
International Journal of Enhanced Research in Science Technology & Engineering, ISSN: 2319-7463
Vol. 3 Issue 1, January-2014, pp: (107-113), Impact Factor: 1.252, Available online at: www.erpublications.com

Page | 107

Is the Future of Cloud Computing More Insecure?
Distraction and Security best practices for cloud computing measures

using Apache Hive

Subodh Kant
1
, Puneet Kannaujia

2
, Leena Singh

3

1,2,3Department of CSE, SRMSCET, Bareilly (U.P.), INDIA

Abstract: This paper notes some significance trends related to internet and “Cloud Computing Security issues” that

will handle the way cloud security is delivered and experienced. Today more information and latest communication

technology is experiencing change that, regardless of some skepticism and bringing to the concept of “ utility

computing” it’s our opinion , it prepare ground for constructive critiques regarding the security of such a

computing paradigm and especially one of the key components: web services and security best practices for cloud

computing using Apache Hive and SQL injection. Apache hive is an open source data warehouse system for Hadoop

framework. This paper gives a brief overview of Hive and describe how the use of Thrift classes while executing a

Hive query through a java application is vulnerable to SQL injection and how it can be mitigated, the mitigation

process makes Hive application secure.

Keywords: Apache Hive, SQL injection, web services, cloud computing, security management system.

I. INTRODUCTION

Internet security problems remain a major challenge with many security concerns such as internet worms, span and

phishing attack. Anyone can write a web application but not everyone can secure one by them service. Because web

application is easy to develop, many are being rushed to market without end user focus on security.

Consider a few skeletons in a rich variety of attack available to hacker: JSON Hijacking, Cross side request forgery, Http

response splitting, SQL injection, LDAP injection, X-Path injection, Shell command injection, server side include injection,

cross side scripting and a directory traversal. In this paper we have summarized various security features implemented

using Apache Hive.

Easy data summarization. Analysis of large database stored in Hadoop-DFS.Adhoc queries using a SQL like language,

called Hive query language. Allows map/reduce programmers to plug in their custom mappers and reducers.

Section II describes literature review. Section III describes the architecture of Hive. Section IV describes the Hive data

model. Section V describes executing Hive query. Section VI describes Hive web interface. Section VII describes demo of

SQL injection on Hive. Section VIII describes demo of Hive prepared statement. Finally, section IX describes the

conclusion and the future work.

II. LITERATURE REVIEW

In this section we briefly review the major challenges brought forth by cloud computing and service orientation. In

particular, we focus on security-related challenges, referring the interested reader to [1] for a more comprehensive vision of

the new obstacles induced by cloud computing. We divide security-related challenges into two groups. On one hand, there

are challenges that are already evident to web users (e.g., web service providers, developers), hence need practical solutions
(). On the other hand, there are challenges that will significantly influence the security of the Web in the long run. As

motivated in Section II.B, this second group of challenges is relevant, yet less obvious.

If you‟re thinking about moving some of your IT services to the cloud, or if you are a cloud services provider, you‟re

probably thinking about security. According to a recent IBM survey of IT managers, business stakeholders in IT and CIOs,

International Journal of Enhanced Research in Science Technology & Engineering, ISSN: 2319-7463
Vol. 3 Issue 1, January-2014, pp: (97-106), Impact Factor: 1.252, Available online at: www.erpublications.com

Page | 108

respondents said that cloud computing was a risky to extremely risky proposition. Seventy-seven percent of respondents

believe that adopting cloud computing makes protecting privacy more difficult.

A. Challenges with immediate impact

The challenges described in this section are already visibly impacting users and providers. In particular, given the
amount of data shared across these infrastructures, data confidentiality, trust relationships and shared reputation

are concerning issues.

1) Data confidentiality

The obvious and, in general, effective measure to protect data confidentiality is encryption. However, encryption is

not always a feasible solution, especially for data-intensive applications that require high I/O throughput (note that,

in [1], the relatively low speed of the Internet has been al- ready identified as a concerning obstacle). Although

homomorphic encryption [10] can be exploited for limiting decryptions and re-encryptions when data needs to be

transformed, in its current stage this solution requires significant efforts to be adopted in high-speed, real-world

deployments.

2) Sharing shared resources

The security issues typical of shared hosting environments are magnified in the case of highly distributed, in-the-

cloud systems that host modern web services. The additional, un- perceived, complexity due to dynamic resource

slicing, allocation, replication and optimization, gives indeed each user the illusion of being unique. In reality,

each user (e.g., an actual system user or an application) operates in a shared environment with “porous"

boundaries. Therefore, users may behave maliciously, or compromise virtualization software, affecting other users

and their reputation.

In reality, a cloud instance is nothing more than an advanced and very well managed virtual machine hypervisor

(and a web service is basically a sophisticated and well managed web application instance). Thus, the feasibility of

compromising other slices of a cloud or other accounts of a service depends a good deal on the security of the
service management platforms. As a representative example, vulnerabilities in VMware have grown 35 times

between 1999 and 2007 [8]. This, unfortunately, is not comforting. In our opinion, the efforts to secure cloud

instances should focus on two complementary directions. On one hand, hypervisor-based detection mechanisms

such as the one proposed in [9] could be effectively adapted to cloud systems to recognize misbehaving slices. On

the other hand, once identified, malicious slices could be dynamically re-allocated in a honeypot-like environment,

not only to contain their activity but also to collect data and analyze their actions in order to design specific

countermeasures.

B. Challenges with delayed impact

Debugging and auditing in large-scale, distributed systems unavoidably affect the foundations of secure software

development. Although their impact may be delayed, and no incidents can be attributed directly to them as of
now, we believe that these obstacles will influence significantly the security of the software developed for, or

deployed onto, modern computing infrastructures.

III. HIVE ARCHITECTURE

Table 1: Hive Components

 Component Description

Web UI/CLI Interface for user to submit queries

and other operation

Driver Create a session

Compiler Pass the query

Meta store Store all the information about the

table

Execution engine Execution plan

International Journal of Enhanced Research in Science Technology & Engineering, ISSN: 2319-7463
Vol. 3 Issue 1, January-2014, pp: (97-106), Impact Factor: 1.252, Available online at: www.erpublications.com

Page | 109

IV. HIVE DATA MODEL

Table Partition Bucket

CREATE TABLE Cloud_page(view_Time INT,user_Id BIGINT, page_url STRING, ip STRINGCOMMENT ”ip address

of the user”)

COMMENT „This is the page cloud table‟

PARTITIONED BY (country STRING) CLUSTERED BY (user_id) SORTED BY (page_url) INTO 60 BUCKETS
ROW FORMAT DELIMETED

FIELDS TERMINATED BY “48”

STORED AS SEQUENCEFILE;

V. EXECUTING HIVE QUERIES

Hive queries language is a SQL like ad-hoc query language for provided by Hive. Hive Query Language (HQL) support the

Data Definition Statement (DDS), Data Manipulation Statement (DMS), SQL operation and User Defined Function (UDF)

and User Defined Aggregation Function (UDAF), Script. Following are the three standard ways to execute Hive queries:

Table 2: Executing Hive Queries

Command Line

Interface

To enter the Hive shell, execute the command $

Hive_Home/bin/Hive

Application

Programming

Interface

(JAVA)

When we execute Hive queries through API like Java,

Thrift server play a key role

Hive web

interface (web

GUI)

To work with the web interface, we need to start the web

server listener. To access the web UI address

http://<host_name>:<Hiveserver_portnumber>/hwi

Web application cumulative vulnerability count 1998-2008

As of the end of 2008, 54.9% of all disclosed vulnerabilities are Web application vulnerabilities. And out of all Web application
vulnerabilities disclosed during 2008, 74 percent had no patch by the end of 2008. Reported Web application Vulnerabilities.

International Journal of Enhanced Research in Science Technology & Engineering, ISSN: 2319-7463
Vol. 3 Issue 1, January-2014, pp: (97-106), Impact Factor: 1.252, Available online at: www.erpublications.com

Page | 110

Figure 1: Executing Hive Queries through Java application

VI. DEMO OF SQL INJECTION ON HIVE

Let us consider a scenario:

There is a table Customer in the Hive database. There are 5 columns in the table: CustAcctId, Name, Age, Address and Zip

code.

Case 1: Normal input (without any malicious input)

Demoquery.java

}

}

Public static void normal select query ()

{

TSocket transport=new TSocket(“10.68.203.176”,3333,9999);

Try
{

TBinaryProtocol protocol=new TBinaryProtocol (“transport);

{ThriftHive.Clientclient=new ThriftHive.Client(protocol);

String name=”rahul”;

String City=”UttarPradesh,INDIA”;

String query=”SELECT COUNT(*)FROM customer WHERE name=‟””+name+” „ AND Address=‟ “+city+ “ „ “;

Transport.open();

Client.execute(query);

List<String> rows=client.fetchAll();

System.out.prinln(“outfut for normal select query:”);

For (String str:rows)

{
System.out.println(str);

}

Figure 3: Vulnerable code with Normal Input

International Journal of Enhanced Research in Science Technology & Engineering, ISSN: 2319-7463
Vol. 3 Issue 1, January-2014, pp: (97-106), Impact Factor: 1.252, Available online at: www.erpublications.com

Page | 111

Case 2: Malicious Input (Results to SQL Injection)

Demoquery.java

}

}

Public static void DemoSqlInjection()
{

TSocket transport=new TSocket(“10.68.203.176”,3333,9999);

Try

{

TBinaryProtocol protocol=new TBinaryProtocol (“transport);

{ThriftHive.Clientclient=new ThriftHive.Client(protocol);

String name=”rahul”;

String City=”UttarPradesh,INDIA” OR „1‟=‟1‟;

String query=”SELECT COUNT(*)FROM customer WHERE name=‟””+name+” „ AND Address=‟ “+city+ “ „ “;

Transport.open();

Client.execute(query);
List<String> rows=client.fetchAll();

System.out.prinln(“outfut for normal select query:”);

For (String str:rows)

{

System.out.println(str);

}

Transport.close();

VII. HOW TO SQL INJECTION CAN BE MITIGATED

There is some possible solution for SQL Injection can be mitigated.

 Proper input validation/Whitelisting or blacklisting of characters

 Avoid using dynamic queries(use of precompiled queries like PreparedStatement Class)

Another way to mitigate the injection attack is not to use dynamic queries for execution.To implement the same ,the “Hive

PreparedStatement” class should be used.The class is defined inside the package “org.apache.hadoop.hive.jdbc”,provided in

Hive release.For our refrence ,we have used “Hive-0.7.1”release.

The Package “org.apache.hadoop.hive.jdbc” contain the following classes:

HiveBaseResultSet HiveCallable statement HiveStatement

HiveConnection HiveDatabaseMetaDtaa jdbcColumn

HiveDataSource HiveMetaDataResultSet<M> Jdbc Table

Hive Driver HivePreparedStatement TestJdbcDriver

HiveQueryResultSet HiveResultSetMetaData

Public static void DemoSqlInjection()

{

TSocket transport=new TSocket(“10.68.203.176”,3333,9999);

Try

{

TBinaryProtocol protocol=new TBinaryProtocol (“transport);

{ThriftHive.Clientclient=new ThriftHive.Client(protocol);

String name=”rahul”;

Public static void HivePreparedStatement_demo() throws SQLException,TTransportException

International Journal of Enhanced Research in Science Technology & Engineering, ISSN: 2319-7463
Vol. 3 Issue 1, January-2014, pp: (97-106), Impact Factor: 1.252, Available online at: www.erpublications.com

Page | 112

{

TSocket transport =new TSocket(“10.68.203.176”,33333,99999);

Transport.open();

TbinaryProtocol protocol=new TBinaryProtocol(transport);

HiveClient client=new HiveClient(protocol);

VIII. DEMO OF HIVE PREPAREDSTATEMENT

Steps to execute a hive query through a java API using HIVEClent class

 Create and initialize a Thrift Socket object to connect to the hive server and Thrift Binary Protocol Object

 Execute open () method of TSocket object

 Create an object of HiveClient class

 Create an Object of HivePrepaerdStatement class with query string

 pass the input values to the hivePreparedStatement

 Execute the Hive Prepared Statement.

Case 1: Normal Input (without any malicious input)

String name =”jakes”;

String city=”Kerla,India ;

String query=”SELECT COUNT (*) FROM customer WHERE name=? AND Address=?”;

HivePreparedStatement pre_stmt=new HivePreparedStatement(client,query);

Pre_stmt.setString(1,name);

Pre_stmt.setString(2,city);

ResultSet rs=pre_stmt.executequery();

Case 2: Malicious Input

String name =”jakes”;

String city=”Kerla,India or 1=1”;

String query=”SELECT COUNT (*) FROM customer WHERE name=? AND Address=?”;

HivePreparedStatement pre_stmt=new HivePreparedStatement(client,query);

Pre_stmt.setString(1,name);

Pre_stmt.setString(2,city);

ResultSet rs=pre_stmt.executequery();

International Journal of Enhanced Research in Science Technology & Engineering, ISSN: 2319-7463
Vol. 3 Issue 1, January-2014, pp: (97-106), Impact Factor: 1.252, Available online at: www.erpublications.com

Page | 113

IX. CONCLUSION AND FUTURE WORK

In this paper, we have discussed some key points that, in our opinion, motivate a constructive reconsideration of the current

security measures. Even if exploring new business models opened up by cloud computing falls entirely outside of the scope

of this paper, it is undeniable that the fast-growing underground economy has already embraced the cloud model (in fact,

botnets are an embryonic distributed malicious infrastructure.

The use of ThriftHive.Client class to execute Hive queries is vulnerable to SQL injection.

The mitigate SQL injection, use of Hive prepared statement should be a part of SECURED JAVA CODING PRACTICE

FOR HIVE.

The use HivePreparedStatement ensures that the SQL injection is mitigated.

X. REFERENCES

[1]. S.Gordeychik Web application security statistics http://projects.webappsec.org/Web-Application_Security- Statistics, January

2010.
[2]. IBM Press Release, IBM Introduces New Software and Cloud Services to help Companies Improve Processes, Automate

Decisions, October 12,2010.
[3]. http://cwiki.apache.org/Hive.
[4]. C.Balding.Cloud security .http://cloudsecurity.org/,2009.
[5]. http://hive.apache.org/
[6]. http://www.karmasphere.com

[7]. O‟Reilly Hadoop: The Definitive Guide 2nd Edition
[8]. K. Lamb. Virtualization and security. http://blogs.iss.net/archive/virtblog.html, September 2007.
[9]. T. Gar_nkel and M. Rosenblum. A virtual machine introspection based architecture for intrusion detection. In Proc. Network and

Distributed Systems Security Symposium, February 2003.
[10]. C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC '09: Proceedings of the 41st annual ACM symposium on

Theory of computing, pages 169{178, New York, NY, USA, 2009. ACM.

http://hive.apache.org/
http://www.karmasphere.com/

