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ABSTRACT 

 

In this paper, a new modification of conjugate gradient coefficient with global convergence properties are 

presented. The global convergence result is established using line search Wolfe. Preliminary result shows that 

the proposed formula is competitive when compared to the other CG coefficients. 
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INTRODUCTION 

 
The capability of conjugate gradient (CG) methods to solve large-scale unconstrained optimization problems rendering 

it widely used in mathematical issues. The minimum values of the function for unconstrained optimization are obtained 

by using the nonlinear CG methods. Consider the unconstrained optimization problem: 

 

 n
Rxxf )(min   )1(..........  

where 
1

: RRf
n
  is a continuously differentiable function [12]. The line search method for solving (1)     is of the 

from : 

 , 
1 kkkk

dxx 


   )2(..........
 

where 
1

x  is a given initial point, 
k

d  is a search direction, and 
k

  is a step size obtained by a 1-dimensional line 

search. In the steepest descent method, the search direction is defined as the negative gradient direction, 

 

 , 
11 


kk

gd    )3(..........  

and the step size is chosen to be the 1-dimensional minimizer: 

 

)d(minarg
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0


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

kk
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In practical computations, however, the steepest descent method performs poorly, and is badly affected by ill-

conditioning. Another class of methods are quasi-Newton (QN) methods, where : 

 , 
111 


kkk

gBd    )5(..........  

and where 
1k

B  is updated at each iteration to capture the already obtained second derivative information. They are 

very efficient for medium scale problems, but can not be used to solve large scale problems because of its storage of 

matrices. The conjugate gradient (CG) method uses the negative gradient direction and the previous search direction to 

form the current search direction, namely, 

 , 
11 kkkk

dgd 


   )6(..........  

where 
11

gd   and 
k

  is a scalar. More performance profile, is given in [13]. 

Since the emergence of the nonlinear conjugate gradient methods, several variants of 
k

  have been proposed 

corresponding to different conjugate gradient methods. Few of this parameters has proposed are given in table 1 below. 
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Table 1: Variants of Conjugate Gradient Updating Parameter 

 

No. Author(s) Year CG Parameter 

1 Hestenes and Stiefel [11] 1952 
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In this paper, we show our new conjugate gradient method and algorithm. Next, we prove the global convergence of the 

new conjugate gradient method. Then, we report the numerical results and discussions. Lastly, the conclusions are 

presented. 

 

A NEW CONJUGATE GRADIENT METHOD 

  

In this section, we derive a new conjugate gradient method based on quadratic functions. Using the Taylor expansion to 

second-order terms, f  can be written as: 
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By using exact line search ,0
1


 k

T
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dg  the above equation we get: 
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we get Hessian is the identity matrix scaled by G : 

nn

k

T

k

kk
I

ss

ff
G

*

1
)(2




  )9(..........  

The best direction to be following in the current point is the Newton direction: 
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Since Newton direction are conjugate gradient with exact line searches we get: 
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then we have : 
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Now we can obtain the new conjugate gradient algorithm, as follows: 

 

New Algorithm (BA Algorithm): 
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             set 1 kk  and continue with step 2. 
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CONVERGENT ANALYSIS 

 

In this section, the convergence properties of BA will be studied. For an algorithm to converge, it is necessary to show 

that the sufficient descent condition and the global convergence properties hold. 

 

Sufficient descent condition  
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GLOBAL CONVERGENCE PROPERTIES 

 

Next we will show that CG methods with BA converges globally. The following basic assumptions are needed in the 

analysis of global convergence properties of CG methods. 

 

Assumptions 

       i- The level set  )()(
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xfxfRxL
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  is bounded.                                   
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       ii- In some neighborhood U  and )(, xfL  is continuously differentiable and its gradient id Lipschitz 

continuous, namely, there exists a constant 0L  such that : 
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More details can be found in [8]. Under these assumptions on ,f  there exists a constant  then a constant 0 exists, 

such that : 
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for all Lx  . 

 

Dai et al. [9] proved that for any conjugate gradient method with strong Wolfe line search the following general result 

holds : 
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NUMERICAL RESULTS 

 

We test the new Algorithm by solving the ten problems from [1], and compare its performance to that of the FR method 

[10] under the Wolfe line search conditions. In new Algorithm, we have 001.0  and 9.0 , and the 

termination condition is 
6

1
10






k
g .  

The numerical results of our tests are reported in the Table 2. The first column “Problem” represents the name of the 

tested problem. Dim denotes the dimension of the test problems. NI, NR, and NF denote the number of iterations,  the 

number of restart calls and function evaluations, respectively. 

 

From the numerical results, it is shown that the proposed conjugate gradient method is promising. 

 

DISCUSSION OF RESULT AND CONCLUSION  

 

The results of Table 2 suggest that the proposed algorithm has promising behavior encountering with medium-scale and 

large-scale unconstrained optimization problems and it is superior to other considered algorithms in the most cases.  

With the Wolfe line search, the new methods are global convergent. 

 

Table 2: Comparison of different CG-algorithms with different test functions and different dimensions 

 

                                FR algorithm                                   BA algorithm      

                         P. No.            n                NI               NR             NF               NI              NR               NF 

24 7 12 64 13 32 100 1 

25 7 12 129 46 77 1000  

71 17 44 67 8 37 100 2 

85 23 52 115 27 73 1000  

162 28 85 313 60 180 100 3 

198 36 102 F F F 1000  

155 44 70 174 32 89 100 4 

F F F 211 40 107 1000  

23 7 9 F F F 100 5 

39 9 11 131 31 60 1000  

140 18 78 231 41 124 100 6 

265 27 149 711 196 445 1000  

24 7 10 26 6 11 100 7 

21 6 8 125 12 16 1000  

163 29 102 196 49 130 100 8 

F F F 593 119 364 1000  

26 7 13 25 7 13 100 9 

23 6 11 29 7 15 1000  

119 24 73 218 65 121 100 10 

378 75 242 634 169 345 1000  

139 26 85 123 21 74 100 11 

435 67 257 616 88 370 1000  

15 5 7 25 7 12 100 12 

15 5 7 23 7 11 1000  

17 6 9 33 11 20 100 13 

24 8 13 35 11 19 1000  

26 9 15 156 62 122 100 14 

22 9 12 166 66 130 1000  

56 14 37 147 55 112 100 15 

65 12 37 145 54 110 1000  

2525 495 1451 4627 1151 2748  Total 

Fail: The  algorithm  fail to converge. 

 

Problems numbers indicant for: 1. is the Extended Tridiagonal 1, 2. is the Generalized Tridiagonal 2, 3. is the 

Extended Powell, 4. is the Extended Maratos, 5. is the Extended Cliff, 6. is the Quadratic Diagonal Perturbed, 7. is 
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the Extended Quadratic Penalty QP1, 8. is the Quadratic QF2, 9. is the NONDIA (CUTE), 10. is the DIXMAANE 

(CUTE), 11. is the Partial Perturbed Quadratic, 12. is the DENSCHNB (CUTE), 13. is the DENSCHNA (CUTE), 

14. is the Extended Block-Diagonal BD2, 15. is the Generalized quartic GQ2. 
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