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ABSTRACT 

 

A cryptographic hash function is very useful in web applications to prove the authentication of users, servers 

and messages, in the confidential exchange of a signed data to guarantee their integrity, and in binary sequences 

cryptographically safe generator. Its security is strongly linked to collisions, and first or second preimages 

resistance. This article is a depth prelude to propose an one-way hash function of a dynamic length. The 

objective of this alternative is to strengthen the security of hash functions. We formulate a theoretical study 

confirming the usefulness to innovate a cryptographic hash function. Specifically, we affirm the impact of our 

solution against probabilistic attacks, especially with the arrival of quantum computers. To bridge the 

weaknesses of a classical padding, we propose a new random balancing binary sequences function to strengthen 

the entropy of hash functions against probabilistic attacks. The results confirm the unpredictable nature of 

binary sequences regenerated in minimum conditions. 

 

Keywords: Cryptographic hash function, dynamic length, probabilistic attacks, collisions and first or second 

preimages, random balancing binary sequences functions. 

 

 

  

1. INTRODUCTION AND NOTATIONS 

 
The passwords authentication systems are the most used today to ensure the identity of Internet users in a public 

environment such as web applications. In fact, they give veritable solutions to enterprise security. The robustness of 

passwords generated by an authentication system is the first step to ensure the confidentiality and integrity of data, and 

the protection against hackers and other malicious systems. The resistance against attacks (collision, dictionary, brute 

force,...)[25, 26] is strongly linked to the complexity of passwords chosen by users and condensate generated by a given 

hash function. It is characterized by a compression function of a fixed and predetermined length. It is therefore vulnerable 

to attack by an exhaustive search in order to find a collision whose the existence is unavoidable, and to probabilistic 

attacks. Originally, it reflects its ability to resist against the strong computing power provided by quantum computers [21, 

22]. Cryptographic hash functions have known a variant attacks [3]. The length extension attacks were remedied by 

Coron et al [6].  Also, Joux [5] discovered the multi-collision attack that seeks k internal collisions from k different 

messages. These collisions give 2k different ways allowing to have a same final chaining variable. This vulnerability 

affect at bottom the security of any domain extension algorithm whose the internal state length equal to that decadence. 
The solutions proposed, up to now, have sought to overcome these problems by the theoretical calculation complexity 

and increased the length of output [5, 13, 19, 20].  

 

Throughout this part, we designate by: 

 

 1 2 3, , ,..., kX x x x x  : A finite set such that ( ) ( )i jh x h x  for all i j . 

 1 2 3 ', , ,..., kY y y y y  : A finite set such that ( ) ( )i jh y h y  for all i j . 

nl  : A fixed length of a classical hash functions. 

ml  : A minimum output length of a dynamic hash function. 

Ml  : A maximum output length of a dynamic hash function, 

it equal to 2* ml . 

||  : Concatenation. 
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h  : One-way hash function. 

 and f g  : Our probabilistic functions. 

bf  : Our balancing function. 

0n
 : Generation of a null binary sequence of length n. 

n  :The possible number of cases of a hash function 

produces hash values of a given length. 

Pr  : Probability. 

# T :  Cardinal of a finite set T. 

1 2 3 4( ... )nSupp x x x x x  : A finite set of  1,...,i n such that 1ix  . 

, 1m Ml l   : It corresponds to , 1m Ml l    
. 

  : Set of natural numbers. 

  : Superior. 

  : XOR operation. 

   lne and  : Exponential and natural logarithm functions. 

    pad and rpad  : Classical and random balancing functions. 

 : Square root. 

|x|  : The length of a message to hash. 

 

2. RELATED WORK 

 

Cryptographic hash functions grant us a real solution affecting vast areas of applications. They represent the core of 

many cryptographic systems (symmetric and asymmetric). The robustness of these systems is based mainly on their 
capacity to resist against different attacks. Firstly, they were created to simplify database management. Side security, they 

must resist to the research of collisions and preimage [3, 11, 13].  They ensure the integrity of data transmitted on the 

network and the confidentiality of data stored in a database. They generate from a given input (password, image, text, ...) 

of any length, an output of a fixed length. The construction of these cryptographic functions is founded on many models: 

Merkle-Damgarad [3, 7, 8], Sponge [9, 10], EMD [2], ROX [14] and HAIFA [1]. They consist of two principal elements: 

the compression function and the domain extension algorithm. So far, an iterative algorithm of Merkle-Damgard presents 

the base of hash functions construction [3]. 

 

Hash functions have a nature perfectly deterministic. Hence, the collision problem exists probably forever. Effectively, 

the security of a hash function based on the difficulty of practically find collisions [11, 12]. In general, they are exist two 

types of attacks those break the robustness of a hashing function: probabilistic and structural attacks. Today, probabilistic 

attack begets more concerns of security side than structural attack. Following their importance in cryptographic 
applications, the experts thought to a new cryptographic hash function concept with a high resistance level against the 

collision attack [15, 18]. In 2012, NIST published a new cryptographic hash function SHA3 [15]. This algorithm is based 

on cryptographic primitive Keccak [16] and the sponge model [9, 10]. Also, DRISSI et al [18] published a new variant of 

the one-way hash functions based on Goppa Codes "OHFGC" and a model presented by MERKLE and DAMGARAD. 

These two contributions give strength future solutions to cryptographic systems. 

 

3. HASH FUNCTIONS OF A DYNAMIC LENGTH COMPLEXITY 

 

In this section, we present a statistical study of hash functions. We demonstrate the impact of the output length on their 

ability to withstand collision attacks. We evaluate firstly the hash functions those generate hash values of dynamic 

lengths, and, we then analyze the obtained outcomes. 
 

A. Hash functions of fixed lengths 

 

Initially, a hash function is defined as an algorithm allowing to associate a hash value of a fixed length to a variable 

length data and potentially very large. 

 

   
*

: 0,1 0,1

            ( )

nlh

x h x





 

https://en.wikipedia.org/wiki/Exponential_function
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In cryptography, hash functions are used to break the correlation between the input information (passwords) and 

computed hash value. As example, in a database, the security relies on the ability of such a function to resist against 

collisions. For an attacker (dictionary attack or brute force), the most important is to find a pre-image, which is linked on 

the flowing problem: given a hashed i(x )h  with jx X , find another jy Y , which satisfy the following equation: 

i j(y ) = (x ) h h . 

For a hash function that produces hash values of a fixed length nl bits, the number of possible cases is n=2
l

n . Hence, the 

probability that at least one input satisfy (y)= (x)h h  for k  random input values is: Pr( (y)= (x))
2 nl

kh h  . 

Hence, the probability to have at least one matching between X and Y ( for each ix X there exists iy Y , such that 

i j(y ) = (x ) h h ) is equal to: 

2

2
i jPr( (y )= (x )) 1

ln
k

h h e


   

Therefore, for a hash function produces 2 nl outputs, with a probability 1
2

of at least one between corresponding X  and 

Y , it must necessarily  22 ln 2
nl

k  inputs. 

 

B. Hash function of dynamic lengths 

 

In the classical case, the definition space of a hash function is surely greater than that calculated for a hash value. This 

theory implies strongly the existence of a collision at a given iteration. We then push us to design a new hash function of 

a dynamic length. In our proposal, we energize the hash values space to evolve the resistance of our function against 

generic attacks. The real length of a given hash value will be between the minimum ml  and the maximum Ml  output 

length. So we define h as follows: 

   
*

: 0,1 0,1       , 1

            ( )

l

m Mh with l l l

x h x

  


 

According to [19], for a hash function that produces a hash length varies between ml and Ml bits, the possible number of 

cases is: 
1

2 (2 1)m Ml l 
 . 

Proposition 1: Let y X , the probability to have ( ) ( )h y h X  is: 1Pr( (y) (X))=
2 (2 1)m Ml l

kh h 


. 

Demonstration: For a given ( )h x , according to [19], the probability to have got y  in  Y  satisfying ( ) ( ) h y h x  is: 

1
1Pr( (y)= (x))

2 (2 1)m Ml lh h 


.  

So we get: 1
1Pr( (y) (x))=1

2 (2 1)m Ml lh h  


. 

Therefore: 
1

1Pr( (y) (X))= 1
2 (2 1)m M

k

l lh h 

 
  

 
. 

Hence we deduce: 
1

1Pr( (y) h(X))=1- 1
2 (2 1)m M

k

l lh 

 
  

 
. 

 

According to Newton's binomial law, we can approximate this probability to: 

 

1

1

1

1Pr( (y) (X))=1- 1
2 (2 1)

                          1- 1
2 (2 1)

                          =                      0
2 (2 1)

m M

m M

m M

k

l l

l l

ml l

h h

k

k l







 
  

 

 
  

 



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Proposition 2: Let y Y , the probability to have got x X such that ( ) ( )h x h y is:  
k'

11
2 (2 1)m M

k

l l 


, and we 

write: 1
'Pr( (x) (y)) 1
2 (2 1)m Ml l

kkh h 

 
  

 
. 

Demonstration: We have:    

Pr( (Y) (X)= 0h h
'

i
1

)= Pr( { (y )} (X)= 0
k

i
h h


 

'

i
1

)     

                                 Pr({ (y )} (X)= 0
k

i
h h



   ) 

 

Hence, according to proposition 1: 

Pr( (Y) (X) 0h h 
'

1
1

k'

1

k'

1

1)= 1
2 (2 1)

1                                  = 1
2 (2 1)

1                                  = 1  
2 (2 1)

'                                  =1
2

m M

m M

m M

k
k

l l
i

k

l l

k

l l

l
kk








 
  

 

  
  
   

 
 

 

  1           0
(2 1)m M ml l 



 

Corollary 1: We assume that 'k k , and under the same assumptions of proposition 2, we then get:  

1) 

2

1
2 (2 1)Pr( (y)=h(x)) 1

l lm M
k

h e

 . 

2)    11Pr( (y)=h(x))= 2 2 1 ln 2
2

m Ml l
h k


    

Demonstration:  

1. 
2

1Pr( (y)= (x))=1 1
2 (2 1)m Ml l

kh h 

 
  

 
 

For 0ml  , we get : 

2

1
2 (2 1)Pr( (y)= (x)) 1

l lm M
k

h h e

  . 

2.  

 

 

 

2 2

1 1
2 (2 1) 2 (2 1)

2

1

12

1

1 11
2 2

ln 2
2 (2 1)

2 (2 1) ln 2

2 (2 1) ln 2

l ll lm mM M

m M

m M

m M

k k

l l

l l

l l

e e

k

k

k

  
 







   

 


  

  

 

Hence, we demonstrate this corollary. 

From the corollary 1, we define the probabilistic functions f and g as following: 

 The function f , defined as follows: 

2

1
2 (2 1): 1

l lm M
x

f e

  for all 0x  , allows us to estimate an 

ability of a dynamic hash function to withstand attacks as that the brute force attack. 

The function g , defined as follows: 

2

2 12 (2 1): 1
x x

k

g e

  for all 0x  , allows us to study the impact of outputs 

space of a dynamic hash function on their unpredictability. 
 

C. Discussion results 

 
So far, the one-way hash functions are designed to have a fixed length. That means, whatever the size of an input 

message, the hash function produces the same length hash values. This property gene actually the hash values space 

calculated. In addition, it gives more successful frequency to collision attacks. For an attacker, it is sufficient to create a 

dictionary of hash values for a given function in order to find a collision, or to try the brute force attack. To discard these 

concerns, researchers have thought to change the length of the hash values [4, 6, 7, 15, 17]. But in both cases, hash 

functions produce outputs of the same length. Of course, they also contributed to their complexity by the proposal of new 

concepts [7, 15, 16, 18]. In this part, we focus on the analysis of two probabilistic functions f and g . 
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1) Analysis of function f  

 

The aim of function f is to analyze the ability of a dynamic hash function to resist against probabilistic attacks depending 

on the possible entries k. This function f varies depending of possible entries. 

The derivative of f is: 

2

1
2 (2 1)

1

2
'(x) = 0

2 (2 1)

l lm M

m M

x

l l

x
f e








.  

Its variation table is: 

 

Table I: Variation of f depending of possible entries 

. 
           x          0                                                       

f                                                                  1   
0 

 

It is a normal result. It effectively reflects the classic case of a fixed length hash function. It is clearly that when the 

variable x  is approach the infinite, the function f  converges to one. In other words, as long an attacker exerts more 

exhaustive search over a given hash values, more the chance of a collision increases. For this reason, we introduce our 

vision to vary hash functions lengths.  

 

2) Analysis of function g  

 

The goal of a function g is to break the strict correlation between the number possible entries and the probability to have 

a collision from a given hash value. Hence, we study our function g depending of the minimum length of outputs. We 

set the number of possible entries k, and then we evaluate the robustness of a hash function to resist attacks based on 

probabilistic dynamic output length. 

The derivative of g is: 
 

 
 

2

3 1
3 1

2 22

2
3 1

3ln(2) 2 2
'(x)= - k 0

2 2

x x
kx x

x x
g e


 










, and its variation table is: 

Table II: Variation of g depending of possible entries 

 
         x               0                                                    

g  
  

2

1 ke                

                                                           0                                                

 
While a null length hash value does not exist, in our proposal, we recommend a minimum length respond to the 

requirements of information security [19, 20]. This result explains exactly our hope. This means, as we increase the 

minimum length of output, the probability of a collision tends to zero. Formally, the space of the range depends on the 

minimum output length. In other words, our probability function relies on two variables: minimum length and the 

capacity of the range. So, to find a collision, it must to solve an equation with two unknowns. 

 

These results show the importance of introducing hash functions of a dynamic length. More exactly, to find a probability 

of 1
2

, the number of possible entries is multiplied by 12 1Ml   . This involved, to perform a dictionary attack on a 

given minimal length ml , we must to build ml dictionaries of lengths between ml  and 2M ml l instead of a single 

dictionary length nl . This evolution expresses the impact of the field of definition of the hash values calculated on the 

complexity of a hash function. So, a dynamic length hash function is a very effective solution against a variant type of 

attack that exploits the probabilistic laws. With this proposal, the search of collisions will be very difficult and 
complicated. Whence, this motivation encourages us to propose a dynamic cryptographic hash function. 

 

4. RANDOM BALANCING FUNCTION (RPAD) 

 

Effectively, hash functions handle in input the messages of any lengths. For meet of this requirement, a pretreatment is 

required on the message to hash. This is thanks to an initial processing on the input messages. It helps to balance the 

binary sequences to be treated with a proper length of a given compression function. 
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A. Classical balancing function (pad) 

 

In general, the processed hash functions use conventional transformations [27]. They concatenate to messages to hash a 

bit is 1, then, they complement them by bits equal to 0 in order to obtain a total length multiple of the compression 

function length r:  

( 1) | |mod( ) ||1|| 0 r M rpad M M   . 

Security perspective, this balancing should be performed by an injective transmission function. The worst, classical 

padding can have a negative effect on the strength of a hash function [5].  Specifically, the smaller the length of the last 

binary sequence to hash is smaller, more the length of padding becomes more dominant. This gives more chance for k-

multicollisions [5]. It suffices to note here that we can have, for a length of 224 or 512 bits, a final binary sequence that 

only a few first bits is 1 (two or three bits ...). This security concern pushes us to design a new random balancing 
function. 

 

B. Random balancing function (rpad) 

 

We inspire this random balancing function of a binary sequence from the obtained results in the synchronous stream 

cipher generator based on quadratic fields [24]. This theory allows us to balance N binary sequences of any length. The 

practical and analytical results confirm the impact of this theory on the cryptographic quality of binary sequences 

regenerated by this regenerator. Our purpose, in this section, is to exploit these results to design a new random balancing 

function. We focus then on the last sequence to hash. For a compression function of a given length n, this function 

executes as follows: 

 

 For a message M of any length: 

─ We subdivide its to N  blocks having the same length r : *
1 2 1|| || ... || ||r r r

N NM X X X X . 

─ If the length of the last block is less than the length of the compression function n , we apply our transformation, 

otherwise, the length is balanced. 

 Assume that *| |NX m r  , if the cardinal *# ( ) 0NSupp X  ,we define our transformation as followings: 

* *( , ) || ( , )N b Nrpad M r X f X r m  ; else * *( , ) ||1|| ( ||1, 1)N b Nrpad M r X f X r m   . 

─ For a binary vector  1,...,
NN N NlX x x , we define our balancing function bf  as followings: 

   Nl  mod( ( + ) / )

                         for all    1

x x  for all  1 t -
N N

Ni Ni N

Nt NN t N t t l l

y x i l

y r l


  
    


 

 

C. Implementation 

 

In a web application, passwords chosen by users generally have different lengths. For this reason, security experts have 

thought to use the balancing functions. The purpose, after the subdivision of an input message, is to balance the hashed 

sequences to fixed length required by a given compression function. Rather, in certain situations, the latter sequence can 

have a different length than that required by a compression function. The following figure 1 shows the balancing result of 
a hashed sequence (01101010) using a classical transformation. 

 

 
 

Fig.1: Classical balancing function 
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An immediate consequence of this result is formulated by Joux [5]. A hash function based on a defined-Damgård Merkle 

algorithm and a classical padding gives more chance to multi-collisions. In this sense, AJ Menezes et al [23] showed that 

it is possible for a hash function MDx of a length n and a classical padding of a length l  to have 2
1l 

second preimages. 

This shows the importance to innovate this random solution able to certify more resistance against attacks by 

equivalence.  

As we mentioned earlier, the possibility to have a last null binary sequence is possible. For this reason, we introduced the 

second form of a balancing function. The following figure shows the result for a null binary sequence composed of three 

bits (000). 

 

 
 

Fig.2: Balancing a null binary sequence 

 

By comparison, even with a null binary system, this last result is greatly evolved compared with the obtained using a 
classical balancing function. Certainly, the result in figure 1 has a negative effect on the robustness of the hash function. 

The worst, if the last binary sequence to hash is also null. The possibility to enhance a calculated hash value does not 

exist anymore. This security concern encouraged us to propose this random balancing function. In this section, we aim to 

extract practically the internal characteristics of our balancing binary sequences functions. We present the obtained 

results by balancing the four binary sequences of different lengths (3, 5, 7 and 9 bits). We take these periodic binary 

sequences (1010…) to assess our balancing function in minimal conditions. 

 

 
 

Fig.3: Balancing of a binary sequence of three bits 

 

 
 

Fig.4: Balancing of a binary sequence of five bits 
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Fig.5: Balancing of a binary sequence of seven bits 

 

 
 

Fig.6: Balancing of a binary sequence of nine bits 

 
Even with periodic linear chains, the results (Fig.2, Fig.3, Fig.4, Fig.5, Fig.6) are effectively random and different 

between them. This shows the ability of our balancing binary sequences functions to meet the minimum perturbations. It 

is sufficient to compare with the case of a classical balancing function (Fig.1) to extract the nature of our proposed 

function. To ensure the random nature of these regenerated binary strings, we introduce in the following paragraph an 

analytical study confirming these results practically. 

 

D. Analytical study 

 

This analytical study came from the perspective of study behavior and highlights the characteristics of balancing binary 

sequence functions. It aims to evaluate the distribution of primitive signals generated in minimum conditions. Indeed, we 

will study the distribution of distances between binary sequences regenerated. This analysis of Hamming distances gives 

a detailed estimate on the complexity and correlation of binary sequences. More specifically, a class of binary sequences 
is called random, if the distribution of Hamming distances [19] of this class accumulates near to her half length.  

In this section, we aim to estimate the capacity of our balancing binary sequences function to meet the minimum 

disruption. In this interest, we choose a class of hundred binary sequences  * 1,10,11,100...,1100100NX  . The goal is to 

have binary strings which successively different by one bit. Then we evaluate the hamming distance between all binary 

strings regenerated by application a classical balancing function and our balancing function. 

First, we consider the cryptographic quality of two classes of 160 bits binary sequences length. The following figure 

shows the results obtained by applying the classical balancing function. 

 

 
 

Fig.7: Distribution of Hamming distances obtained by a classical  balancing function 
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The half of length equal to 80 bits. Rather, this result gives hamming distances between 1 and 7. This distribution of 

distances explains actually the weaknesses of using this classical balancing function. The figure below presents the 

results of applying our balancing function. 

 

 
 

Fig.8: Distribution of hamming distances obtained by our balancing function (160-bit) 

 

For the same class of binary sequences, but this time by applying our function, these results are highly evolved compared 

to those obtained by the application of the classical balancing function. From Figure 8, we see that most distances 

accumulate in the vicinity of the half length. This distribution of hamming distances gives a clear view of the random 

nature of primitive signals regenerated by our balancing binary sequences function. For more credibility to our function, 

we extend the class length over four times. The aim is to evaluate the impact of the length of binary strings regenerated 

on their cryptographic quality. The figure follow provides the results for the same class of hundred binary sequences. But 

this time, we take our balancing binary sequences function to regenerate primitive signals of 512 bits length. 

 

 
 

Fig.9: Distribution of hamming distances obtained by our balancing function (512-bit) 

 

Certainly, the results obtained are somewhat different compared to those obtained in Figure 8. Rather, the most relevant 

notices we inspire from these results, that even with this extension of length, we still have an accumulation of hamming 

distances calculated in the vicinity of the half length (256 bits). This gives us greater conformity on the random and 

unpredictable nature of primitive signals regenerated by our balancing binary sequences function. Because, these results 

are obtained under minimal conditions also for minimal perturbations on the binary sequences of the class.  

 

CONCLUSION AND FUTURE WORK 

 

The construction of a cryptographic hash function required assessments in terms of safety and performance. Those two 

criteria define the basic principles of all expertise. A hash function should resist originally to the current attacks, also, to 
have got a long-term vision. In parallel, it provides a level of performance at least equivalent to those available until now. 

The latter specifies the mass of resources consumed and the speed of data processing by a given function. This work 

expresses the importance of introducing a new dynamic cryptographic hash function. It presents a detailed theoretical 
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study indicating determinism and benefits of such hash functions. Also, it implements a new random balancing binary 

sequences functions rpad. The analytical study confirms the ability of this function to regenerate, in minimum conditions, 

unpredictable binary sequences. Soon, we interest to design an one-way hash function with a dynamic length based on an 

algebraic structure.  
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