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ABSTRACT 

 

In this paper, we are concerned with the Conjugate Gradient (CG) methods for solving unconstrained  nonlinear 

optimization problems. It is well-known that the direction generated by a CG-method may not be a descent direction 

for the objective function. In this paper, we have done a little modification to the Conjugate Descent (CD) method 

such that the direction generated by the modified method provides a descent direction for any objective function. 

This property depends neither on the line search used, nor on the convexity of the objective function. Moreover, the 

modified method reduces to the standard CD-method if line search is exact. Under mild conditions, we have proved 

that the modified method with strong Wolfe line search is globally convergent even if the objective function is non 

convex. We  have also presented some numerical tests to show the efficiency of the new proposed algorithm. 

 

Keywords. Spectral Conjugate Gradient, Global Convergence, Unconstrained Optimization, Descent Direction, Line 
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1. INTRODUCTION 

 

Our aim in this paper is to study the stability and global convergence properties for a new proposed algorithm and to do 

some practical computational tests to show the  performance of the  new nonlinear spectral CG-method which are suitable 

for unconstrained optimization problems with the well-known Powell restarting criterion (Powell, 1977) and with 
appropriate mid conditions. Now, we consider the following unconstrained optimization problem: 

 

                             ,)(min nRxxf                                                        (1) 

where, RRf n :  is a continuously differentiable function. Nonlinear CG-algorithms are efficient for solving (1). 

These algorithms are  generating iterates by letting: 

                                   kkkk dxx 1 ,    ,...1,0k                                  (2) 

with 
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where, kx  is the current iteration, 0k  is the step-length which is determined by Wolfe line search method, 
 kd  is the 

new search direction,
 

)( kk xgg   denotes the gradient of f  at kx , and k  is a suitable parameter. There are many 

well-known formulas for k , such as: 
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The CG-algorithm is a powerful line search method for solving optimization problems, and it remains very popular for 

engineers and mathematicians who are interested in solving large-scale complicated test problems. This method can avoid, 

the computation and storage of some matrices associated with the Hessian of objective functions.  where .  denotes the 

Euclidean norm of vectors. An important property of the CD-method is that it will produce a descent direction under the 

strong Wolfe line search. In the strong Wolfe line search, the step-length k  
is required to satisfy the following  (Wolfe, 

1969): 
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                                        10   .  

Another popular CG-algorithm to solving problem (1) is the Spectral CG-algorithm (SCG) method, which was developed 

originally by (Barzilai and Borwein, 1988). The main feature of this method is that only gradient directions are used at each 

line search whereas a non-monotone strategy guarantees the global convergence property. As well as, this method 

outperforms the sophisticated CG-algorithm in many complicate test problems. The direction kd
 
of the spectral CG-

algorithm is given by the following way:  

                                   1 kkkkk dgd                                                        (6) 

where the parameter k  is computed by: 
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and, k  is taken to be the spectral gradient and computed by the following: 
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where, 11   kkk ggy , 11   kkk xxs . The numerical results in some practices show that these type of methods are 

very effective. Unfortunately, they cannot guarantee to generate descent directions.  

 

Recently,  Spectral CG-algorithm have also been reported in (Liu; et al , 2012); (Liu and Jiang, 2012); (ILivieris and 

Pintelas, 2013) and (Liu;   Zhang  and Xu, 2014) . 

  

However, (Liu; et al , 2012) take a modification to the standard CD-method such that the direction generated in their 

method (say, LDW) is always a descent direction and kd  is defined by the following:  
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where, k  is specified by the following relation: 
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and 
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Recently, (Al-Bayati and Al-Khayat, 2013) have developed another spectral CG-algorithm (say, KH) for solving 

unconstrained optimization problems. They have done a little modification to the standard CD-method such that the search 

direction generated by their modified method provides a descent direction for the objective function. They also present 

some numerical results to show the efficiency of their proposed method. Namely, their search directions are similar to the 
search direction given by Liu et al (9): 
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 with a an efficient new value for the spectral 
KH

k defined by: 
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They prove that their method can guarantee to generate descent directions with globally convergent rate of convergence.  

 

2. A NEW SPECTRAL CG-METHOD. 
 

In this section we have, first, to investigate how to determine a descent direction of any general objective function. Let kx  

be the current iterate and let kd  be defined by: 
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where, 
CD

k  is specified by (1.4) with the following new parameter: 

                 
11

1

2

1

11 2
))((1








k

T

k

k

T

k

k

k

T

k

k

T

k

k

T

kNew

k
gg

gd

g

gd

gd

gg
                                           (15) 

This new proposed spectral CG-method reduces to the standard CD-method if the line search is exact. But generally we 

refer to use the inexact line search (Wolfe line search). We have first to prove that kd  is a sufficiently descent direction. 

 

2.1  LEMMA 

 Suppose that 
New

kd  is defined by (14) and (15). Furthermore, assume that  the parameter k  satisfies strong Wolfe 

condition (5) with 5.0k . Then, the following result:                                            
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PROOF. 
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We suppose that the condition (16) is true for all values of k-1; i.e.   
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Then, by induction we have to prove that the  condition (16) is true for all values of k, i.e. 
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From (4); (14), and (15), it is follows that: 
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From second Wolfe condition defined in (5), we have: 
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Therefore (21) becomes: 
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From (18) we have: 
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Hence: 
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Implies: 
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Thus, we obtain the desired result.  

 

From Lemma 2.1, it is known that dk is a descent direction of  f  at xk Furthermore, if an exact line search is used, then:  
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 In  this case, the new proposed spectral CD-method reduces to the standard CD-method, However, it is often that the exact 

line search is time-consuming and sometimes is unnecessary. In the following, we are going to develop a new spectral CG-

algorithm, where the search direction dk is chosen by (14)-(15) and the step-length is determined by strong Wolfe-type 

inexact line search. 

2.2  AN ACCELERATED LINE SEARCH PARAMETER. 

In this section we take advantage of this behavior of CG-algorithms and consider an acceleration scheme which was 

presented in (Andrei, 2009). In accelerated algorithm instead of (2) the new estimation of the minimum point is computed 

as: 
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Hence,  the new estimation of the solution is computed as in (28). Therefore, using the above acceleration scheme (28) and 

(29) we can present the following  new spectral CG-algorithm. 

 

2.3  Outline of the New Algorithm (NEW): 

 

Step 1:  Initialization: Take 
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            Compute
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Step 3:  Test for Convergence: If  epsgk 
  

is satisfied then the iterations 

              are stopped, eps. is small positive number. 

 

Step 4: Restarting Criterion: If Powell restarting criterion s. t. 
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              is satisfied then do a restart step by SD-direction; otherwise  

             continue. 
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Step 6:  New Search Direction: Compute the new Spectral search direction   
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Step 7: New Iteration: Set k=k+1 and go to Step 2. 
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 It is well known that, if  f  is bounded along the direction dk , then there exists a step length α k satisfying the Wolfe line 

search conditions (5). In our new proposed spectral CG-algorithm, when the Powell restarting condition (30) is satisfied, 

then we restart the algorithm with the negative gradient. Under reasonable assumptions, conditions (5) and (30) are 

sufficient to prove the global convergence of the new proposed algorithm. 

 

3.  CONVERGENCE ANALYSIS. 
 

In this section, we are in a position to study the global convergence property of the new proposed spectral CG-algorithm 

defined in (15). We first state the following mild assumptions, which will be used in the proof of global convergence 

property. 

 

Assumption (H): 

 

(i) The level set )}()(,:{ 1xfxfRxxS n  is bounded, where 1x  is the starting point. 

(ii) In a neighborhood  Ω  of S, f  is continuously differentiable and its gradient g is Lipschitz continuously, namely, 

there exists a constant 0L such that 
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where D is the diameter of Ω. From Assumption (H, ii), we also know that there exists a constant 0 , such that: 
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On some studies of the CG-methods, the sufficient descent or descent condition plays an important role. Unfortunately, this 

condition is hard to hold. 

  

3.1  A New Theorem 
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Divide both sides of the above equality by 
2)( k
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k dg  , then from (4), (16), (31) and (36) we obtain:  
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Reformulate; add and subtract a positive number yields: 
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From (31) and since: 
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Therefore, from (42) and (35) we have: 
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which indicates: 
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Which makes a contradiction to our assumption (34). Hence the proof of this theorem is complete. 
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4. NUMERICAL EXPERIMENTS 

 

The main work of this section is to report the performance of the new proposed spectral CG-method NEW on a set of fifty 

five complicated test problems. The original codes were written by (Andrei, 2008) in FORTRAN language and in double 

precision arithmetic and modified in this research paper to make it suitable to evaluate all algorithms considered in this 

paper. All the tests were performed on a PC. Our experiments were performed on the selected set of nonlinear 
unconstrained problems that have second derivatives available. These test problems are contributed in CUTE  (Bongartz et 

al, 1995) and their details are given in the Appendix. for each test function we have considered four different numerical 

experiments with number of variables n= 100,400,700 and 1000 and we have concerned only on the total of all of these 

dimensions for all tools used in these comparisons. All these methods terminate when the following stopping  criterion  is 

met.  

                          
510


kg                                                         (45) 

we also force these routines stopped if the iterations (NOI) exceed 1000 or the number of function evaluations (NOF) reach 

2000 without achieving the minimum. In all these tables(n) indicates as a dimension of the problem; (NOI) number of 

iterations; (NOF) number of function evaluations. 

   

In Table (4.1) we assess the reliability of the standard CD-method, against the standard FR; PR classical CG-methods 

using standard Wolfe conditions as a line search subroutine and using the same group of our test problems.  

 

In Table (4.2) we have compared the percentage performance of the standard CD-method against FR and PR CG-methods, 

using the standard Wolfe conditions as a line search subroutine. Now, taking over all the tools as 100% , in order to 

summarize our numerical results, we have concerned only on the total of four different dimensions n= 100, 400,700, 1000,  

for all tools used in these comparisons. 
 

In Tables (4.3) we assess the reliability of our new proposed spectral CG-algorithm, NEW against some recent spectral 

CG-algorithms like LDW;  KH spectral CG-methods using both standard and modified Wolfe conditions as a line search 

subroutine respectively and using the same set of test problems.  

 

In Table (4.4) we have compared the percentage performance of the new proposed spectral CG-algorithm NEW against  

KH and LDW, spectral CG algorithms using both standard and modified Wolfe conditions as a line search subroutine 

respectively. Now, taking over all the tools as 100%, in order to summarize our numerical results, we have concerned only 

on the total of  four different dimensions n= 100, 400,700, 1000,  for all tools used in these comparisons. 

 

Table (4.1a):  Comparisons between  FR; PR & CD Algorithms 

 

 

No. of Test 

Functions 

 

FR 

 

 

PR 

 

 

CD 

 

NOI NOF NOI NOF NOI NOF 

1 235     389       268     470       265     426       

2 23      52       23      52       23      52       

3 47     126       54     129       47     126       

4 53     148       53     148       53     148       

5 72     151       80     163       72     149       

6 17      46       17      46       17      46       

7 26      61       24      59       25      60       

8 29      71       30      73       29      71       

9 20      55       20      55       20      55       

10 22      58       22      58       22      58       

11 22      50       17      40       22      50       

12 163     329       164     331       163     329       

13 26      95       38     115       26      95       

14 7 25       7 25       7 25       

15 30      90       30      90       30      90       

16 29      59       29      59       29      59       

17 33      73       33      74       33      72       
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18 29      78       30      79       29      78       

19 18      33       18      33       18      33       

20 4 12       4 12       4 12       

21 1438    2320       1575    2122       1699    2556       

22 25      69       25      69       25      69       

23 69     200       105     230       68     194       

24 4 12       4 12       4 12       

25 7 16       7 16       7 16       

26 4 8 4 8 4 8 

27 34      59       37      63       34      59       

28 19      65       19      65       19      65       

29 23      54       23      54       23      54       

30 31      52       31      52       31      52       

 

 

 Table (4.1b) Comparisons between FR; PR & CD Algorithms 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

No. of Test Functions 

FR 

 

PR 

 

CD 

 

NOI   NOF NOI   NOF NOI   NOF 

31 25      54       25      54       25      54       

32 24      48       22      41       24      48       

33 58     135       58     129       58     135       

34 73     151       81     173       75     154       

35 23      59       23      59       23      59       

36 17      46       17      46       17      46       

37 24      36       24      36       24      36       

38 23      62       23      62       23      62       

39 30      60       31      61       30      60       

40 59     138       58     140       55     132       

41 19      55       19      55       19      55       

42 41      95       47     111       41      95       

43 20      44       20      44       20      44       

44 57     134       59     141       57     134       

45 10      35       10      35       10      35       

46 13      43       13      43       13      43       

47 7 27       7 27       7 27       

48 16      72       16      72       16      72       

49 33      73       33      74       33      72       

50 24      64       24      64       24      64       

51 117     250       118     236       120     266       

52 4 12       4 12       4 12       

53 77     154       74     154       76     153       

54 8 16       8 16       8 16       

55 21      60       21      60       21      60       

TOTAL 3382 6779 3626 6747 3671 7053 
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Table (4.2) Percentage Performance of CD against FR and PR  

 

 

 

 
 

 

 

 

 

 

Clearly, this table shows that the CD-method is the worse, because it does not generate sufficiently descent search 

directions in general. For this reason many Authors deal with improving the search direction of this method by 

implementing spectral CG-methods (as we will show in the next table). From this table we can conclude that both  FR and 

PR are very close to each other, while CD needs some an additional necessary conditions to become an effective method. 

Numerical results of this table indicates that FR saves about ( 8)%    NOI  and (4)%   NOF to complete solving this set of 

selected complicated nonlinear test problems, while PR saves about (2)%      NOI and (5)%  NOF to complete solving this 
set of selected complicated nonlinear test problems. 

 

 

Table (4.3a)  Comparisons between KH; LDW  & NEW  Spectral Algorithms 

 

 

No. of Test 

Functions 

KH 

 

LDW 

 

NEW 

 

NOI   NOF NOI   NOF NOI NOF 

1 154     332       122     331       48      56       

2 23      52       23      52       24      72       

3 55     148       59     148       39      79       

4 53     148       53     148       26     103       

5 69     135       67     132       69 77       

6 17      46       17      46       14      25       

7 22      53       22      53       24      82       

8 29      71       29      71       32      62       

9 20      55       20      55       18      51       

10 22      58       22      58       9 20       

11 24      51       24      51       15      24       

12 166     333       164     329       72     101       

13 27     105       35     113       8 20       

14 7 25       7 25       7 22       

15 30      90       30      90       29      77       

16 29       59       29       59       27      83       

17 34      76       36      78       20      52       

18 26      72       26      72       24      83       

19 18      33       18      33       14      38       

20 4 12       4 12       8 16       

21 1113    2017       1158    2058       85     132       

22 24      67       24      67       27      45       

23 59     173       76     205       22      39       

Tools CD 

 

FR 

 

PR 

 

NOI 100% 

 

92% 98% 

NOF 100% 

 

96% 95% 
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24 4 12 4 12       5 19       

25 7 16       7 16       7 17       

26 4 8 4 8 16      47       

27 27      52       27      46       42      93       

28 19      65       19      65       14      45       

29 23      54       23      54       16      26       

30 31      52       31      52       22      33       

  

 

Table (4.3b):  Comparisons between KH; LDW& NEW Spectral Algorithms 

 

 

No. of Test 

Functions 

KH 

 

LDW 

 

NEW 

 

NOI   NOF NOI   NOF NOI NOF 

31 25      54       25      54       23      34       

32 23      46       24      48       25      36       

33 56     124       55     123       35      46       

34 78     167       79     164       62      96       

35 23      59       23      59       18      53       

36 17      46       17      46       14      25       

37 28      44       28      44       28      40       

38 23      62       23      62       30      62       

39 29      57       29      57       23      58       

40 60     138       58     134       27      92       

41 19      55       19      55       16      26       

42 44      98       43      99       36      62       

43 20      44       20      44       8 20       

44 62     142       64     149       34      45       

45 10      35       10      35       18      26       

46 13      43       13       43       11      44       

47 7 27       7 27       11      19       

48 16      72       16       72       10      22       

49 34      76       36      78       22      48       

50 24      65       24      65       22      41       

51 95     219       99     222       74     170       

52 4 12       4 12       4 16       

53 73     146       76     158       75     120       

54 8 16 8 16 8 20       

55 21      60       21      60       15      27       

Total 2952 6377 3001 6465 1432 2887 
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Table (4.4) Percentage Performance of NEW against KH and LDW  

 

Tools LDW 

 

KH 

 

NEW 

 

NOI 100% 

 

98% 47% 

NOF 100% 

 

98% 44% 

 

 

Numerical results of this table indicates that NEW spectral CG-algorithm saves about (53)%    NOI  and (56)%   NOF 

compared with the spectral CG-algorithm LDW-method  and  about (51)%   NOI and (54)%  NOF against spectral KH-

algorithm to complete solving the set of selected complicated nonlinear test problems.  

 

CONCLUSIONS 

 

There exists a large variety of CG-algorithms. In this paper, we have presented a new spectral CG-algorithm in which the 

parameter kg  is computed as kk g . For uniformly convex functions, if the step-size kd  approaches zero, the gradient is 

bounded and the line search satisfies the strong Wolfe conditions, then our new spectral CG-algorithm is globally 

convergent. For general nonlinear functions, if the parameter k   is bounded, then our new spectral CG-algorithm is 

globally convergent.  

 

The performance percentage of our new proposed algorithm is very effective compared with other established CG-

algorithms for the selected set of test problems found in the CUTE library. However, in general among the six CG 

algorithms mentioned in this paper, we have found that the CD algorithm is the worse and the new proposed spectral CG 

algorithm is the best. The arrange of these algorithms as shown in this paper is given by: 

 

     CD (the worse)-------PR-------FR------LDW-----KH-----NEW (the best). 

 

6. APPENDIX 

 

The details of all selected test problems can be found in CUTE  (Bongartz et al, 1995): 

 

1) Extended Freudenstein & Roth  

2) Extended Trigonometric Function         

3) Extended Beale Function 

4) Extended Penalty Function 

5) Raydan 1 Function 

6) Raydan 2 Function  

7) Diagonal2 Function 
8) Hager Function 

9) Generalized Tridiagonal-1 Function 

10) Extended Tridiagonal-1 Function 

11) Extended Three Exponential Terms 

12) Generalized Tridiagonal-2 

13) Diagonal4 Function 

14) Diagonal5 Function 

15) Extended Himmelblau Function 

16) Generalized PSC1 Function 

17) Extended PSC1 Function 

18) Extended Block Diagonal BD1 Function 

19) Extended Cliff  CLIFF 
20) Quadratic Diagonal Perturbed Function 

21) Extended Wood Function 
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22) Extended Quadratic Penalty QP1 Function 

23) Extended Quadratic Penalty QP2 Function 

24) Extended EP1 Function 

25) Extended Tridiagonal-2 Function 

26) ARWHEAD 

27) NONDQUAR 
28) EG2 

29) DIXMAANA 

30) DIXMAANB 

31) DIXMAANC 

32) DIXMAANE 

33) Partial Perturbed Quadratic 

34) Broyden Tridiagonal 

35) EDENSCH Function 

36) DIAGONAL 6 

37) DIXON3DQ 

38) ENGVAL1 

39) DENSCHNA 
40) DENSCHNC 

41) DENSCHNB 

42) DENSCHNF 

43) BIGGSB1 

44) Extended Block-Diagonal BD2 

45) Generalized quartic GQ1 function 

46) Diagonal 7 

47) Diagonal 8 

48) Full Hessian 

49) SINCOS 

50) Generalized quartic GQ2 function 
51) EXTROSNB 

52) ARGLINB 

53) FLETCHCR 

54) HIMMELBG 

55) HIMMELBH 
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