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Abstract: The nonlinear Landau–Zener tunneling of a Bose–Einstein condensate (BEC) of two different of particles 

in an accelerating optical lattice is investigated. The analytical eigenstates and the tunneling probability are 

obtained. It is shown that the eigenstates and the tunneling probability are modified dramatically by the interaction 

of the two different particles. 

 

 

 

Introduction 

 

Since the first experimental preparation of Bose-Einstein condensates (BECs) in dilute atomic gases, the study of their 

dynamical properties has become a very active field of research. Investigation covered different aspects of boson Josephson 

junctions [1, 6], population of topological states [7, 8], tunneling processes [9, 15], transport of condensate [6, 16-22], and 

other topics. However one of the most striking phenomena that were proposed recently, is the adiabatic tunneling of BEC, 

where avoided crossing of energy levels leads to the splitting of degenerate energy levels forming a tiny energy gap. 

Around the avoided crossing point of the two levels, the Landau-Zener tunneling (LZT) scenario describes the tunneling 

under the assumption that the energy difference between the two levels varies linearly with time. However the adiabatic 

tunneling may be broken down for two reasons. The first reason, when the sweep rate between the two bias levels increases, 

and the second reason when the nonlinear interaction exceeds the avoided crossing of energy and, the opportunity of the 

emergence of nonlinear eigenstates increases. An interesting extension of the tunneling problem involves Bose condensates 

of two interacting species. The main issue is how the interspecies interaction affects the tunneling process, and particularly 

the quantum coherence as the two condensates mix together. Previous studies of the general properties of two-component 

Bose condensates have emphasized the important role of the interspecies interaction, which leads to novel features, such as 

the components separation [23, 24], cancellation of the mean field energy shift [25], and the suppression of quantum phase 

diffusion [26]. However, the investigation of the impact of interspecie’s interaction on tunneling dynamics has only just 

begun [27, 28]. 

 

In this paper, the main issue is to study the nonlinear (LZ) tunneling properties for the accelerating 1D optical lattice with 

the interaction of two species particles. The interaction of two species particles can be considered as two independent 

systems but with new fluctuation of energy for each one. The interaction of identical particles decreases the energy band 

gap and, as a result the chance of the nonlinear LZ tunneling increases, while the mutual interaction between two species of 

particles produces a new route of tunneling of particles in additional to the transition of particles in their own eigenstates. 

So, one of the main goals of this work is to investigate the influence of fluctuation of energy produces by the mutual 

interaction of particles on the eigenstates of each group of identical particles. 

 

Theory of the nonlinear and Landau-Zener Model 

 

     The motion of a Bose–Einstein condensate in an accelerated 1D optical lattice is described by the 

Gross–Pitaevskii equation [29, 30]     
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where m is the mass of the component, lk  is the wave number of the laser light, oV  is the strength of the periodic potential 

that is proportional to the laser density. The absolute square of the wave function )2 ,1(  jj  is the number densities of 

two-component condensates respectively at position x and time t. A force of lma  is represented in the vector potential 

gauge, which may stand for either the inertial force in the commoving frame of an accelerating lattice or the gravity force 
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 , and jia   are scattering length of the respective interactions, it will be assumed that they are all 

positive.  For convenience, we cast Eq. (1), and Eq. (2) into the dimensionless 
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We assume that the non- linear term does not break the periodic symmetry, so that the band structure remains. In the 

neighbor-hood of k = 1/2, the Brillouin zone edge, the wavefunction can be approximated by [9]. 
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Substituting Eqs. (5) and (6) into the dimensionless form of Eqs. (3)  and (4), and comparing the coefficient of 
xkixki eande  )1(       , 
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where H is the Hamiltonian matrix,  and is given by 
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where  t   is the sweep rate. For a solution with nonzero amplitudes, One imposes the determinant condition 
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Eqn.(10) can be written as two independent determinants 
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The nonlinear eigenstates are then defined as the solution of the time-independent version of Eq. (11), and thus One obtains  
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Using Eqs. (13.a) and (13.b), One can analyze the influence of the interaction of the two different particles on the energy 

band structure.  

 

Results and Discussion 

 

Figures. (1-5) shows the energy levels 1  as a function of  for ( 2.0V ), and for different values of the interaction 

parameters 11C  and 12C . Figure.1 shows that, for weak nonlinearity of 0  ,05.0 122211  CCC ,  the tunneling 

occurs between two fixed eigenstates and the perturbation energy is equal to zero. For this case the analytic solution of the 

quartic equations 11.a and 11.b will give tow real roots. While Fig..2 shows that for 5.0  ,05.0 122211  CCC , the 

influence of the fluctuation energy i  will increase the band energy between these two states. For

)0C  1,C ,( 122211 C  the analytic solution of the quartic equation gives four real roots. The loop which appears at the 

tip of the lower level in Fig. 3 is produced due to the nonlinear term. This means that even in the adiabatic limit, the non 

linear term will cause LZ transmission. As 12C  increases, the width of the loop in Figures (4, 5) decreases and this 

behavior can be explained according to the results reported in Ref. [29],  where the width of the loop can be calculated from 

the relation,   2
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 iwidth VC  . For 512 C  as presented in Fig.6, the energy gap becomes very large and 

the opportunity of the nonlinear L-Z tunneling is prevented.   

It is known that, for identical particles the nonlinear interaction iiC will produce the nonlinear LZ tunneling between the 

states of these identical particles, while the increase of ijC  will increase the fluctuation energy i and as a result, a new 

degeneracy of eigenstates is produced, that permits the identical particles to transmit into a new eigenstaes. Figure.7 shows 

the fluctuation energy i  versus   for 5.012 C . One can conclude that the particles of the same kind have two routes 

for tunneling, the first one is the tunneling of particles in their own states, and the second route is the transmission of 

particles to the new degeneracy of eigenstates.  

     Another way to study the influence of the fluctuation energy in the LZ tunneling, is by calculating the tunneling 

probability, and according to the results of Ref [11], the tunneling probability can be easily obtained for two limiting cases. 
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It is clear that when 012 C , the results given by Eqs. (14)–(18) reduce to the corresponding results of Ref. [9]. For the 

case of  1    11 
V

C
  , the numerical results of the tunneling probability for different values of 11C  are shown in Figs (8, 

9) with 05.012 C  and 5.012 C  respectively. We can see that, the a diabetic tunneling increases as the fluctuation 

energy increases. Figure.9 shows the opposite effect of the level bias , where the increase of  , will reduce the a diabetic 

tunneling. 

For the case of 1     11 
V

C
, the tunneling probability given by the direct numerical results of Eq. (18) are presented in 

Figs. (10-12). The results indicate that, nonlinear L-Z probability tunneling decreases as the fluctuation energy increases, 

while nonlinear L-Z probability increases as the tunneling parameter   increases. 

 

Conclusion 

 

The tunneling properties of BEC with the repulsive interaction between two species of particles immersed in one-

dimensional accelerating optical lattice are investigated. With the mean-field theory and the approximation, the nonlinear 

eigenstates and the tunneling properties are investigated numerically. The results show that, the eigenstates are affected by 

the fluctuation energy produced by the repulsive interaction between the two different particles. The nonlinear interaction 

of identical particles will increase the opportunity of nonlinear LZ tunneling in their own eigenstates while the nonlinear 

interaction between the different species will create a new degeneracy of eigenstates, and the identical particles have 

another route to be tunneled. In other words, the fluctuation energy will decrease the probability of transition of particles on 

their eigenstates.  
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Figure. 1:  Energy levels for different λ with V =0.2, C11 =0.05, C22=0.05, C12=0.0 

 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                
  Figure. 2: Energy levels for different λ with V =0.2, C11 =0.05, C22=0.05, C12= 0.5 

 

 

 

 

 

 

     

 

 

 

                      

 

 

 

 

 

 
 

 

 

Figure. 3: Energy levels for different λ with V =0.2, C11 = 1, C22=1, C12= 0.0 
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Figure.4 : Energy levels for different λ with V =0.2, C11 =1, C22=1, C12=0.5 

 

 

 

 

 

 

 

 

 

 

                   

 

 

 

 

 
Figure. 5: Energy levels for different λ with V = 0.2, C11 =1, C22=1, C12=1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure. 6: Energy levels for different λ with V = 0.2, C11 =1, C22=1, C12=5 
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Figure. 7: The fluctuation energy for different λ with V = 0.2, C11 =1, C22=1, C12=0.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure. 8: Numerical results of the exponential dependence of the tunneling probability as a function of 1/α for different 

interaction strength, with V=0.2, C12=0.05, λ=0.05 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure. 8:Numerical results of the exponential dependence of the tunneling probability as a function of 1/α for different 

interaction strength, with V=0.2, C12=0.5, λ=0.05 
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Figure. 9: Numerical results of the exponential dependence of the tunneling probability as a function of 1/α for different 

interaction strength, with V=0.2, C12=0.5, λ=0.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

   
 Figure. 10: Tunneling probability as a function of α for different interaction strength   C11 with V=0.2, C12=0.05, λ =0.05 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
              

Figure. 11: Tunneling probability as a function of α for different interaction strength C11with V=0.2, C12=0.5, λ=0.05 
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                Figure. 12: Tunneling probability as a function of α for different interaction   strength C11with V=0.2, C12=0.5, λ=0.5.   

 

 

 

 

 

 


