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Abstract: Wavelet analysis is an exciting new method for solving difficult problems in mathematics, physics, and 

engineering, with modern applications. Wavelet transform of a function is the improved version of Fourier 

transform. In conventional Fourier transform, we use sinusoids for basis functions. It can only provide the 

frequency information. Temporal information is lost in this transformation process. In some applications, we 

need to know the frequency and temporal information at the same time The time and frequency analysis made 

possible by the wavelet transform provides insight into the character of transient signals through time-frequency 

maps of the time variant spectral decomposition that traditional approaches miss. Wavelet transform is one of a 

best tool for us to determine where the low frequency area and high frequency area is. In this paper, our main 

goal is to categorise the wavelet and advanced wavelet transform approach because the  original WDCS 

implementation (Wavelet domain communication system) uses a linear Wavelet-based transform approach to 

overcome TDCS(Transform domain communication system) shortcomings  in the way of cognitive radio 

designing. 
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I .          WAVELET 

 

Wavelets[1][2] are mathematical functions with oscillatory nature similar to sinusoidal waves with the difference being 

that they are of “finite oscillatory nature”. Essentially a finite length, decaying waveform, when scaled and translated 

results in what is called a “daughter wavelet” of the original “mother wavelet”. Hence different scaling and translation 

variables result in a different daughter wavelet from a single mother wavelet. Wavelet transforms are classified as 

Continuous wavelet transforms (CWT) and Discrete wavelet transforms (DWT). The finite oscillatory nature of the 

wavelets makes them extremely useful in real life situations in which signals are not stationary. While Fourier 

transform of a signal only offers frequency resolution, wavelet transforms offer “variable time frequency” resolution 

which is the hallmark of wavelet transforms. 

The first use of wavelets was by Haar in 1909. He was keen in finding a basis on a dynamic space same as Fourier's 

basis in frequency space. In physics, wavelets were used in the characterization of Brownian motion. This work led to 

some of the opinion used to construct wavelet bases. If the features of the signal in question do not change over time, 

i.e, the signal is stationary then Fourier transform is substantial, for the analysis of the signal. Nevertheless, in many 

applications it is the variable or non-stationary phase of the signal (that is sudden changes) that is of maximum interest. 

In some cases, Fourier analysis is unable to find out when/where such events take place and is therefore not appropriate 

to depict or represent them. In order to conquer this limitation of Fourier to gain data in time and frequency domain, a 

different kind of transform, called wavelet transform can be used. Wavelet.  Transform[3][4] can be sighted as a trade-

off between frequency and time domains. Fourier transforms a signal between time and frequency domains, while 

wavelet transform emphasizes on scales and locations (in place of frequency). 

 

II. WAVELET TRANSFORM 

The Wavelet Transform (WT) [3][4]is a method for analyzing signals. It was developed as a replacement to the short 

time Fourier Transform (STFT) to conquer problems related to its frequency and time resolution characteristics. unlike 

the Short Time Fourier Transform that gives uniform time resolution for all Frequencies the Discrete Wavelet 

Transform gives high time resolution and low frequency resolution for high frequencies only and high level frequency 

resolution and low time resolution for low level frequencies. In that respect it is similar to the ear of a human which 

reveal similar time-frequency resolution properties. The Discrete Wavelet Transform (DWT) is a unique case of the 
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Wavelet Transform (WT) form that gives a tight characterization of a signal in frequency and time that can be 

evaluated efficiently.  

 

A wavelet transform[5][6] decomposes a signal into basis functions which are known as wavelets. Wavelet transform is 

calculated separately for different segments of the time-domain signal at different frequencies resulting in Multi-

resolution analysis or MRA. It is designed in such a way that the product of time resolution and frequency resolution is 

constant. Therefore it gives good time resolution and poor frequency resolution at high frequencies whereas good 

frequency resolution and poor time resolution at low frequencies. This feature of MRA makes it excellent for signals 

having high frequency components for short durations and low frequency components for long duration .e.g. noise in 

signals, images , video frames etc.  

III. ROLE OF WAVELET  TRANSFORM FOR COGNITIVE  RADIO 

Rapid development of new and ever expanding wireless applications and services, spectrum resources are facing huge 

demands. Currently, spectrum allotment is done by giving each new service with its own fixed frequency block. As 

more and more technologies are moving towards fully wireless, demand for spectrum is enhancing. In this context, a 

new technology, cognitive radio (CR) has been come out to solve this spectrum scarcity problem.  In the Area of  

cognitive radio(CR) ,Several modulation techniques have been disseminated to reduce interference effects. Two 

developmental communication systems pointing interference avoidance capabilities are Transform Domain 

Communication System (TDCS)  and the Wavelet Domain Communication System (WDCS)[7][8]. The TDCS and 

WDCS are particularly designed to operate successfully in an environment consisting hostile, unintentional 

interference. TDCS implementation used a Fourier transform approach.but WDCS implementation used a lineal 

wavelet-based transform approach. The WDCS architecture exclusively fungibled the Fourier based spectral estimation 

processes with a lineal wavelet transform. And,the inverse Wavelet transform block replaced the inverse Fourier 

transform block. After scaling and translation we can achieve a two-dimensional mother wavelet.WDCS reduced the 

shortcoming of TDCS. The Fourier-based estimator instinctively dilates interference energy into proximate spectral 

domains not containing interference energy, an inefficiency probably resulting in less performance. The TDCS is 

unable to efficiently estimate the spectral type of non-stationary interference.  

 

A. WDCS(wavelet Domain Communication System)- 

 

The Original WDCS[9][10] implementation used a traditional wavelet-based approach to perform to estimate a 

spectrum and was developed to overcome some major TDCS deficiencies, these are: 

 

1) The Fourier-based estimator instinctively extends interference energy into adjacent  regions of spectrum not 

containing interference, an inaptness resulting in demoted performance, and 

 

2) The TDCS fails to estimate the spectral characteristics of non-stationary interference effectively.  

 

The original Wavelet Domain Communication System (WDCS) simply taked place the Fourier based spectral 

estimation processes with a traditional wavelet approach. of necessity, the inverse wavelet transform taked place the 

inverse Fourier transform. In WDCS the mother wavelet is the fundamental waveform that is  translated and scaled to 

achieve  time and frequency characterization of a signal. A smart supported waveform contains a particular amount of 

energy concentrated in time, permitting analysis of non-stationary signals. Spectral estimation in the WDCS is fulfill by 

filtering andsampling or decimating the samples of the electromagnetic environment. In this case, the filter coefficients 

are computed using the various wavelet approaches.The phase code is a  pseudorandom (PR) sequence produced from a 

linear feedback shift register (LFSR). The LFSR of n-stages produces an m-sequence of period, or length of 2𝑛 −
1. The LFSR output sequence replicate every 2𝑛 − 1 clock cycles.The original WDCS implementation only uses binary 

modulation.The basic idea for WDCS is to synthesize an sharp adaptive waveform in the wavelet region at both the 

transmitter and receiver to avoid spectral densed regions. this wavelet approach offers better bit error(BER) 

performance in contrast to other conventional interference suppression mechanism that process the signal at the 

receiver side only. Moreover, since this smart  adaptive waveform is able to search “spectrum hole” and adapt to  

EM(Electromagnetic environment), it could be a powerful candidate in Cognitive Radio(CR) technology. 

 

IV. DWT AND CWT 

A     Discrete wavelet transform 

A wavelet transform [11][12] in which the wavelets are discretely sampled are known as discrete wavelet transform. 

The DWT gives a multi-resolution description of a signal which is very useful in analyzing "real-world" signals. 

Essentially, a discrete multi-resolution description of a continuous-time signal is obtained by a DWT. It converts a 

series a0, a1, a2……. am into one low pass coefficient series known as “approximation” and one high pass coefficient 
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series known as “detail”. Length of each series is m/2.In real life situations, such transformation is applied recursively 

on the low-pass series until the desired number of iterations is reached. Some examples of discrete wavelets are the 

Haar wavelets, Daubechies wavelets, symmlets etc. For any input comprising of 2n numbers, the Haar wavelet 

transform simply pairs up input values, storing the difference and passing the sum. This process is recursive, pairing up 

the sums to provide the next scale: finally resulting in 2n − 1 differences and one final sum and this is done in O(n) 

time i.e. linear time. 

Discrete Wavelet Transform[13][14] is more informative and flexible than the other. It is a transform that breaks the 

data into frequency component or sub bands. Fourier involves the decomposition of a signal into sin waves of several 

frequencies. The advantage of the wavelet over Fourier is in analyzing physical situation that the sinusoid do not have a 

limited duration but instead extend from minus to plus infinity. In Fourier transform domain we completely lose 

information about the audio signal. A wavelet expansion coefficient refers a component that is local and easier to 

interpret. Wavelets are adjustable and adaptable and designed for adaptive systems whereas Fourier transform is 

suitable if the signal consists of few stationary components.  

 

B. Continuous Wavelet Transform 

In order to examine signals of very distinct sizes, it is necessary to use time-frequency atoms with different time pillars. 

The wavelet transform divided signals over extended and translated functions called wavelets, which transform a 

continuous function(CW) [12] [13]into a highly unnecessary function . A wavelet is a function with zero average 

formulated as follows- 

                             φ
∞

−∞
(t)dt=0                                                                                                                               (1) 

Different types of wavelets have evolved with each one having different property and usage in different areas.  

 

V. CLASSIFICATION OF WAVELETS 

 

Various different types of Wavelets and associated transform used are discussed as follows: 

A . Haar wavelet and Haar  transform 

In mathematics, the Haar wavelet is a sequence of rescaled "square-shaped" functions which together form 

a wavelet family or basis. Wavelet analysis is similar to Fourier analysis in that it allows a target function over an 

interval to be represented in terms of an orthonormal function basis. The Haar wavelet is also the simplest possible 

wavelet. The technical disadvantage of the Haar wavelet is that it is not continuous, and therefore not differentiable.. 

The Haar sequence was proposed in 1909 by Alfréd Haar. Haar used these functions to give an example of an 

orthonormal system for the space of square-integrable functions on the unit interval [0, 1] And The Haar transform [15] 

is the easiest of the wavelet transform. With the use of various stretches and shifts this transform slant multiplication 

non a particular function against Haar Wavelet. It is same as the Fourier transform cross multiplied as a function 

against a sin wave with two phases and many stretches. Haartransform is found to be more effective in applications 

such as signal and image compression in electrical and computer engineering as it gives a simple and computationally 

efficient advance approach for analyzing the local aspects of a signal. Haar transform[16][17] is formulated as- 

                                 yn = Hnxn                                                     (2) 

And the inverse formula is  

                                xn = Hn
Tyn                                                                  (3)      

Where  Hn
T  is the transpose Haar matrix. 

A Haar transform decompose each signal into two components one is called average(approximation) & other is known 

as difference(detail). The formula for the average sub signal is as follows: 

                              an = (.f2n−1+f2n  )/√2                                                   (4)      

where n-=1,2,3………N/2      

And the detail sub-signal part is given by:  

                                an = (.f2n−1-f2n  )/√2                                                   (5) 

where n-=1,2,3………N/2                            

 

Some properties of Haar transform are as follows- 

 

a) No need for multiplications. It requires only additions and there are many elements with zero value in the 

Haar matrix, so the computation time is short. It is faster than Walsh transform, whose matrix is composed of +1 and -

1. 

 

b) Input and output lengths are the same. However, the length should be a power of 2. 

http://en.wikipedia.org/wiki/Wavelet
http://en.wikipedia.org/wiki/Fourier_analysis
http://en.wikipedia.org/wiki/Orthonormal
http://en.wikipedia.org/wiki/Continuous_function
http://en.wikipedia.org/wiki/Derivative
http://en.wikipedia.org/wiki/Alfr%C3%A9d_Haar
http://en.wikipedia.org/wiki/Square-integrable_function
http://en.wikipedia.org/wiki/Unit_interval
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c) It can be used to analyze the localized feature of signals. Due to the orthogonal property of Haar function, the 

frequency components of input signal can be analyzed. 

 

B. Gauss wavelet and Gaussian Transform    

Fourier transformation The correct selection of the analyzing wavelet with different properties is  of critical importance 

for enhancing the fault features in the wavelet analysis. Various wavelets are available for wavelet applications. Some 

of them have a 

good time–frequency localization property which is a desirable attribute for fault detection applications  Gaussian 

wavelet were initially examined for their performance in detecting fault conditions in the steam turbine. Gaussian 

wavelet[18][19] also generated good results for the analysis. 

 

The direct Gaussian Transform G in wavelet theory is defined as the operator which transforms or changes    p(x) 

function into G(σ2), and the Inverse Gaussian Transform G
-1 

is opposite of G defined as the operator which maps  

G(σ2)to p(x): 

                            G(σ2∞

0
 ) N x σ2 dσ2 = p(x)                                               (6) 

Where,N x σ2 is the gaussian distribution(Zero-mean) and it is formulated as  

                            N x σ2 =    (1   /√2πσ2) ex2/2σ2
                                                                                                (7) 

         

Where G(σ2) is the mixture of functions for to reproduce p(x).Properties of gauss transform is Final value theorem 

means transform is 0 when σ2is tend to infinity. 
 

C. Daubachies Wavelet  

The Daubechies Wavelet is the group of the wavelets (orthogonal) denoting a Discrete Wavelet Transform(DWT). 

With every wavelet of this kind, there is a scale function or the father wavelet. Daubechies (DB) wavelets are basically 

used in solving a broad range of problems, as fractal problems, self-resemble properties of a signal etc. 

Daubechies wavelets[20][21] are families of wavelets whose inverse wavelet transforms are adjoint of the wavelet 

transform i.e. they are orthogonal. They have maximal number of vanishing moments and hence they can represent 

higher degree polynomial functions. With each wavelet type of this class, there is a scaling function known as “father 

wavelet” that generates an orthogonal multi-resolution analysis .Daubechies orthogonal wavelets D2-D20 (even index 

numbers only) are commonly used. The numbers associated with the name refers to the number „N‟ of coefficients. 

Each wavelet has vanishing moments equal to half the number of coefficients. For example, D2 which is the Haar 

wavelet has one vanishing moment, D4 has two, etc. The number of vanishing moments is what decides the wavelet's 

ability to represent a signal. For example, D2, with one moment, easily encodes polynomials of one coefficient, or 

constant signal components. D4 encodes polynomials with two coefficients, i.e. constant and linear signal components 

etc. The wavelet transform using Daubechies wavelets result in progressively finer discrete samplings using recurrence 

relations. Every resolution scale is double that of the previous scale. Daubechies derived a family of wavelets, the first 

of which is the Haar wavelet. Since then interest in this field has shot up and many variations of Daubechies original 

wavelets have been developed. The discrete wavelet transform has applications ranging from data compression to 

signal coding. In our research work, Daubechies wavelet was used to filter a noisy signal to extract information from 

the signal. 

 

VI. ADVANCE APPROACH OF WAVELETS 

 In order to examine signals of very distinct sizes, it is necessary to use time-frequency atoms with different time 

pillars. The wavelet transform divided signals over extended and translated functions called wavelets, which transform 

a continuous function (CW) into a highly unnecessary function. 

 

In1946, physicist Dennis Gabor, applying ideas from quantum physics, introduced the use of Gaussian-windowed 

sinusoids for time-frequency decomposition, which he referred to as atoms, and which provide the best trade-off 

between spatial and frequency resolution. These are used in the Gabor transform, a type of short-time Fourier 

transform. In 1984, Jean Morlet introduced Gabor's work to the seismology community and, with Goupillaud and 

Grossmann, modified it to keep the same wavelet shape over equal octave intervals, resulting in the first formalization 

of the continuous wavelet transform. 

Some continuous wavelet examples are as follows.  

A. Morlet Wavelet 

The commonly used Continuous Wavelet is the Morlet wavelet [22][23] .it is defined as following in time and 

frequency domains- 

                          φ(t) =  eimt e−t2   /2π−1/4                                                                                                                (8) 

http://en.wikipedia.org/wiki/Dennis_Gabor
http://en.wikipedia.org/wiki/Quantum_physics
http://en.wikipedia.org/wiki/Gabor_atom
http://en.wikipedia.org/wiki/Gabor_transform
http://en.wikipedia.org/wiki/Short-time_Fourier_transform
http://en.wikipedia.org/wiki/Short-time_Fourier_transform
http://en.wikipedia.org/wiki/Jean_Morlet
http://en.wikipedia.org/wiki/Continuous_wavelet_transform
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                     φ(𝜔) = U(𝜔)  e−(ω−m)2   /2𝜋−1/4                                                               (9) 

 

where, m is an adjustable variable of wave number and U is the step function that allows for correct signal 

reconstruction. 

 

The Morlet Wavelet Transform method presented offers an intuitive bridge between frequency and time information 

which can clarify interpretation of complex head trauma spectra obtained with Fourier Transform. The Morlet Wavelet 

Transform, however, is not intended as a replacement for the Fourier Transform, but rather a supplement that allows 

qualitative access to time related changes and takes advantage of the multiple dimensions available in a free induction 

decay analysis. 

B.  Maxican Hat Wavalet  

Klein adduced that WDCS It is a special case of the family of continuous wavelets (wavelets used in a continuous 

wavelet transform) known as Hermitian wavelets. It is usually only referred to as the "Mexican hat" in the Americas, 

due to cultural association; see "sombrero". The Ricker Wavelet is frequently employed to model seismic data, and as a 

broad spectrum source term in computational electrodynamics. 

 

The Mexican hat wavelet [24][25] is known as the second derivative of the Gaussian function g(t). 

                              g(t)=1/√2πσ(e−t2/2σ2
)                                                                                                                 (10) 

                                                           

and second derivative  is  

                                         1/√2πσ3{ (e−t2/2σ2
) (t2    /σ2 -1)} 

C. Meyer Wavelet  

Yves Meyer [26][27] constructed a smooth orthonormal wavelet basis as follows. First of all define the fourier 

transform ∅(𝜔) of a scaling function ∅(𝑡) as: 

      

                           ∅ 𝜔 = 1                if | 𝜔 |<=2𝜋/3 

              cos{
𝜋

2
 𝑣(

3

4𝜋
 |𝜔|  -1 ) }        if  2𝜋/3<=| 𝜔 | <=4/3 

                               0                    otherwise  

 

 Where  𝑣 is a smooth function satisfying the following condition: 

                            𝑣(𝑡) =     0                  if     t<=0  

                                      1                 if     t >=1 

 

 With the additional property 

 

                             𝑣(𝑡) + 𝑣 1 − 𝑡 = 1                                                                                                                       (11) 

In this case the wavelet function 𝜑 can be found easily from ∅. First we find the fourier transform of  𝜑. 

 

             𝜑(𝜔) = 𝑒𝑗𝜔 /2    𝜑(𝑙∈𝑍  𝜔 + 2𝜋( 2𝑙 +1) 𝜑(𝜔/2)                                                                                         (12) 

Which is ,    

                    𝑒𝑗𝜔 /2 {   𝜑(𝜔 + 2𝜋) + 𝜑(𝜔 − 2𝜋) } 𝜑(𝜔/2) 

Now since 𝜑 is compactly supported and  𝜑 ∈  𝑐𝑘    where 𝑘  is arbitrary and may be ∞ . 

D. Battle Lamare Wavelet 

The Battle-Lemarie wavelet[28] is characterized by its Fourier transform 

                        𝜑 𝜔 = 𝑒−𝑖(
𝜔

2
)
  √  

𝜔

2
+ 𝜋  / 𝜔4  𝑔 √  (𝜔 ) (

𝜔

2
)𝑔𝑔                                                                            (13) 

 

 Where ,             =𝑔     𝑁1 (𝜔) + 𝑁2 (𝜔) / 105 (𝑠𝑖𝑛 𝜔/2)8                                                                                      (14) 

  

With,     𝑁1  =5+ 30 (𝑐𝑜𝑠 𝜔/2)2 +30 (𝑠𝑖𝑛 𝜔/2)2 (𝑐𝑜𝑠 𝜔/2)2                                                                                  (15) 

and  𝑁2  = 2 (𝑠𝑖𝑛 𝜔/2)4(𝑐𝑜𝑠 𝜔/2)2 +70(𝑐𝑜𝑠 𝜔/2)4 + 2/3(𝑠𝑖𝑛 𝜔/2)6                                                                  (16) 

 

VII.  MATLAB SIMULATIONS 

 

For Matlab simulation of different wavelets Haar,Db3,Db5 we choose some Discrete and Continuous data by applying 

wavelet transform on these signal we can get  coefficient of approximation and coefficient of detail.  

http://en.wikipedia.org/wiki/Fourier_Transform
http://en.wikipedia.org/wiki/Free_induction_decay
http://en.wikipedia.org/wiki/Free_induction_decay
http://en.wikipedia.org/wiki/Free_induction_decay
http://en.wikipedia.org/wiki/Continuous_wavelet
http://en.wikipedia.org/wiki/Wavelet
http://en.wikipedia.org/wiki/Continuous_wavelet_transform
http://en.wikipedia.org/wiki/Continuous_wavelet_transform
http://en.wikipedia.org/wiki/Continuous_wavelet_transform
http://en.wikipedia.org/wiki/Hermitian_wavelet
http://en.wikipedia.org/wiki/Sombrero
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We can observe that the signal is decompose into two coefficients the approximation, or scaling, coefficients  which are 

the lowpass representation of the signal(Discrete or Continuous) and the details are the wavelet coefficients.  

 The Approximate and Detail coefficients can be used to reconstruct the signal perfectly when run through the 

reconstruction filters. 

 

 
Fig.1: Haar wavelet approximate and detail coefficient analysis for digital data 

 
Fig.2:  DB3 wavelet approximate and detail coefficient analysis for digital data 

 
Fig 3:  DB5 wavelet approximate and detail coefficient analysis for digital data 
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Fig.4: Haar  wavelet approximate and detail coefficient analysis for continuous signal 

 

 

 
Fig.5: Db3 wavelet approximate and detail coefficient analysis for continuous signal 

 

 

 
Fig.6: Db5 wavelet approximate and detail coefficient analysis for continuous signal 
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Fig.7:  Gauss  wavelet approximate and detail coefficient analysis for continuous signal 

 
Fig. 8:  Maxican Hat  wavelet approximate and detail coefficient analysis for continuous signal 

 
Fig. 9:  Meyer  wavelet approximate and detail coefficient  Analysis for continuous signal 
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Fig.10:  Morlet  wavelet approximate and detail coefficient analysis for continuous signal 

 

Here, it is clear that Wavelet transforms basically used for performing signal analysis. For certain classes of signals 

wavelet analysis provides more precise information about signal data than other signal analysis techniques. For wavelet 

analysis in communication system it is necessary to know about the suitability of transforms with the digital data. To 

calculate error plot to know that which wavelet transform is more suitable for the Digital Data transmission . 

 

For to see the performance of Haar and Db3 wavelet transform  for Digital signal we simulate the Error Plot in Matlab 

Simulations.  

 
Fig.11:   Haar and DB3 Error analysis for  Digital data 

 

 

Here by doing  the Db3 and Haar analysis  by MATLAB simulation we can conclude that  the haar wavelet transform  

is more effective  for the digital signals than the Db3 or others wavelet transform approaches. Haar suitability with 

Digital Comunication System makes it to use in the Wavelet Edge Detection in Cognitive Radio. 

The Wavelet Edge Detection is one of the most widely used Spectrum Sensing techniques. This technique observes the 

spatial distribution of spectral data at multiple resolutions. However, the success of this technique is dependent on the 
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Wavelet system choosen. Sparse spectra with conspicuous peaks utilize Haar wavelet system only. Hence it is clear that 

Haar transform plays a significant role for the Spectrum sensing in Cognitive Radio.  

VIII. CONCLUSION 

In this paper, it is clear that the experimental results from different wavelet  shows  that the wavelet transform based 

approach gives more information  than the existing minutiae based method and we can say that wavelet transform is a 

reliable and better technique than that of Fourier transform technique. Continuous Wavelet transform can also be 

discretized. It is basically based on continuous wavelet transform. Then we studied the various  wavelets  concepts and 

advance wavelet concepts. Nowadays, discrete wavelet transform has become the most useful tool for signal processing 

and it still has many potentialities. For this reason, we should continue on developing more powerful tool or efficient 

algorithm in this area. 
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