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Abstract: This paper presents a new and robust measuring mechanism to the least-squares approach used in Dy-
namic Matrix Control by minimizing distinctively upcoming errors. This approach entails individual recommen-
dation in which a subsequent move is an average of all individual recommendations. This leads to control the
set-point and zone where the differential equation yields an overdamped solution. This solution is then used to ap-
proximate the time constants and the analytical solution. Time constants are ultimately derived from the quadratic
characteristic equation.
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1 Introduction
Minimizing the sum of the squares of future errors is
an essential and highly desirable step in control the-
ory. This work presents an alternative to the least
squares optimization used in Dynamic Matrix Con-
trol (DMC). Traditionally, calculating future moves is
accomplished by minimizing the sum of the squares
of the future errors (least squares). Here, each future
error is individually minimized. Each minimization
results in an individual recommendation for the lone
future move and the actuated move would be an aver-
age of all the individual recommendations. This pa-
per presents an analytical study of the closed-loop dy-
namics of the method and it is used here mainly to
estimate the closed-loop time constants. The perfor-
mance of the method is illustrated and compared to a
DMC benchmark via simulation.

1.1 Fromulation
Considering a sampling period ∆t and a current time
t = n∆t leads to a prediction horizon of T = N∆t
depicted in Figure 1. For a simple first order plant
situation, we have:

ṗ(t) + p(t) = 1 (1)

So,
p(t) = 1− e−t (2)

When sampling p(t) in a unit step open loop test, the

Figure 1: Minimizing Future Errors



notation Pk = p(k∆t) = 1 − ek∆t is used and the
measured output is:

ynm =

n−1∑
i=0

∆uip((n− i)∆t) + noise (3)

Also, the predicted output is then described by:

ŷnj =
n−1∑
i=0

∆uip((n− i+ j)∆t)and j = 0, 1, 2...

(4)
The main result of this paper is presented in the next
statement.

Theorem 1 For a simple first order plant, minimizing
individual future error is equivalent to applying the
Least - Square apprach.

2 Averaging Method

In the considered application type, it is then desirable
to minimize each future error enk and to average all the
recommendations.

∆un =
1

N

N∑
k=1

γenk
pk

(5)

where γ ∈ [0, 1].

enk = Setpoint− ŷnk = 1−
n−1∑
i=0

∆uip((n− i+ k)∆t)

(6)
and

∆un =
γ

N

N∑
k=1

1−
∑n−1

i=0 ∆uip((n− i+ k)∆t)

p(k∆t)

(7)

=
γ

N

[ N∑
k=1

1

p(k∆t)
− (8)

N∑
k=1

∑n−1
i=0 ∆uip((n− i+ k)∆t)

p(k∆t)

]
(9)

To transform the previous equations from the discrete
domain into a continuous one, we apply the following
chnage of variables:

t = n∆t, y = i∆t, z = k∆t, T = N∆t (10)

So ∆y = ∆z = ∆t.

∆un =
γ

N

[ T∑
z=∆t

1

p(z)
− (11)

T∑
z=∆t

∑T−∆t
t=0 ∆uip(t+ z − y)

p(z)

]
(12)

=
γ

N

[ T∑
z=∆t

1

p(z)
− (13)

T∑
z=∆t

1

p(z)

T−∆t∑
t=0

∆uip(t+ z − y)
]

(14)

=
γ

N

[ T∑
z=∆t

1

p(z)

∆z

∆z
− (15)

T∑
z=∆t

1

p(z)

( T−∆t∑
t=0

∆uip(t+ z − y)
∆y

∆y

)∆z

∆z

]
(16)

Multiplying both sides by ∆z and rearranging the in-
ner sum, one gets:

∆un∆z =
γ

N

[ T∑
z=∆t

1

p(z)
∆z− (17)

T∑
z=∆t

1

p(z)

( T−∆t∑
t=0

∆ui
∆y

p(t+ z − y)∆y
)

∆z
]

(18)

As ∆t → dt, we get ∆y → dy, ∆z → dz, and
∆un → du. Also note that dy = dz = dt.
The continuous form is then given by:

dudz =
γ

N

[ ∫ T

dt

1

p(z)
dz− (19)∫ T

dt

1

p(z)

( ∫ T−dt

0

du

dy
p(t+ z − y)dy

)
dz
]

(20)

Or equivalently:

N

γ
dudz =

∫ T

dt

1

p(z)
dz− (21)∫ T

dt

1

p(z)

( ∫ T−dt

0
u̇(y)p(t+ z − y)dy

)
dz

(22)

(23)



Define A to be constant:

A =

∫ T

dt

1

p(z)
dz (24)

=

∫ T

dt

1

1− e−z
dz (25)

=

∫ T

dt

−e−z

−e−z + (e−z)2
dz (26)

(27)

Then:

A = T − dt+ ln
p(T )

p(dt)
(28)

= T − dt+ ln
PN
P1

(29)

Now define D(t) to be

D(t) =

∫ T

dt

1

p(z)

( ∫ T−dt

0
u̇(y)p(t+ z − y)dy

)
dz

(30)

=

∫ T

dt

1

p(z)

( ∫ T−dt

0
u̇(y)(1− e−(t+z−y))dy

)
dz

(31)

=

∫ T

dt

1

p(z)

( ∫ T−dt

0
u̇(y)dy

)
dz (32)

−
∫ T

dt

1

p(z)

( ∫ T−dt

0
u̇(y)e−(t+z−y)dy

)
dz

(33)

= [u(t)− u(0)]

A︷ ︸︸ ︷∫ T

dt

1

p(z)
dz (34)

−
[ ∫ T

dt

e−z

p(z)
dz
]

︸ ︷︷ ︸
B

[ ∫ t

0
u̇(y)e−(t−y)dy

]
︸ ︷︷ ︸

I(t)

(35)

Then:

D(t) = [u(t)− u(0)]A−B I(t) (36)

With B = ln(PN
P1

) and A is T − dt+B. For I(t) we
have:

I(t) = e−t
∫ t

0 u̇(y)eydy (37)

Which leads to:

İ(t) = −I(t) + u̇(t) (38)

Therefore, the last equation becomes:

Ndz

γ
du = A− [u(t)− u(0)]A+B I(t) (39)

Starting the system from rest is mathematically equiv-
alent to u(0) = 0. Mutliplying and dividing by dt the
left hand side, one obtains:

q︷ ︸︸ ︷
Ndzdt

γ

du

dt
= A− u(t)A+B I(t) (40)

Taking the first derivative of both sides and using
Equation 38 for İ(t), a second order ordinary differ-
ential equation in u is obtained:

qü+ (A+ q −B)u̇+Au = A (41)
qü+ (T − dt+ q)u̇+Au = A (42)

A steady-state of uss(t) = 1 in the last equation shows
that the new formulation provides control to the set-
point. In the zone where the differential equation
yields an overdamped solution we can approximate
the time constants and the analytical solution. The
time constants are found from the quadratic character-
istic equation qλ2 + (T − dt+ q)λ+A = 0. So ∆ =
(T−dt+q)2−4qA = (T−dt+q)2−4q(T−dt+B).
As dt << 1, by taking T − dt+ B ≈ T + B, ∆ can
be approximated by:

∆ = T 2[1 +
Tdt2

γ2
− 2dt

γ
(1 +

2B

T
)] (43)

As [Tdt
2

γ2
− 2dt

γ (1 + 2B
T ) << 1],

√
∆ can be approxi-

mated as:

√
∆ = T

[
1 +

1

2
[
Tdt2

γ2
− 2dt

γ
(1 +

2B

T
)]
]

(44)

Approximate solutions of the quadratic are:

λ1 =
γ

2T
− q

4
− γ

dt
− B

T
(45)

λ2 =
γ

2T
+
q

4
− 1− B

T
(46)

This provides fast and slow time constants defined
by: τfast = 1/λ1 and τslow = 1/λ2.

The solution of qλ2 + (T − dt + q)λ + A = 0
is then:

u(t) = c1e
λ1t + c2e

λ2t (47)



where

c1 =
−u̇(0)− λ2

λ2 − λ1
(48)

c2 =
u̇(0) + λ1

λ2 − λ1
(49)

and u̇(0) can be approximated by ∆u0+∆u1
∆t . Clearly,

the very first control move is ∆u0 = γA
T . The second

control move and ∆u1 can be approximated as follow:

∆u1 =
γ

N

N∑
k=1

1−∆u0p((k + 1)∆t)

p(k∆t)

=
γ

N

N∑
k=1

1

p(k∆t)
−

γ∆u0

N

N∑
k=1

p((k + 1)∆t)

p(k∆t)

≈ ∆u0 −
γ∆u0

N

N∑
k=1

1

= ∆u0(1− γ) (50)

And an approximation of u̇(0) is then:

u̇(0) =
∆u0(2 + γ)

dt
(51)

3 Conclusion
In this paper we presented a new measuring mecha-
nism and proved that is can be used as an alternative
to the least-squares approach used in Dynamic Ma-
trix Control. We accomplished this by minimizing
distinctively upcoming errors. This new method en-
tailed individual recommendation in such a way that
every subsequent move is identified as an average of
all individual recommendations. This approach re-
sulted into controlling the set-point and zone where
the differential equation yields an overdamped solu-
tion. Time constants and the analytical solution are
then approximated using the overdamped solution as
derived from the quadratic characteristic equation.
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