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Abstract: This paper presents the application of Differential Evolution (DE) algorithm for line loss reduction and 

simultaneously improves the voltage profile in power transmission network. In this approach optimal setting of 

Reactive power control variable are carried out with the help of DE. The proposed approach is implemented on 

three standard IEEE system and obtained results reflect power losses reduction and voltage profile improvement. 
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1.    Introduction 

 

The optimal power flow (OPF) problem, which was Introduced in 1960s by Carpentier, [1] is an important and powerful 

tool for power system operation and planning. Reactive power optimization is a sub problem of OPF calculation, which 

determines all the controllable variables, such as tap ratio of transformers, output of shunt capacitors/reactors, reactive 

power output of generators and static reactive power compensators etc., and minimizes transmission losses or other 

appropriate objective functions. Reactive power optimization problem for improving economy and security of power 

system operation has received much attention. The main objective of optimal reactive power control is to improve the 

voltage profile and minimizing system real power losses via redistribution of reactive power in the system.  

 

For the Optimization of Reactive power problem, a number of conventional optimization techniques [2]-[3] have been 

proposed. These include the Gradient method, Non-linear Programming (NLP), Quadratic Programming (QP), Linear 

programming (LP) and Interior point method. Though these techniques have been successfully applied for optimization of 

reactive power, still some difficulties are associated with them. One of the difficulties is the multimodal characteristic of the 

problems to be handled. Also, due to the non-differential, non-linearity and non-convex nature of the Reactive power 

dispatch problem, majority of the techniques converge to a local optimum. Recently, Evolutionary Computation techniques 

like Genetic Algorithm (GA) [4], Evolutionary Programming (EP) [5] and Evolutionary Strategy [6] have been applied for 

optimization of reactive power. In this paper a evolutionary computation technique, Differential Evolution (DE) algorithm 

is used to solve reactive power optimization problem. 

Differential Evolution algorithm is developed by Price and Storn in 1995[7-10] to be a reliable and versatile function 

optimizer that is also easy to use. Main advantage of DE are, it can find near optimal solution regard less the initial 

parameters values, its convergence is fast and it uses few number of control parameters. It can handle integer and discrete 

optimization [7]-[10]. In [11]-[13], the DE algorithm is used for optimization of reactive power with the propose of 

reduction the system power losses while maintaining the dependant variable including voltages of PQ-buses and reactive 

power outputs of generators, within limits. 

 

2. Problem Formulation 

  

The objective of optimization of reactive power (control variables), which reduces the objective functions. This is 

mathematically stated as follows. 

            

2.1 Minimization of system real power losses (MW) 

                          F1 = min PLoss            (1)       
 

2.2 System constraints 

The equality constraints are power/reactive power equalities, the inequality constraints include bus voltage constraints, 

generator reactive power constraints, reactive source reactive power capacity constraints and the transformer tap position 
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constraints, etc. The equality constraints can be automatically satisfied by load flow calculation, while the lower/upper limit 

of control variables corresponds to the coding on the Differential Evolution Optimization (DE) Algorithm, so the inequality 

constraints of the control variables are satisfied. 

The Equality constraints are the power flow equation given by: 

 

PGi  - PDi  - Vi  Vj
NB
j=1 [Gij  cos (δi−δj) + Bij  sin (δi−δj)]=0             (2)                                                            

QGi  - QDi  - Vi  Vj
NB
j=1 [Gij  sin (δi−δj) - Bij  cos (δi−δj)]=0                    (3) 

 

where i=1,. . .,NB; NB is the number of buses, PG  is the active power generated, QG  is the reactive power generated, PD  is 

the load active power, QD  is the load reactive power, Gij   and Bij  are the transfer conductance and susceptance between bus i 

and bus j, respectively. 

 

The inequality constraints are: 

 Generator constraints: generator voltages, and reactive power outputs are restricted by their lower and upper limits as 

follows: 

  VGi
min ≤ VGi ≤ VGi

max , i=1,………,NG          (4)                             

  QGi
min ≤ QGi ≤ QGi

max , i=1,………,NG          (5)                              

Transformer constraints: transformer tap settings are bounded as follows: 

 TGi
min ≤ TGi ≤ TGi

max , i  = 1,………,NT          (6)                            

 

 Shunt VAR constraints: shunt VAR compensations are restricted by their limits as follows: 

 Qci
min ≤ Qci ≤ Qci

max ,i=1,………, Nc                       (7)                               

Security constraints: these include the constraints of voltages at load buses and transmission line loadings as follows: 

 VLi
min ≤VLi ≥VLi

max ,i=1......NL                                     (8)                                              

  Sli ≤ Sli
max , i=1.......nl                                             (9)                                                         

 
3.  Differential Evolution Algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

          Fig.1: DE cycle of stages    

 

3.1 DE computational flow 
 

DE algorithm is a population based algorithm developed by Price and Storn using three operators; crossover, mutation and 

selection. Several optimization parameters must also be tuned. These parameters have joined together under the common 

name control parameters. In fact, there are only three real control parameters in the algorithm, which are differentiation (or 

mutation) constant F, crossover constant CR, and size of population NP. The rest of the parameters are dimension of 

problem D that scales the difficulty of the optimization task; maximum number of generations or iterations GEN, which 

may serve as a stopping condition; and low and high boundary constraints of variables that limit the feasible area [7]-[8]. 

 

The DE algorithm works through a simple cycle of stages, presented in Fig. 1. 

 

These stages can be cleared as follow: 

Initialization 

Mutation 

Crossover 

Selection 
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3.1.1  Initialization 

Initial population of size ‘N’ is generated as follows: 

 

    xi,j 0 =xj
L+ rand(0,1) . (xu

L − xj
L)  

 

In above   xi,j is jth  component of the ith  population. 

Problem independent variables are initialized in their feasible numerical range. Therefore, if the jth variable of the given 

problem has its lower and upper bound asxj
Landxu

L  , respectively 

where rand(0,1) is a uniformly distributed random number between 0 and 1. 

 

3.1.2   Mutation 

In each generation to change each population member Xi t , at donor vector vi t  is created.  

To create a donor vector vi t for each ith member, three parameter vectors xr1, xr2 and xr3are chosen randomly 

from the current population and not coinciding with the current xi. Next, a scalar number S scales the difference of any two 

of the three vectors and the scaled difference is added to the third one whence the donor vector vi t  is obtained. The usual 

choice for S is a number between0.4 and 1.0. So, the process for the jth component of each vector can be expressed as, 

 

    vi,j t + 1  =  xr1,j(t) + S. ( xr2,j(t) − xr3,j(t))  

 

3.1.3 Crossover [14] 

Following the mutation stage, the crossover (recombination) operator is applied on the population. For each 

mutant vector  vi,j t + 1 , a trial vector  ui,j t  is generated with 

 

ui,j t   =   
vi,j t + 1         if        rand 0,1 < CR

xi,j t     else                                     
  

 

Where CR is the DE control parameter that is called the crossover rate and user defined parameter with in the range [0,1]  

ui,j t  represents the child that will compete with the parent xi,j t  

 

 

3.1.4 Selection 

To keep the population size constant over subsequent generations, the selection process is carried out to determine 

which one of the child and the parent will survive in the next generation, i.e., at time t=t+1. DE actually involves the 

Survival of the fittest principle in its selection process. The selection process can be expressed as, 

 

Xi t + 1 =  
Ui t      if    f Ui t  ≤ f(Xi(t))

Xi t      if      f(Xi(t)) < f(U t )
  

 

Where , f () is the function to be minimized as given in (1)-. From Eq.  we noticed that: 

 If  ui t  yields a better value of the fitness function, it replaces its target Xi t  in the next generation 

 Otherwise, Xi t   is retained in the population. 

Hence, the population either gets better in terms of the fitness function or remains constant but never deteriorates. 

 

DE Based Approach Implementation  

 

Step-1 Data input: Reactive power control variables and system parameters (resistance, reactance and susceptance etc.) 

Step-2  Base case transmission loss calculated based on NR method. 

Step-3 Generate an initial population randomly with in the control variable bounds 

Step-4 Run the load flow solution with these control variables and calculate loss. 

Step-5 Perform differentiation (mutation) and crossover to create offspring from parents 

Step-6   Perform selection between parent and offspring. 

Step-7 store the best individual of the current generation. 

Step-8 Repeat step 2 to 6 till the termination criteria is met. i,e iteration procedure can be terminated when any of the 

following criteria is met, i,e, an acceptable solution has been reached, a state with no further improvement in solution is 

reached, control variables has converged to a stable state or a predefined number of iterations have been completed.   
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Results 

 

The developed DE based algorithm has been applied to three standard IEEE systems. The results in Table 1,2 and 3 shows 

losses is minimized  with voltage profile improve in all three system which demonstrate the effectiveness of the algorithm. 

Initial data of three system taken from [15],[16] & [17] respectively.  

 

For 5 bus system Generator bus voltages ranges 0.95pu -1.10pu, Tap settings ranges 0.9pu-1.1pu, Generator reactive power 

ranges 1pu – 5pu, load bus voltages ranges 0.95pu – 1.05pu. 

 

Table:1 Optimal setting of control variables for different cases in IEEE 5 bus system 

 

Control 

variable 

Initial 

value 

Minimization of power 

losses & Voltage profile 

improvement 

T4 1 0.9761 

Q3 2 2.7963 

Power loss 

(MW) 

5.147 5.1010 

 

IEEE 5 bus system 

 
For 14 bus system Generator bus voltages ranges 0.95pu -1.10pu, Tap settings ranges 0.9pu-1.1pu, 

 

Table 2: Optimal setting of control variables for different cases in IEEE 14 bus system. 

 

Control 

variable 

Initial 

value 

Minimization of power losses & Voltage 

profile improvement 

T8 1 1.0063 

T9 1 1.0140 

T11  1 .9176 

Q9 18 18 

Q14  18 6 

Power loss 

(MW) 

13.402 13.337 

 

 

IEEE 14 BUS SYSTEM 
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For 30 bus system Generator bus voltages ranges 0.95pu -1.10pu, Tap settings ranges 0.9pu-1.1pu, Generator reactive 

power ranges 1pu – 5pu, load bus voltages ranges 0.95pu – 1.05pu  

 

Table 3: Optimal setting of control variables for different cases in IEEE 30 bus system 

 

Control variable Initial value Minimization of power losses & Voltage 

profile improvement 

T11  1.069 0.9376 

T12  1.078 1.0165 

T15  1.032 1.0646 

T36  1.068 0.9509 

Q10  2 4.2877 

Q12  0 3.0011 

Q15  0 3.9597 

Q17  0 3.2073 

Q20  3 6.5059 

Q21  0 3.0732 

Q23  0 3.4412 

Q24  2 5.9356 

Q29 2 6.7578 

Power loss (MW) 5.679 5.4120 

 

 

IEEE 30 BUS SYSTEM 

 

 
 

Conclusion 

 

In this paper, a Differential evolution (DE) optimization algorithm has been successfully applied to solve the optimized 

problem.  The computation of this method is simple and easy mechanization to execute it. Developed algorithm has been 

implemented on three IEEE standard systems, obtained results proves the significance of developed methodology. 
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