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 Introduction 

 

     Consider the following nonlinear programming  
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Where lm hhggf ..,..........,,.....,,......... 11
,

 are functions defined on
nR , x  is a subset of 

nR , and x  is vector of n 

components  nxx .....,,.........1  the above problem must be solved for the value of the variable nxx .....,,.........1 that 

satisfy the restriction and mean while minimize the function
f

. 

     The function 
f

 is usually called the objective function , or the criterion function each of the constraints 

miforxgi ...,,.........10)( 
is called an inequality constraint, and each of the constraints 

liforxhi ..,,.........10)( 
is called an equality constraint. the set X might typically include lower and upper 

bounds on the variable, which even if implied by the other constraints can play a useful role in some algorithms, 

alternatively , this set might represent some specially structured constraints that are highlighted to be exploited by the 

optimization routine or it might represent certain regional containment or other complicating constraints that are to be 

handled separately via a special mechanism . A vector x X ,satisfying all the constraint is called a feasible solution to 

problem the collection of all such solutions forms the feasible region , the nonlinear programming problem , then is to 

find a feasible point x  such 
)()( xfxf 

 for each feasible point x  . Such appoint x  is called an optimal solution , 

or simply a solution , to the problem .if more then one optimum exists , they are referred to collectively as alternative 

optimal solutions.[2]      

The  constrained minimization problem  (1-3)  may be solved by the  sequence  of unconstrained minimization technique  

(SUMT) [4], 

Some important methods for constrained optimization replace the original problem by a sequence of sub problems in 

which the constraints are represented by terms added to the objective. In this paper we describe three approaches of this 

type. The quadratic penalty method adds a multiple of the square of the violation of each constraint to the objective. 

because of its simplicity and intuitive appeal, this approach is used often in practice, although it has some important 

disadvantages. In non smooth exact penalty methods, a single unconstrained problem (rather than a sequence) takes the 

place of the original constrained problem. Using these penalty functions, we can often find a solution by performing a 

single unconstrained minimization, but the non smoothness may create complications. A popular function of this type is 

the penalty function. A different kind of exact penalty approach is the method of multipliers or augmented Lagrangian 

method, in which explicit Lagrange multiplier estimates are used to avoid the ill-conditioning that is inherent in the 
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quadratic penalty function. A related approach is used in the log-barrier method, in which logarithmic terms prevent 

feasible iterates from moving too close to the boundary of the feasible region  [7]. 

2. The Penalty Function Method 

Penalty function methods are developed to eliminate some or all of the constraints and add to the objective function a 

penalty term which prescribes a high cost to infeasible points. In theory, penalty function method uses unconstraint 

optimization methods to solve constraints optimization problems. Discrete iterative setup can be started with infeasible or 

feasible starting point and guide system to feasibility and ultimately obtained optimal solution. Penalty function methods 

transform the basic optimization problem into alternative formulations such that numerical solutions are sought by 

solving a sequence of unconstrained minimization problems. Let the basic optimization problem, with inequality 

constraints, be of the form: 

Find x which minimizes 
)(xf

 

subject to  

( ) 0 , 1,2,...........,jg x j m 
                .…  (4) 

this problem is converted into an unconstrained minimization problem by constructing a function of the form 

)()(),( xpxfrx kk 
……  (5) 

the significance of the second term on the right side of (5),called the penalty term, If the unconstrained minimization of 

the 


 function is repeated for a sequence of values of the penalty parameter 
),2,1( krk  the solution may be 

brought to converge to that of the original problem stated in (4) . This is the reason why the penalty function methods are 

also known as sequential unconstrained minimization techniques (SUMT) [9]. 

 

3. The Classify of the Penalty Function 

The penalty function formulations for inequality constrained problems can be divided into categories: exterior and 

interior methods. 

3.1.  Exterior Penalty Function 

The exterior penalty is the easiest to incorporate into the optimization process. Here the penalty function  p( x )  is 

typically given by  

 
 


m

j

l

k
kpjp xhrxgMAXrxp

1 1

22 )]([)]}(,0[{)(

                                                      …… (6) 

the subscript p is the outer loop counter which we will call the cycle number. we begin with a small value of the penalty 

parameter, 
pr

 and minimize the pseudo-objective function k  . We then increase 
pr

 and repeat the process until 

convergence. 

Lemma (1) (penalty Lemma) 

1-
),(),( 11  kkkk rxrx 

 

2-  

3-  

4-
)(),()( *

kkk xfrxxf 
 

for more detail see [5] . 

 

3.2.  Interior Penalty Function 

The basic concept of the interior penalty is that, as the constraints approach zero (from the negative side), the penalty 

grows to drive the design away from the constraint bounds [4].  

)()( 1 kk xpxp

)()( 1 kk xfxf
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a.  Reciprocal 

     In the past, a common penalty function used for the interior method was defined by : 

1

1
( )

( )

m

j j

p x
g x


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                                 ………  (7) 

Using (6) and including equality constraints via the exterior penalty function of  (7) 

2

1 1j

-1
( , , ) ( ) [ ( )]
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x r r f x r r h x
x


 

    
                                                                        ……… (8) 

here 
pr

 is initially a large number, and is decreased as the optimization progresses. The last term on (8) is the exterior 

penalty as before, because we wish to drive 
)(xhk  to zero. Also, 

pr
 has the same definition as before and 

)(xf
 is the 

original objective function. In our remaining discussion, we will omit the equality constraints, remembering that they are 

normally added as an exterior penalty function as in  (8)     [10]. 

b.  Log Barrier Method 

     An alternative form of (8) is 

1

( ) log[ ( )]
m

p j

j

p x r g x


  
                      ………  (9) 

and this is often recommended as being slightly better numerically conditioned. 

 

c.  Polyak’s Log Barrier Method 

 Polyak [10] suggests a modified log-barrier function which has features of both the extended penalty function and the 

Augmented Lagrange multiplier method. The modified logarithmic barrier penalty function is defined as: 

1

( )
( , , ) log 1

m
jp p

p p j

j p

g x
M x r r

r
 



 
    

  


……  (10) 

where the nomenclature has been changed to be consistent with the present discussion. Using this, we create the pseudo-

objective function 

1

( )
( , , ) ( ) log 1

m
jp p

p p j

j p

g x
x r f x r

r
  



 
    

  


    .........  (11) 

We only consider inequality constraints and ignore side constraints. equality constraints can be treated using the exterior 

penalty function approach and side constraints can be considered directly in the optimization problem. Alternatively, 

equality constraints can be treated as two equal and opposite inequality constraints because this method acts much like an 

extended penalty function method, allowing for constraint violations. 

d.  Polyak’s Log-Sigmoid Method 

A more recent method by Polyak,  [10] appears to have better properties than the log-barrier method by eliminating the 

barrier. Here, we create the penalty function as; 

( )

1

2
( ) {ln[1 ] ln 2}p j

m
r g xp

j

jp

p x e
r



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                .........  (12) 

In the interior methods, the unconstrained minima of k  all lie in the feasible region and converge to the solution of (4) 

as kr  is varied in a particular manner. In the exterior methods, the unconstrained minima of k  all lie in the infeasible 

region and converge to the desired solution from the outside as kr  is changed in a specified manner. 
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Lemma: (2) (Barrier Lemma) 

1-
),(),( 11  kkkk rxrx 

 

2-
)()( 1 kk xpxp

 

3-  

4-
),()()( kkk rxxfxf 

 

for more detail see [5] . 

 

3.3.  Extended Interior Penalty Function 

This approach attempts to incorporate the best features of the reciprocal interior and exterior methods for inequality 

constraints. For equality constraints, the exterior penalty is used as before and so is omitted here for brevity. 

a. The Linear Extended Penalty Function 

The first application of extended penalty functions in engineering design is attributable to Kavlie and Moe [10]. This 

concept was revised and improved upon by Cassis and Schmit [10]. Here the penalty function used in (6) takes the form 

1

2

( ) ( ) ......... (13)
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The parameter   is a small negative number 

b. The Quadratic Extended Penalty Function 

The extended penalty given by Equations  (13) - (15) is defined as the linear extended penalty function. This function is 

continuous and has continuous first derivatives at 
)(xg j  However, the second derivative is discontinuous, and so if 

a second-order method is used for unconstrained minimization, some numerical problems may result. Haftka and Starnes 

[6] overcome this by creating a quadratic extended penalty function as 

2
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equations (16) and (17)  may be most useful if a second-order method is used for unconstrained minimization. However, 

the price paid for this second order continuity is that the degree of nonlinearity of the pseudo-objective function is 

increased[10]. 

c. General Form Of The Constrained When
)(xg j

   

if n is odd then we have  
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When n even we have  
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For more detail see [1] 

d. The Variable Penalty Function 

Both the exterior and interior penalty function methods have been used with success. The significant modifications to 

these traditional methods have been related to improving the numerical conditioning of the optimization problem, as 

exemplified by the extended interior methods. A formulation is presented by Prasad [8] which offers a general class of 

penalty functions and also avoids the occurrence of extremely large numerical values for the penalty associated with 

large constraint violations. The variable penalty function approach creates a penalty which is dependent on three 

parameters: s,  , and  as follows: 
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  and ε are the two independent penalty parameters which control the shape of the penalty function. These parameters 

will be determined later. It can be checked that the expressions (20-21) and (20-21) satisfy  and its first and second 

derivatives at the transition point  ε. [8]. 

 

4.  New Generalized Variable Penalty Function 

The generalized variable penalty function is add the term in variable penalty function to obtained more accuracy and 

small error which introduce by round of error is define by  : 

For s ≠ 1 
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To examine the affectivity of the new algorithm, let vi consider two example for n=4 (even) and n=5 (odd) because n=3 

has been consider by [8]. 
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It become as 
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When  n is odd 
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 for example when n=5 
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it become as 

   

     

5 4 3

2
1

( ) ( ) ( )
5 10 2

( ) ( )
( ) 10 3 3 5 2 3 ....(33)

2

1

1

J J J

sJ J
j

g x g x g x
A s

g x g x
g x s A s B

AB
A

C

where

s
A

B s

C s

     
  

      
 

  



      
          

      
 

                    
 

        
 



 

 



  

 

4.1.  Modified Newton's Method: 
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v  where is the gradient of v , H  is the matrix of the second derivatives of 
),( rxv  at the point 

nx  , given by  

      and   is the step size from 
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4.2.  Determination of Constant  

In order to establish a suitable value for constant, it is desirable to find the upper and lower limits that constant can 

assume without compromising the characteristics of a penalty function. The shape of the variable penalty function curves 

depends on constant. In order to ensure a higher penalty for a higher constraint violation, a curve increasing 

monotonically with negative k
g

 is needed. The slope of the variable penalty function is obtained as: 

for n odd 

1 2

2

1 ...... (51)

1 ( 1) 1( )
2

1 ...... (52)

3 1 1 1

s k
k

n n

k k

k
s k

k k

g
g

g gs
n ng

g

g g
s



 
 





 



 



 
  
 

     
           

      
  

                   





1 2 2

1 ( 1) 1 3 1 1 1 0 ... (53)
2

n n

k k k k
S

g g g gs
n n s   

   

 

       
                   

       


0)( 
k

g
 

However, we can see from negative values of constant  increase the magnitude of the associated error S


 . Thus, one 

has to limit constant to positive values. For such positive values of constant, the penalty function does not show a strictly 

increasing monotonic behavior. It is thus important to select a positive value for constant which ensures an increasing 

penalty behavior, at least up to the most negative constraint that one may encounter. This requirement can be set as 

)54(.........
~ *


















 d

g
d

g kk







 

where 
*d  is the must negative constraint ratio and d

~
 is a value  of  

kg

  for which 
0)

~
(  d

 a limiting situation 

would occur  when d
~

 equals 
*d  , i.e. the penalty for the most critical constrain violation is a maximum at the value 

specified by must negative possible constrain . using this , 0  the range of    can be found as follows : 

 

 

*

2
*

1 1
....... (55)

3 1

s d

d


  
 
 
   

for the possible range of kg
  i.e  0  ,the bounds on   can be established ( 0*  ) 

1
0 ....... (56)

3

s



 

 



International Journal of Enhanced Research in Science Technology & Engineering, ISSN: 2319-7463 
Vol. 3 Issue 4, April-2014, pp: (44-59), Impact Factor: 1.252, Available online at: www.erpublications.com 

Page | 52  

 

the value  = 0 corresponds to the case when an infinitely negative value of 
*  is allowed; in this particular situation (

 = 0), the variable penalty function formulation for s = 2 degenerates to a quadratic extended interior penalty function . 
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                   

       


 

If n is even in general the new constant is  

1
0 ...... (66)

1
2

old
new n

kgs
n







 

 
 

   

for example  n=4 

3 2

4 1 3 1 1 1 0 ..... (67)
2

k k k
S

g g gs
s  

  

     
             

       
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3
....... (68)

2 1kg
s









 
 

   

1
0 ...... (69)

6

s

s



  

 

3
1 1

....... (70)
3 3

k k
s

g gs s


 

    
      

     

4.3. Selecting constants and Updating: 

During an iteration, with any arbitrary starting point, the following conditions can exist:  

(a) all the constraints 
)(xg

k  are satisfied;   

(b) all the constraints 
)(xg

k  are violated; and 

(c) some of the constraints are satisfied and some are not, i.e., mixed. 

there are two case  

 First case: 

The first iteration in our loop of new algorithm s.t.: 

1. If condition  (a) arises and if n is even  

     the value of  new constant  is selected using 

....... (71)

2

old
new s

n


 

       

this comes from  (56) and ensures the minimum error in the approximation  

of the hessian matrix.  

If n is odd  

     the value of new constant is selected using  

n

old
new







                         …… (72) 

2. If the condition (b) or (c) arises and if n odd 

1

1
















n
k

old
new

g
n






           ……….  (73) 

If n is even   

1

1
2














n

k

old
new

gs
n






         ….…. (74) 

in which g*  represents the most violated constraint encountered during an  iteration.  

Succeeding case: 

The succeeding iterations in our loop of new algorithm s.t. in the subsequent iterations, the VPM algorithm determines 

the degree of severity on the constraints. If, at any instant, condition (a) occurs, the value for   is determined using  = 

(1 + s)/3. 

If condition (b) appears, it is based on value of n: 
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if  n is even :  

the new constant  is selected based on Eq , i.e., 

   

2

1
2

)1(
















n
kgs

nn

s





       ……... (75) 

if n is odd 

the new constant  is selected based on Eq. , i.e., 

  

2

1)1(














n

kg
nn

s





                  …….. (76) 

in which g*  represents the most violated constraint encountered during an iteration.  

 

4. 4. The New Initial Value of Algorithm: 

initial Value of the Penalty Parameter ( kr ). Since the unconstrained minimization of 
),( krx

 is to be carried out for a 

decreasing sequence of kr , it might appear that by choosing a very small value of 0r , we can avoid an excessive 

number of minimizations of the function   . But from a computational point of view, it will be easier to minimize the 

unconstrained function 
),( krx

,the numerical values of kr  has to be chosen carefully in order to achieve a faster 

convergence. we have to find kr  such that depend on  
)(x

    [9]. 

the initial value r0 which is derived as  

  
)()(),( xrxfrx kk  

                       ...….. (77) 

 such that         
0),( krx

 

we have  

 
0)()(  xrxf k                          …..… (78) 

now 
0kr 

, then we obtain  

        
)(

)(
min

x

xf
r






                         .……. (7) 

 

In the above suggestion corresponding to the assumption for deriving a new parameter to make balance between the 

previous algorithms, we have suggested the following a new algorithm. 

 

4.5. New Theorem  

Consider problem to minimize
 xf

subject 
  (x) gi 0

 for 
m..., ,2,1i

. Let KKT condition is satisfying the 

second order sufficiency condition for a local minimum. Defined  
 0)(:  xgiI i  , 

 0)(:  xgiN i  and 

the cone 
0)(,0{  dxgdC i  for Ii and 

0)(  dxgi for all 
} Ni

. Then, if there exists kr such that 

1kk rr 
therefore 

 krx,2
is a positive definite Cd   and x is strict local minimum for (1) for all 0r . 

Proof : 
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Since 
),,( x

 is KKT a solution satisfy the second –order sufficiency condition for a local minimum in cone c and 

),,(2 xL
the Hessian of the Lagrange function of (1). Suppose that there exists kd

 with 
1kd

, such that 

 
1

( , ) ( ) ( )
m

k k k k i

i

x r f x r g x 


  
    ………(80) 

     Thus, the gradient of 
),( kk rx

 should be defined by  

 
1

( , ) ( ) ( ) ( )
m

k k k i i

i

x r f x r g x g x 


   
                                                                        

………. (81) 

     The second derivatives of 
),( kk rx

defined by  

 

 

2 2 2

1

1

( , ) ( ) ( ) ( )

( ) ( ) ( ) ...(82)

m

k k k i i

i

m
T

i i i

i

x r f x r g x g x

r g x g x g x

 







    

  




 

 2 2

1

( , ) ( , , ) ( ) ( ) ( )
m

T

k k i i i

i

x r L x r g x g x g x   


    
 …….…(83) 

     Where 
),,(2 xL

is the Hessian  Lagrangian function  for eq.(1)with multiplier  and   

 

2 2

1

( , ) ( , , )

( ) ( ) ( )

T T

k k k k k k

m
T T

k i i i k

i

d x r d d L x d

d r g x g x g x d

  




  

  
 ….....(84) 

Clearly the first term 
),,(2 xL

is positive definite on the cone C, then we shall prove the second term of (83) 

If n is even then the second derivative is define by :  

 
1

2 3

2

1 4

1

( 1) 1 ( 1)( 2) 1
2

( 2)( 3) 1 6 1
2

s k k k
k

i

n n

k k

k k
i j s n

ik k

g g g
g s

x xj

g gs
n n n n

g g
x x

x xjg gs
n n s



  
 


 

 

 

 

  

    
    

    

                                                        




1kg



 
 
 
 

 
 
 
   
 
  
  …….(85) 

 we require prove that 
0)(  ig

 which depend on the constants   

2

( 1) 1
2

n

k

s

gs
n n










 
  

      ……….(86) 
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So we have 
2 ( , ) 0T

k k k kd x r d 
for all Ii  or  Ni  and so we have x  is a strict local minimum. 

Now if n is odd then the second derivative is define by : 

 
1

2 3
2

1

1

( 1) 1 ( 1)( 2) 1
2

1
6 1

s k k k
k

i

n n

k k

k k
i j s k

ik

g g g
g s

x xj

g gs
n n n n

g g
x x g

x xjg
s



  
 






 

 

 

     
     

     


                                                   
  
  











          ….(87) 

we require prove that 
0)(  ig

 which depend on the constants    

*
6 1

s

g





 
 

                                        …….. (88) 

2

( 1) 1

n

k

s

g
n n








 
  

                         …….. (89) 

     So we have 
2 ( , ) 0T

k k k kd x r d 
for all Ii  or  Ni  and so we have x  is a strict local minimum. 

 

4.6.  Outline New Extended Interior  Methods  

Step1: Find an initial approximation x0 in the interior of the feasible region for the inequality constraints i.e. 

0)( 0 xgi . 

Step2: Set 1i  and 
10 r

 is the initial value of 0r . 

Step3: Set iii gHd 
 

Step5: Set iiii dxx 1 , where   is a scalar. 

Step6: Update H by correction matrix defined in (83) .  

Step7: Check for convergence i.e. if 
 1ii xx

 satisfied then stop, 

           otherwise, continue . 

Step8: Set 10
1

i
i

r
r 

 and take x=x* and set  k=k+1 and go to  

             step 5. 

 

Results and Conclusion 

Several standard non-linear constrained test functions were minimized to compare the new algorithms with standard 

algorithm see (Appendix,A). with 41 m  and 
4)(1  xgi  .This paper includes five parts.. Is considered as the 

comparative performance of the following algorithm. 
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3- variable extended (n=3) . 

4 – new generalize variable extended  

(n is even n=4 , 6, 8,…….. ). 

5 -  new generalize variable extended  

(n is odd n=5 , 7, ….). 

      We denoted linear extended(LE), quadratic extended(QE), variable extended (VE) , new generalize variable extended 

(n is even) (NEW 1) , new generalize variable extended (n is odd) (NEW 2) . 

1- linear  extended ( n=1) . 

2- quadratic extended (n=2) . 

All the results are obtained using (Laptop) . All programs are written in visual FORTRAN language and for all cases the 

stopping criterion taken to be  
 1ii xx

,                                    
510   

All the algorithms in this paper use the same ELS strategy which is the quadratic interpolation technique directly adapted 

from [3] . 

The comparative performance for all of these algorithms are evaluated by considering NOF, NOI, NOG and NOC, where 

NOF is the number of function evaluation and NOI is the number of iteration and NOG is the number of gradient 

evaluation and NOC number of constrained evaluation. 

 In table (1) we have compared our new algorithm NEW1 with quadratic extended 

      In table (2) we have compared our new algorithm NEW2 with linear – variable extended 

 

Table (1) 

Comparison of  New1 algorithm quadratic algorithm 

   

NO NO. N=2 

QE 
NOF(NOG)NOI(NOC) 

N=4 

NEW1 
NOF(NOG)NOI(NOC) 

N=6 

NEW1 
NOF(NOG)NOI(NOC) 

N=8 

NEW1 
NOF(NOG)NOI(NOC) 

1  =.5 

R=.01 

S=2 

 

13471(500)1(1) 

 

250(4)3(3) 

 

215(7)2(1) 

 

220(8)2(1) 

2  =.05 

R=.01 

S=2 

 

18906(500)1(1) 

 

10481(500)2(1) 

 

9483(500)2(1) 

 

9446(500)2(1) 

3  =.05 

R=1 

S=2 

 

18958(500)1(1) 

 

308(11)2(1) 

 

297(12)2(1) 

 

296(12)2(1) 

4  =.2 

R=.01 

S=2 

 

18401(500)1(1) 

 

901(116)4(5) 

 

413(32)4(5) 

 

285(6)3(4) 

5  =.02 

R=.01 

S=2 

 

107(2)1(1) 

 

19425(500)4(5) 

 

14936(500)4(5) 

 

4493(500)2(1) 

6  =.5 

R=.0001 

S=2 

 

209(4)2(1) 

 

209(4)2(1) 

 

209(4)2(1) 

 

209(4)2(1) 

To.  70052(2006)7(6) 31574(1135)17(16) 25553(1055)16(14) 14949(1030)13(9) 
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Table (2) 

Comparison of  New2 algorithm linear – variable algorithm 

NO NO. N=1 
LE 

NOF(NOG)NOI(NOC) 

N=3 
VE 

NOF(NOG)NOI(NOC) 

N=5 
NEW2 

NOF(NOG)NOI(NOC) 

N=7 
NEW2 

NOF(NOG)NOI(NOC) 

1  =.5 

R=.01 

S=2 

 

654(9)1(1) 

 

30(2)1(1) 

 

20(2)1(1) 

 

18(2)1(1) 

2  =.5 

R=.01 

S=2 

 

10380(167)2(1) 

 

6794(500)1(1) 

 

4979(500)1(1) 

 

2922(362)1(1) 

3  =.05 

R=.01 

S=2 

 

22496(364)1(1) 

 

8500(500)1(1) 

 

29(2)1(1) 

 

27(2)1(1) 

4  =.2 

R=.01 

S=2 

 

239(4)3(3) 

 

6970(500)1(1) 

 

5878(500)1(1) 

 

14(3)1(1) 

5  =.05 

R=.1 

S=2 

 

11443(154)3(3) 

 

25900(500)1(1) 

 

17284(500)1(1) 

 

16(4)1(1) 

6  =.5 

R=.0001 

S=2 

 

545(58)1(1) 

 

209(4)2(1) 

 

209(4)2(1) 

 

209(4)2(1) 

To.  45757(756)11(10) 48403(2006)7(6) 28399(1508)7(6) 3206(377)7(6) 

 

 

Reference 

[1]. [1] Al. Bayati , A.Y. and Qasim, A.M, ''anew hybrid algorithm to the modified barrier function form '' ,J. of Edit & Sci, 

mosul ,Iraq , vol.21 , NO.4, pp.131-148, 2008. 

[2]. [2] Bazaraa, M.S. and Sherali, H.D. and Shetty, C. M, '' Nonlinear Programming: Theory and Algorithms'',3rd ed., John 

Wiley & Sons, 2006 .  

[3]. [3] Bunday, B.D ,  ”Basic Optimization Methods”, Edward Arnold, London, 1984 . 

[4]. [4] Fiacco, A.V. and McCormick, G. P. ,  '' Nonlinear Programming: Sequential Unconstrained Minimization Techniques'',  

the Society for Industrial and Applied Mathematics, New York , 1990 . 

[5]. [5] Freund , Robert M . ,  ''penalty and barrier methods for constrained optimization '' ,Massachusetts Institute  Of  

Technology , 2004 .  

[6]. [6] Haftka, R. T., and Starnes jr, J. H.,''Applications of a Quadratic Extended Interior Penalty Function for Structural 

Optimization'', AIAA J., vol. 14, no. 6, pp. 718 – 724, 1976 . 

[7]. [7] Nocedal, J. and Wright J. , '' Numerical Optimization'' , Springer  Series in Operations Research, Springer Verlag, New 

York, USA , 2006 . 

[8]. [8] Prasad, B. ,  ''A Class of Generalized Variable Penalty Methods for Nonlinear Programming'' , J. Optim. Theory Appl., 

vol. 35, no. 2, pp. 159 – 182, October 1981 . 

[9]. [9] Rao, Singireas S.,''engineering optimization theory and practice '', john wiley & sons Inc. All rights reserved , 2009 . 

[10]. [10] Vanderplaats, C.,“Very Large Scale Optimization'', NASA/CR , 2002 . 

 

Appendix , A 

1. min 
2
2

2
1 25.)2()( xxxf 

 

     s.t 

         
15.3

432

21

21





xx

xx

  

           
]5,3[x

 

2. min     21)( xxxf 
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     s.t 

          
]2,3[

25

21

2
2

2
1







x

xx

xx

  

3. min    
2

2
2

1 )1()2()(  xxxf
 

   s.t   

       
]2,2[

221

2
2
1







x

xx

xx

 

4. min     
2
2

2
1)( xxxf 

 

     s.t  

          
]3.1,9.[
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42

2

1

2
2

2
1

21


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

x

x

x

xx
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5. min      
2

2
2

1 )1()2()(  xxxf
 

    s.t 

         
]7.,7[.

1
4
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2
2

2
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6. min      
2

2
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