in intensive care. *New England Journal of Medicine*, 367(20), 1901-1911.
- [33] Zarychanski, R., Abou-Setta, A. M., Turgeon, A. F., Houston, B. L., McIntyre, L., Marshall, J. C., & Ferguson, D. A. (2013). Association of hydroxyethyl starch administration with mortality and acute kidney injury in critically ill patients requiring volume resuscitation: a systematic review and meta-analysis. *Jama*, 309(7), 678-688.
- [34] Levy, J. H., Szlam, F., Tanaka, K. A., & Sniecienski, R. M. (2012). Fibrinogen and hemostasis: a primary hemostatic target for the management of acquired bleeding. *Anesthesia & Analgesia*, 114(2), 261-274.
- [35] Hébert, P. C. (1994). Wieviel Blut braucht ein Intensivpatient?. *Hepatology*, 19, 339-345.
- [36] Carson, J. L., Guyatt, G., Heddle, N. M., Grossman, B. J., Cohn, C. S., Fung, M. K., ... & Tobian, A. A. (2016). Clinical practice guidelines from the AABB: red blood cell transfusion thresholds and storage. *Jama*, 316(19), 2025-2035.
- [37] Goodnough, L. T., & Shander, A. (2012). Patient blood management. *Survey of An*

[38] Hall, J. E., Hall, M. E., & Guyton, A. C. (2011). Textbook of medical physiology.

[39] Moore, F. A., McKinley, B. A., & Moore, E. E. (2004). The next generation in shock resuscitation. *The Lancet*, 363(9425), 1988-1996.

[40] Marino, P. L. (2024). *Marino's The ICU Book: eBook without Updates*. Lippincott Williams & Wilkins.

[41] Ljungqvist, O., Scott, M., & Fearon, K. C. (2017). Enhanced recovery after surgery: a review. *JAMA surgery*, 152(3), 292-298.

[42] Gropper, M. A., Eriksson, L. I., Fleisher, L. A., Wiener-Kronish, J. P., Cohen, N. H., & Leslie, K. (Eds.). (2019). *Miller's anesthesia, 2-volume set E-book*. Elsevier Health Sciences.

[43] Brandstrup, B., Tønnesen, H., Beier-Holgersen, R., Hjortsø, E., Ørding, H., Lindorff-Larsen, K., ... & Danish Study Group on Perioperative Fluid Therapy. (2003). Effects of intravenous fluid restriction on postoperative complications: comparison of two perioperative fluid regimens: a randomized assessor-blinded multicenter trial. *Annals of surgery*, 238(5), 641-648.

[44] Elliott Bennett-Guerrero, M. D. (2014). Hemodynamic Goal-Directed Therapy in High-Risk Surgical Patients.

[45] Kellum, J. A. (2007). Disorders of acid-base balance. *Critical care medicine*, 35(11), 2630-2636.

[46] Hayes, W. (2019). Ab-normal saline in abnormal kidney function: risks and alternatives. *Pediatric Nephrology*, 34(7), 1191-1199.

[47] Rixen, D., & Siegel, J. H. (2005). Bench-to-bedside review: oxygen debt and its metabolic correlates as quantifiers of the severity of hemorrhagic and post-traumatic shock. *Critical care*, 9(5), 441.

[48] Tobin, M. J. (2018). Physiologic basis of mechanical ventilation. *Annals of the American Thoracic Society*, 15(Supplement 1), S49-S52.

[49] Achanti, A., & Szerlip, H. M. (2023). Acid-base disorders in the critically ill patient. *Clinical Journal of the American Society of Nephrology*, 18(1), 102-112.

[50] Myles PS, Bellomo R, Corcoran T, Forbes A, Peyton P, Story D, Christophi C, Leslie K, McGuinness S, Parke R, Serpell J. Restrictive versus liberal fluid therapy for major abdominal surgery. *New England Journal of Medicine*. 2018 Jun 14;378(24):2263-74.

[51] Cecconi M, Rhodes A. Goal-directed therapy: time to move on?. *Anesthesia & Analgesia*. 2014 Sep 1;119(3):516-8.

[52] Maitland K, Kiguli S, Opoka RO, Engoru C, Olupot-Olupot P, Akech SO, Nyeko R, Mtobe G, Reyburn H, Lang T, Brent B. Mortality after fluid bolus in African children with severe infection. *New England Journal of Medicine*. 2011 Jun 30;364(26):2483-95.

[53] Gustafsson UO, Scott MJ, Hubner M, Nygren J, Demartines N, Francis N, Rockall TA, Young-Fadok TM, Hill AG, Soop M, De Boer HD. Guidelines for perioperative care in elective colorectal surgery: enhanced recovery after surgery (ERAS®) society recommendations: 2018. *World journal of surgery*. 2019 Mar 15;43(3):659-95.

[54] Thacker JK, Mountford WK, Ernst FR, Krukas MR, Mythen MM. Perioperative fluid utilization variability and association with outcomes: considerations for enhanced recovery efforts in sample US surgical populations. *Annals of surgery*. 2016 Mar 1;263(3):502-10.

[55] Mythen MG, et al. *Perioperative fluid management: consensus from the Perioperative Quality Initiative*. Br J Anaesth. 2024.

[56] Thiele RH, et al. *American Society for Enhanced Recovery and POQI joint consensus on perioperative fluid management*. Anesth Analg. 2015.

[57] Ostermann, M., Auzinger, G., Grocott, M., Morton-Bailey, V., Raphael, J., Shaw, A. D., Zarbock, A., & POQI XI Investigators (2024). Perioperative fluid management: evidence-based consensus recommendations from the international multidisciplinary PeriOperative Quality Initiative. *British journal of anaesthesia*, 133(6), 1263-1275.

[58] Geriatric Anesthesia and Perioperative Management Group of the Chinese Society of Anesthesiology, National Alliance of Geriatric Anesthesia (NAGA), & National Clinical Research Center for Geriatric Diseases (Xuanwu Hospital) (2025). *Zhonghua yi xue za zhi*, 105(2), 128-154.

[59] Som, A., Maitra, S., Bhattacharjee, S., & Baidya, D. K. (2017). Goal directed fluid therapy decreases postoperative morbidity but not mortality in major non-cardiac surgery: a meta-analysis and trial sequential analysis of randomized controlled trials. *Journal of anesthesia*, 31(1), 66-81.

[60] Messina, A., Robba, C., Calabro, L., Zambelli, D., Iannuzzi, F., Molinari, E., Scarano, S., Battaglini, D., Baggiani, M., De Mattei, G., Saderi, L., Sotgiu, G., Pelosi, P., & Cecconi, M. (2021). Association between perioperative fluid administration and postoperative outcomes: a 20-year systematic review and a meta-analysis of randomized goal-directed trials in major visceral/noncardiac surgery. *Critical care (London, England)*, 25(1), 43.

[61] Niu, W., Li, J., & Wang, S. (2024). The Effect of Colloids versus Crystalloids for Goal-Directed Fluid Therapy on Prognosis in Patients Undergoing Noncardiac Surgery: A Meta-Analysis of Randomized Controlled Trials. *Anesthesiology research and practice*, 2024, 4386447.

[62] Ma, YT., Xian-Yu, CY., Yu, YX. et al. Perioperative fluid management for adult cardiac surgery: network meta-analysis pooling on twenty randomised controlled trials. *Perioper Med* 13, 76 (2024).

[63] Chen, SD., Ma, YT., Wei, HX. et al. Use of colloids and crystalloids for perioperative clinical infusion management in cardiac surgery patients and postoperative outcomes: a meta-analysis. *Perioper Med* 13, 83 (2024).

- [64] Joosten, A., Coeckelenbergh, S., Alexander, B., Delaporte, A., Cannesson, M., Duranteau, J., Saugel, B., Vincent, J. L., & Van der Linden, P. (2020). Hydroxyethyl starch for perioperative goal-directed fluid therapy in 2020: a narrative review. *BMC anesthesiology*, 20(1), 209.
- [65] Joosten, A., Delaporte, A., Ickx, B., Touihri, K., Stany, I., Barvais, L., Van Obbergh, L., Loi, P., Rinehart, J., Cannesson, M., & Van der Linden, P. (2018). Crystallloid versus Colloid for Intraoperative Goal-directed Fluid Therapy Using a Closed-loop System: A Randomized, Double-blinded, Controlled Trial in Major Abdominal Surgery. *Anesthesiology*, 128(1), 55–66.
- [66] Smorenberg, A., Ince, C. & Groeneveld, A.J. Dose and type of crystalloid fluid therapy in adult hospitalized patients. *Perioper Med* 2, 17 (2013).
- [67] Navarro LH, Bloomstone JA, Auler JO Jr, Cannesson M, Rocca GD, Gan TJ, Kinsky M, Magder S, Miller TE, Mythen M, Perel A, Reuter DA, Pinsky MR, Kramer GC. Perioperative fluid therapy: a statement from the international Fluid Optimization Group. *Perioper Med (Lond)*. 2015 Apr 10;4:3.
- [68] Miller TE, Shaw AD, Mythen MG, et al. Evidence-based perioperative fluid management: future challenges and opportunities. *Anesthesiology*. 2022;136(2):248-258.
- [69] Prowle JR, Bellomo R. Fluid management in the perioperative and critical care setting: emerging concepts. *Intensive Care Med*. 2023;49(6):739-751.
- [70] Rinehart J, Liu N, Alexander B, Cannesson M. Closed-loop systems in anesthesia: a primer for clinicians. *Anesth Analg*. 2012;114(1):130–138.
- [71] Joosten A, Alexander B, Delaporte A, et al. Perioperative goal-directed fluid therapy using a closed-loop system: a randomized controlled trial. *Anesthesiology*. 2015;122(5):1058–1067.
- [72] Cannesson M, Slieker J, Desebbe O, et al. Prediction of fluid responsiveness using machine learning algorithms in surgical patients. *Br J Anaesth*. 2020;125(4):437–445.
- [73] Squara P, Denjean D, Estagnasie P, Brusset A, Dib JC, Dubois C. Noninvasive cardiac output monitoring (NICOM): a clinical validation. *Intensive Care Med*. 2007;33(7):1191–1198.
- [74] De Backer D, Orbegozo Cortes D, Donadello K, Vincent JL. Pathophysiology of microcirculatory dysfunction and the pathogenesis of septic shock. *Virulence*. 2014;5(1):73–79.
- [75] Pinsky MR, Payen D. Functional hemodynamic monitoring. *Crit Care*.