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ABSTRACT 

 

In this paper, we suppose that a density of probability f is expressed as a finite linear combination of second 

order B-spline functions. Then, we obtain a finite mixture of B-spline. We extend the Expectation Maximization 

(EM) algorithm in order to estimate the new mixture density. The experiments show that the proposed estimator 

using B-spline functions can produce a satisfactory estimation of mixture density than Gaussian classical theory. 
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1. INTRODUCTION 

 

In statistics, concerning the density estimation in the construction, there are several competitive classes of nonparametric 

estimators, the two most popular being the Kernel estimators introduced by Rosenblatt [8] and the Orthogonal series 

estimators [8]. Usually, a Kernel estimator has a greater efficiency than an estimator based on Orthogonal series, 

although it may be more complex to calculate and update. In case the density has its support confined to the positive half 

line and may not be continuous at the origin, the Kernel method will not be so attractive since the estimator may perform 

poorly in the neighborhood of the origin. In such a situation, an estimator based on Orthogonal series may be more 

appropriate. Although scarcely used, the Orthogonal series density estimator bears a striking resemblance to the B-spline 

density estimator [1].  

 
However, the Orthogonal series estimator may sometimes lead to a function that is not a pdf. Again, the only reason for 

including this estimator is that the B-spline estimator actually has the same form, except that the basis functions are not 

Orthogonal. In this paper, we propose a nonparametric method to estimate mixture density using the second order B-

spline and the EM algorithm [3]. The combination of the B-spline functions with the EM algorithm allows us to define a 

new algorithm which we denote as EM Generalized B-spline (EMGB) algorithm. The paper is organized as follows: In 

section 2,we describe the nonparametric density estimation methods as well as the B-spline functions. Convergence 

properties of the iterative Maximum Likelihood Estimation (MLE) are given in section 3. 

 

The performance comparison based on the Mean Squared Errors (MSE) is presented in section 4 in order to show the 

accuracy of the proposed estimator. Finally, the conclusion appears in section 5. 

 

2. PROPOSED ESTIMATION METHODS BY USING B-SPLINE FUNCTIONS 

 

 

In the mathematical subfield of numerical analysis, a B-spline is a spline function that has a minimum support with 

respect to a given degree, smoothness and domain partition. It’s well known that every spline density function can be 

represented as a finite linear combination of B-spline [1].The term B-spline stands for basis splines according to Isaac 

Jacob Schoenberg [2]. A B-splinenon parametric density estimator with uniformly spaced knots convenient for large 

data sets was discussed by Gehringer [4]. Curry and Schoenberg (1966) [2] have proved that every spline function S  of 

degree d  ( d = 1, 2, …) with m  knots ( m = 1, 2, …) has a unique expansion 
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where IRba ,  and lb ’s are unknown parameters that need to be estimated. Note that 0lb and





dm

l

lb
1

1 is a special 

requirement when using B-splines in order to estimate probability densityfunctions. The B-spline of d  degree are 

defined recursively by 
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For general splines, this special requirement is not true. The case 1d corresponds to a piecewise linear approximation 

which is attractively simple but produces a visible roughness, unless the knots are close to each other. 

In more technical terms, a spline function S  of degree d  with m interior knots,  bxxxa m  221 ......   

is a )1( d continuously differentiable function, such that
dPS  [2], (

dP is the class ofpolynomials of a 

maximum degree d  in each of the intervals )).,(),....,,(),,( 1322 bxxxxa m  

 

When we consider the approximation by the B-splines of d  degree, the density function f is supposed to be )1( d

continuously differentiable in each of the intervals ).,(),....,,(),,( 1322 bxxxxa m Hence, we have chosen the 

quadratic B-splines functions which are only continuously differentiable, that isto say, having a minimal requirement, as 

compared with the B-splines of degree 2d . 

In our work, we have used the second order B-splines functions 2..,2,1

2 )(  mllB defined by 
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where l is an integer as usual. We notice that 10 2  lB is always verified. 

The support of each spline covers three intervals. It is a quadratic polynomial on each support interval. Note that the peak 

value of )(2 xBl is less than 1. If all the 
2

lB splines could be plotted in any interval, there would be contributions from 

the three splines. Note that any pdf f can be approximated by the following mixture (5) of B-splines: 
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The estimation of the density 

f  reduces the estimation of the finite-dimensional parameters ),...,,( 221 mbbb that characterize f . 

 

2.1 Estimation of lb by the EM algorithm 

Assuming independence between the observations nXXX ,...,, 21 we define the Log-likelihood function 
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To obtain the MLE of ),...,,( 221 mbbb , we apply the EM algorithm [3]. We initialize the B-spline coefficients   by 
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where
)(

,

p

jl  is the  is the conditional probability at the 
thp  iteration. 

 

M-Step: The coefficients of B-spline at 
thp )1(  iteration are given by 
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After some iterations of the EM algorithm, we obtain the mixture B-spline estimator of f as  
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where lb̂  is the maximum likelihood of lb . 

In what follows, we suggest to extend the second order B-spline estimator to the problem of the mixture density 

estimation [1]. The combination of the B-spline functions with the EM algorithm allows us to define a new algorithm 

denoted as EM Generalized B-spline (EMGB) algorithm. 

 
.2.2 Description of the EMGB algorithm 

Let’s consider the following mixture density of mixture of B-spline 
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We define the mean of the log likelihood 
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The EMGB algorithm seeks to find the MLE by applying iteratively the following two steps: 

 

E-Step: We estimate a posterior probability 
)(

,

p

ik belonging to the class k  at the 
thp  iteration: 
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The calculation cycles are made from one step to another until we achieve the convergence. Asstarting values for the 

EMGB algorithm, we take the initial values of k and klb , which have to be equal respectively to
n
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and
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where kn  is the total number of observations in the
thk  class. 

3. CONVERGENCE OF THE PROPOSED ESTIMATOR 

 

In this section, we wish to show first that the EMGB iterations converge to a value  ),ˆ( ,klk b
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Then, multiplying (27) by k̂  for 1,...,1  Kk and by summing the results of the )1( K successive 
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Therefore, K ˆ,...,ˆ,ˆ
21 of the EMGB satisfy the likelihood equations.  

 

4. PERFORMANCE COMPARISON 

 

In our study, we simulate 1000n  observations according to different distributions (Normal (N),Beta (B) and 

Gamma (G)) with given true parameters. We calculate the density estimator by using Histogram, Kernel, Orthogonal 

and B-spline methods. Then, we compute the Mean Squared Errors for each method. 
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Among the different methods, Table 1 shows that the B-spline method is the best one by giving the lowest MSE. This 

finding is valid for a unique density as well as a mixture density. In Table 2, we have first computed the MSE between 

the empirical distribution and the estimated mixture density by using the Gaussian EM algorithm. Second, we have 

computed the MSE between the empirical distribution and the estimated mixture density by using the EMBG 

algorithm. This work was done for two images (Lena and Boat). We notice thatthe EMGB method gives a much lower 
MSE for both images. In Figure 1, in the case of mixture densities, the B-spline method remains the best one in terms 

of being close to the real density. 
 

Table 1:  MSE of different estimations methods. 

 

Methods  
True model  

Histogram Kernel Orthogonal B-spline 

N(0, 1)  0.143  0.04  0.0094 0.00299 

B(3, 5)  0.079  0.022  0.00119  0.001115 

G(2, 3)  0.072  0.019  0.0027  0.0012 

Mixed of N(-2, 2), 
G(3, 1) and B(11, 5) 

0.0022599  0.00054985 0.00051597  0.00015088 

 
Table 2: MSE of mixture distribution obtained by EM and EMGB. 

 

Images 
Methods 

MSE of Lena MSE of Boat 

Gaussian EM 0.2981  0.47 

EMGB 0.0406  0.0989 
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Figure 1: Estimation of mixture density using both classical EM algorithm and EMGB algorithm. 

 
CONCLUSION 

 

In this paper, we have introduced a new nonparametric B-spline estimator for mixture distributions. Many results 

presented show that the estimation of pdf density by using the proposed estimator is better than those of other methods. 

This comparison is obtained by the computation of the Mean Squared Errors between the estimated density and the 

empirical distribution. 
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