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Abstract: Discrete or computerized chaotic systems are being extensively studied for various applications in cryptography. However, 

the security of them is not yet convincing to be used in real applications. This paper is proposing modifications to chaotic 

synchronization process, which have been studies a lot as a potential replacement to LFSR’s. Here we are proposing a modification to 

the sampling rate to avoid two forms of parameter estimation attacks. We find that the modification is very effective in protecting 

from these attacks.    
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 Introduction 

 
Parameter estimation from a given chaotic scalar time series of a nonlinear system has lots of interesting applications in physics. 
However, for applications such as chaotic cryptosystem, it is treated as an attack. Recently cryptosystems based on chaotic 
synchronization have been studied extensively as an alternate to LFSR. Chaotic synchronization is a novel phenomenon, first proposed 
by Pecora and Carrol [1-3] in which two different but identical chaotic systems, though very sensitive to initial conditions, can 
synchronize by transmitting a subset of the state space variables. In a typical multivariable chaotic system one of the time dependent 
variable is sent from the transmitter to the receiver, which the receiver uses to force its trajectory move towards the transmitter 
trajectory. By continuing this process for a large number of iterations the two systems will synchronize and follow the same trajectory 
there onwards. Once the systems get synchronized, the private state space variables can be used as bit sequences for use in a stream 
cipher cryptosystem [4]. Since the inception of this concept a large number of cryptosystems have been proposed, which differ by their 
communication mechanism and way of forcing [5-10]. Though these methods are very promising, many of them have fundamental 
drawbacks due to lack of robustness and security. The biggest challenge is to protect the time independent variables, which are also 
called as secret keys, from being estimated by using publicly made information. In literature, there are many parameter estimation 
mechanisms, which can be used to extract the secret keys from single state space variable [11-13]. Some of these methods are static or 
off-line and some are dynamic or on-line. The off-line attacks are more successful because they need less amount of information in 
comparison to the on-line attacks. There are many attempts to improve the synchronization mechanisms [8-10], to protect the 
cryptosystems from offline parameter estimations. But many of them have impact on the performance of the cryptosystems due to 
additional overheads. 

In our paper we are proposing a non-performance affecting solution, which can be easily implemented as computerized chaotic 
synchronization. The targeted applications are secure communication in HPC Grids and also high speed secure communication over 
Internet. We are proposing a non-uniform sampled but periodically driving mechanism, forcing the attacker to speculate about the 
varying sample time. The paper is organized in the following ways. In the second section we will discuss a typical synchronization 
scheme and possible parameter estimation attacks on them. In the third section we will propose possible counter measures and derive its 
synchronization criteria. In the fourth section we will provide a numerical simulation, followed by the security analysis in the fifth 
section.  

Non-uniformly Sampled but Periodically Driven Chaotic Systems 

 

All most all known chaotic systems studied or known so far are uniformly sampled systems, which mean that the trajectory values are 

determined at equal intervals and also transmitted to the receiver at the same interval. This is done for ease in implementation both in 

discrete time chaotic systems and analog chaotic systems. These are easy to understand and follow the evolution of the chaotic signal 

with the time. Let us consider two chaotic systems which are represented by the following system of ordinary differential equations. 

 

 )1(),(),,( pyfypxfx pp    

 

Here dot (.) represents the derivative with respect to time. The system of equation with variable “x” is treated as sender and with 

variable “y” as receiver. “p” is the identical parameter vector, which is normally exchanged using an alternate secure method, usually  
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called the super key or the secret key in cryptography. These are two identical system of equations which describes the evolution of 

the variables x and y over time independently. For synchronization of these two systems, (i.e yx as t) one of the state space 

variable of the transmitter (say xp) has to be determined at every time interval “dt” and sent to the receiver at the same interval “dt” in 

case of a discrete time chaotic system, while in an analog chaotic system the signal is continuously transmitted. In a complete 

replacement mode the receiver will use the received value in stead of its own value of that particular variable (say yp). In case of 

feedback mode of synchronization the receiver will use the difference between its value and the received value (i.e yp-xp) as a 

feedback signal.   

 

These methods of synchronization have inherent flaws, when applied to secure communication. The observed public time series from 

the dynamical system contains information about the number as well as the form of the functions governing the evolution of the 

system variables and the parameters [11-13]. We will discuss about few successful parameter estimation strategies, in the section 

dealing with the security analysis. The root cause of this successful parameter estimation methodology lies in the information which is 

made public by transmitting the state space variable. By presenting a diluted information to the attacker (to the public), while at the 

same time preserving the information content for a genuine receiver, we can avoid the parameter estimation attacks. We are proposing 

a scheme by which the attacker will have a distorted time series, while the receiver can still have a non-distorted time series. 

 

The publicly available time series can be diluted by adopting non-uniformly sampled but uniformly driven mechanism. This means 

that communication between the sender and receiver happens at uniform duration of “dt” like a normal synchronization, while the 

value which is sent is sampled at a different but pre-defined time, in the interval “dt” (but not at time “dt”). This is explained 

pictorially in Figure 1 using a simple sinusoidal time series as an example. To achieve synchronization the receiver should precisely 

know the sampled time, to regenerate the correct time series. For this purpose the sampled time should be a function of the secret 

keys. As the attacker does not have the secret keys, he cannot find the sampled time. So the attacker has no other option than assuming 

this as a uniformly sampled time series and tries to estimate the parameters from it. The time step “dt” plays an important role in all 

most all the parameter estimation mechanisms, hence synchronization achieved using this mechanism are expected to be safe against 

those attacks.  

 

 
Let us now see how the modified systems look like. The transmitter and the receiver have the exclusive knowledge of knowing the 

non-uniform time steps. So the new system at the nth iteration is given by the following equations. 

 

)2(2),,,,(,),,(),,( 211   nfordthhxpghhhdtdtpyf
dt

dy
pxf

dt

dx
nnpnnnnp

n

p

n

 

Here “g” is the function to calculate the new sampling time hn in the time duration “dt” and “dtn” is the varying time step. The 

evolution of the x and y variables can be easily implemented on a discrete time system with the knowledge of p (the identical 

parameters), h0 and h1 (the two initial time steps), which together form the new super key. The function “g” can be public, but as p, hn-

1 and hn-2 are secrets, finding hn for attacker will not be possible. Using h value of previous two iterations, introduce more confusion 

and improves the security level. The variability in terms of step size, with respect to different initial condition comes because of the 

presence of the public variable, xp in the function. Interestingly, derivative with respect to a varying time-step does not have any 

mathematical interpretation and can not be implemented in analog chaotic systems. But computerized chaos, as it is a discrete chaotic 

system, where the evolution with time is numerically calculated using the current time step; it becomes feasible to implement such a 

concept. The idea of this proposal is to make applications, such as secure high speed grid computing, high speed data communication 

over Internet, to take advantage of the chaotic communication system, which were discarded because of various security threats.       

Figure 1. A pictorial presentation of uniformly sampled (solid lines) and non-uniformly sampled (doted lines) time series, communicated at the 

same time interval. 
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Synchronization Criteria and Numerical Simulations 

 

Let us study a three variable Lorenz model as an example.  

 

)3(')(),( 32132132121 xxxxxxxxxxx     

 

Equation 3 shows a sender system, with ,  and  are secret keys and x1, x2 and x3 are the time dependent variables. Replacing x with 

y we will obtain the receiver system. The dots (.) represent the derivative with respect to “dt”, for a uniform sampling system, while 

derivative with respect to “dtn” for a non-uniform sampling system. In both the case the transfer of one of the sampled variable 

 

(say x1) will be transmitted to the receiver at uniform interval “dt”. In the complete replacement mode the receiver uses x1 in place of 

y1, while in case of feedback mode the receiver feeds back k1 (y1-x1) to the y1 equation. Here k1 represents the feedback constant. Now, 

we will discuss the synchronization criteria for a successful synchronization for both complete replacement and feed back scheme. For 

a complete replacement scheme one can define a Lyapunov function L equal to
2

3

2

2 ee  . It can be seen that L≥0 for all values of xi 

and yi. It is also easy to show that [10]
2

3

2

2 eeL  . Here L  represents the change in L with respect to the varying time step dtn. 

For a successful synchronization L  should be always less than 0. So if  is positive then the Lyapunov function would keep 

decreasing asymptotically till both the system synchronizes. For a feedback synchronization scheme the stability criteria can be 

derived from the coefficient matrix of the error system ei given by Equation 4, for one way diagonal coupling (coupling coefficients of 

k1, k2 and k3 for the y1, y2 and y3 equations of the receiver respectively)[14][15]. 

 

)4()(,)1()(,)( 332112331221322111 ekeyexeeyekexeeeke     

 

For guaranteed synchronization starting at any initial value (xi(0),yi(0)), ei(t)→0 as t→∞, the coupling coefficients k1, k2 and k3 should 

satisfy the condition [14] 
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Here },1max{ 32 kkN   . If we consider only coupling at the y1 equation (k1>0, k2=k3=0), we get the following 

synchronization condition from Eq. 6. 
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Figure 2. Difference in the time varying variables for a non-uniformly sampled but periodically driven synchronization system (a) complete 

replacement (b) feedback. Convergence to zero indicates successful synchronization. 
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These are only sufficient conditions for synchronization. In fact numerical simulations show that some of the coupling constants 

which do not satisfy the above conditions also make the coupled systems reach synchronization. We will now compare the proposed 

mechanism with the existing by means of numerical simulations. Let the secret keys be =10, =2.667 and =29.75 and the random 

initial conditions.  Using the 4th order Runge-Kutta procedure the trajectories are determined. Figure 2 shows the successful 

synchronization (a) complete replacement (b) feed-back mode for a non-uniformly sampled but periodically driven system. 

 
Security Analysis 

 

It is well known that a great deal of information about a chaotic system is contained in the time series of its variables. Parameter 

estimation using this time series is considered to be a threat to chaotic communication systems. Parameter estimation techniques can 

be broadly classified into on-line or dynamic [11][12] and off-line or static [13] strategies.  

 

The off-line attacks normally involve parameter estimation using time series analysis methods. The publicly available time series is 

exploited to estimate the secret parameters. There have been many attempts to estimate the parameters form publicly available 

information by direct methods. These include guessing the parameter values and finding out some norm of difference with the actual 

sample. Logically, keeping the time step secret, one can understand that these attacks will not be successful, as it is essential to have 

the knowledge of the time step for estimating the parameters from the available time series. We will explain this by using a typical 

time series analysis method, which needs only a small portion of the public data to estimate the parameters [13]. We will use the 

Lorenz system in Equation (3) to show and establish the concept using numerical results. The procedure is as follows. First the 

variables of the Lorenz system are transformed to a new set of variables P, Q, R and S, related to each other in differential terms as 

shown below [13]. 

 

)9(,,, 1111 xSxRxQxP    

 

The number of dots (.) indicates the order of the derivative with respect to time. The singularity is avoided by not considering data 

near the zero. The values of P, Q, R and S can be determined by finding the first three derivatives of the available time series. If the 

data is sampled at sufficiently high rate, large order derivatives can be determined accurately by expanding the Taylor series 

(expanded up to (m+1)th term) as shown below [10].  
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Here r is the step size. Considering n number of consecutive points with reference x(t0), one can write Equation 10 in a matrix form as 

T=AF, where, A is a known coefficient matrix of size (mn) and F is the unknown column matrix with the derivatives up to order m, 

as elements of it. F can be solved by using any generalized inverse procedure. Once the first three derivatives are known, using the 

relations in Equation 9, the values of the parameters ,  and  can be estimated accurately[13].  

 

Now we will verify the analysis with a numerical experiment. Let us use a Lorenz system with =10, =2.667 and =29.75 with the 

initial condition (1.874, 2.056, 19.142). Figure.3 shows the three time series generated by the time dependent variables for uniform 

sampling (original) and non-uniform sampling (observed). Let us consider the x1 time series for estimation of the parameters for 

different uniform and non-uniform sampling frequencies. The non-uniform sampling time is calculated using the following function 

 

  )11(2),(mod 10121 handhgivenwithnfordtxhhfh nnn     

 

Here fmod is a C language implementation to obtain the floating point reminder. Table 1 shows the estimated values. We can see that 

for the uniformly sampled system the parameters are estimated with sufficient accuracy. For a non-uniformly sampled periodically 

driven system the parameter estimation mechanism does not work as expected. It is observed that in some cases the analysis estimates 

values which are unstable ( negative). 

 

On-line parameter estimation is a dynamic mechanism, where a receiver, even with un-identical parameters, can synchronize to a 

sender using some additional differential equations, with a damping term, describing the evolution of the parameters. These methods 

are useful in a large numbers of non-cryptographic applications. Even in cryptographic applications, where a small amount of 

information needs to be transmitted, these methods are not treated as attacks, as the estimation processes are quite slow.  

 

However, this method can be a threat to applications, such as High Performance Secure Grid and High Speed Internet, where huge 

amount of information needs to be exchanged. This is because the sender sends the value of one of its state space variable 

continuously to the receiver even after synchronization to avoid any de-synchronization at a future time, due to truncation errors, 

especially in discreet chaotic systems. Many efforts have been made to design synchronization based parameter estimation methods, 

because of its importance in many fields of physics [1-2]. However a majority of them fail to estimate all the parameters at the same 

time. A recent method [11] based on least square minimization problem has been very effective to estimate all the parameters. 
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Let the attacker system be represented by the following equation.  

 

)12(),( qzfz q  

 

The function fq have the same functional form as fp but with different parameter values. The aim of the attacker is to design a strategy 

that drives the measured synchronization error as shown in equation 13 and minimize the distance between the transmitter and itself. 
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Here s(x) and s(z) are observable scalar time series of the two systems. The minimization equation leads to the following differential 

equations which governs the evolution of parameters []. 
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Here i=1 to n and j=1 to m, where m is the number of parameters and n is the number of equations in the chaotic system. K is the gain 

vector and the positive term j (called learning rates) in Equation 14 is introduced to control the stability.   

 

 

 

 

 

Table 1.  
Estimated parameter values for both uniformly and non-uniformly sampled systems for different sampling frequencies and 

ranges. fr, fr0 and fr1 are 1/hn, 1/h0 and 1/h1 respectively in KHz. 

 

 

 

 

Figure 3. Original and observed time series due to the non-uniformly sampling but periodic driving for all the three variables. 
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We will verify the process of parameter estimation with a numerical experiment. Let us consider a Lorenz system with =10, =2.667 

and =29.75 and initial conditions (1.874, 2.056,19.142) for the sender and (2.125,-6.138,34,672) for the receiver. The variable x2 is 

made public. The attacker starts with an initial parameter values of =7.0, =1.56 and =17.0 and random initial values for the time 

dependent variables. Figure 4 shows the relative error in the three parameters with the time for a uniform sampling system using 

equation 14. It can be seen that all the three parameters can be estimated accurately within finite time. A data transfer which needs 

more time than the learning time, (i.e time required for the attacker to synchronize with the attacker) is susceptible to this attack. 

Estimating the exact learning time is a difficult task as these values will vary for different initial conditions and learning rates, selected 

by the attacker. So deciding  which size data transfer is safe is difficult. Let us try to understand the results of the parameter estimation 

method on a non-uniform but periodically driven chaotic system. Figure 5 shows the relative error of the three parameters with respect 

to time. We can see that the three parameters estimated are different from the parameter values of the genuine communicators. In this 

particular case of the numerical example the attacker estimates =18.190, =0.477 and =10.293. 

 

 

 
Conclusion 

 
Computerized chaotic system can be made more secure by the proposed modification of dynamic sampling rates rather than static 

sampling rates. The proposed modification is only a way of implementation. However, there could be different way this dynamism can 

be brought in. We have found from our simulations that it could be very effective and can be made more complex for an attacker, by 

keeping the complexity of the genuine participants to minimal. The attacks which have been considered here are the once which are 

already know and extensively discussed in literature. Hence, more analysis needs to be carried out to ascertain the security level of the 

chaotic crypto systems. 

 

References 

 
[1]. L. M. Pecora, T. L. Carroll, “Synchronization in chaotic systems”, Phys. Rev. Lett. 64 (8), pp. 821-824, 1990. 
[2]. L. M. Pecora, T. L. Carroll, “Driving systems with chaotic signals”, Phys. Rev. A 44(4), pp. 2374-2383, 1991. 

[3]. T. L. Carroll, L. M. Pecora, “Synchronizing chaotic circuits”, IEEE Trans. Circ. Syst. 38 (4), pp. 453-456, 1991. 

[4]. H. Zhou and X. Ling, “Generating chaotic secure sequences with desired statistical properties and high security”, Int. J. Bifurc. Chaos 7, pp. 205-
213, 1997. 

 

 

fr fr0 fr1    

Uniform Sampling 

4 4 4 10.0058281111205 29.8836728847202455 2.67317775354497 

3 3 3 9.99721469577266 29.7222519484211408 2.66708560686265 

2 2 2 9.99929881429367 29.7117939283402198 2.66934192090557 

1 1 1 10.0000714308363 29.7483203294389907 2.66687027349984 

Non-uniform Sampling 

≥ 5 6 7 2186.60449167345 1.65749826422010326 4251.8435336239 

≥ 4 5 6 3812.30569273375 -2.4131955051967579 383.613070904581 

≥3 4 5 9871.98349723808 -0.0194610231823175 -6066.66217849213 

≥2 3 4 3259.60391718308 -4.6309028564060017 -501.474104070536 

≥1 2 3 142.722989604708 2.69533033365465277 1010.17916666023 

Figure 4. Relative error of the parameters with respect with time. 

The convergence to zero indicates successful attack 

Figure 5. Relative error of the parameters with respect to time for a 
non-uniformly sampled but periodically driven system. Non-

convergence to zero indicated unsuccessful attack 



              INTERNATIONAL JOURNAL OF ENHANCED RESEARCH IN SCIENCE TECHNOLOGY & ENGINEERING  

VOL. 2 ISSUE 3, MARCH-2013                                                                                                                                                          ISSN NO: 2319-7463 

www.erpublications.com 

 

 

7 

 

 

[5]. Ronge He and P. G. Vaidya, “Implementation of chaotic cryptography with chaotic synchronization”, Phys. Rev. E  57, pp. 1532-1535, 1998. 
[6]. R Brown and N F Rulkov,  “Synchronization of chaotic systems: Transverse stability of trajectories in invariant manifolds”, Chaos 7(3), pp. 395-

413, 1997. 

[7]. T. Yang, “A survey of chaotic secure communication systems”, Int. J. Comput. Cognition 2, pp. 81-130, 2004. 
[8]. G K Patra, T R Ramamohan, V Anil Kumar, R P Thangavelu, “Improvement in Security Level of First Generation Chaotic Communication 

System by Mutual Synchronization”, Proceedings ADCOM 2006, IEEE Press,  pp. 195-198, 2006 . 

[9]. G K Patra, V Anil Kumar, R P Thangavelu, “Secure Chaotic Synchronization Using Negative Feedback of Super-positioned Signals”, ICISS 
2007, LNCS 4812, pp. 193-207, 2007. 

[10]. P. G. Vaidya, “Monitoring and speeding up chaotic synchronization”, Chaos, Solitons and Fractals 17(2), pp. 433-439, 2003. 

[11]. R Konnur, “Estimation of all parameters of a model from discrete  scalar time series measurement”, Physics Letters A  346,  pp. 275-280, 2005. 
[12]. A Maybhate and R E Amritkar, “Use of synchronization and adaptive control in parameter estimation from a time series”, Phys. Rev. E 59, pp. 

284, 1999. 

[13]. P. G. Vaidya, S Angadi, “Decoding chaotic cryptography without access to the super key”, Chaos, Solitons and Fractals, pp. 379-386, 2003. 
[14]. D. Li, J. Lu and X Wu, “Linearly coupled synchronization of unified chaotic systems and the Lorenz systems”, Chaos, Solitons and Fractals 23, 

pp. 79-85, 2005. 

[15]. J Park, “Stability criterion for synchronization of linearly coupled unified chaotic systems”, Chaos, Solitons and Fractals 23, pp. 1319-1325, 
2005.  

 


