On an Irreducibility Theorem of A. Cohn

Archana Malik
M.D.U Rohtak, Haryana India

A classical result of Cohn [See eg. Polya and Szego (1964)] states as follows:-

Theorem 1.1: If a prime p is expressed in the decimal system as

$$
\mathrm{p}=\sum_{\mathrm{k}=0}^{\mathrm{n}} \mathrm{a}_{\mathrm{k}} 10^{\mathrm{k}}, 0 \leq \mathrm{a}_{\mathrm{k}} \leq 9
$$

then the polynomial $\sum_{\mathrm{k}=0}^{\mathrm{n}} \mathrm{a}_{\mathrm{k}} \mathrm{x}^{\mathrm{k}}$ is irreolucible in $\mathrm{Z}[\mathrm{x}]$. In this paper, we shall give a generalization of Cohn's Theorem. We shall also prove a criterion to test the irreducibility of a wide class of polynomials.

Theorem 1.2: Let $f(x) \in Z[x]$ be a polynomial of degree n with z with zeroes $\alpha_{i}, \alpha_{2}, \ldots, \alpha_{n}$. If there is an integer b for which $f(b)$ is a prime, $f(b-1) \neq 0$ and $\operatorname{Re}\left(\alpha_{i}\right)<b-\frac{1}{2}$ for $1 \leq i \leq n$, then $f(x)$ is irreducible in $Z[x]$.

Proof : Let $f(x)$ be reducible in $Z[x]$ that is $f(x)=g(x) h(x)$ where $g(x), h(x) \in Z[x]$ with degree $(g(x))$, degree $(h(x)) \geq 1$. If α_{j} are the zeroes of $g(x)$ then $\operatorname{Re}\left(\alpha_{j}\right)<b-\frac{1}{2}$. Let degree $g(x)$ be m. Let $g(x)$ be factored over the complex field that is $g(x)$ $=a_{m}\left(x-\beta_{1}\right)\left(x-\beta_{2}\right) \ldots\left(x-\beta_{r}\right)\left(x-\beta_{r+1}\right) \ldots\left(x-\beta_{m}\right)$, where $\beta_{1}, \beta_{2} \ldots . \beta_{r}$, are reals and $\beta_{r+1}, \beta_{r+2} \ldots . \beta_{m}$ are complex number with non-zero imaginary part. Further, complex roots occur in pairs so that

$$
\begin{gathered}
g(x)=a_{m}\left(x-\beta_{1}\right)\left(x-\beta_{2}\right) \ldots\left(x-\beta_{r}\right)\left(x-\gamma_{r+1}-i \gamma_{r+2}\right) \ldots\left(x-\gamma_{r+1}+i \gamma_{r+2}\right) \\
\ldots\left(x-\gamma_{m-1}-i \gamma_{m}\right)\left(x-\gamma_{m-1}+i \gamma_{m}\right)
\end{gathered}
$$

Then $g\left(x+b-\frac{1}{2}\right)=a_{m}\left(x+b-\frac{1}{2}-\beta_{1}\right)\left(x+b-\frac{1}{2}-\beta_{2}\right) . .\left(x+b-\frac{1}{2}-\beta_{r}\right)$

$$
\begin{align*}
& \quad\left(x+b-\frac{1}{2}-\gamma_{r+1}-i \gamma_{r+2}\right)\left(x+b-\frac{1}{2}-\gamma_{r+1}+i \gamma_{r+2}\right) \cdot .\left(x+b-\frac{1}{2}-\gamma_{m-1}-i \gamma_{m}\right) \\
& \left(x+b-\frac{1}{2}-\gamma_{m-1}+i \gamma_{m}\right) \\
& =a_{m}\left(x+\delta_{1}\right)\left(x+\delta_{2}\right) . .\left(x+\delta_{r}\right)\left(x+\delta_{r+1}-i \gamma_{r+2}\right)\left(x+\delta_{r+1}+i \gamma_{r+2}\right) \\
& \quad .\left(x+\delta_{m-1}-i \gamma_{m}\right)\left(x+\delta_{m-1}+i \gamma_{m}\right) \tag{1.2.1}
\end{align*}
$$

where $\delta_{j}=b-\frac{1}{2}-\beta_{j}$ for $j=1,2, \ldots$, r
and $\delta_{j}=\mathrm{b}-\frac{1}{2}-\gamma_{\mathrm{j}}$ for $\mathrm{j}=\mathrm{r}+1, \mathrm{r}+3, \ldots \ldots, \mathrm{~m}-1$

$$
\begin{equation*}
=\mathrm{a}_{\mathrm{m}}\left(\mathrm{x}+\delta_{1}\right)\left(\mathrm{x}+\delta_{2}\right) \cdot \cdot\left(\mathrm{x}+\delta_{\mathrm{r}}\right)\left(\left(\mathrm{x}+\delta_{\mathrm{r}+1}\right)^{2}+\gamma_{\mathrm{r}+2}^{2}\right) \cdot\left(\left(\mathrm{x}+\delta_{\mathrm{m}-1}\right)^{2}+\gamma_{\mathrm{m}}^{2}\right) \tag{1.2.1}
\end{equation*}
$$

Since β 's are one of α 's so

$$
\operatorname{Re}\left(\beta_{\mathrm{j}}\right)<\mathrm{b}-\frac{1}{2} \text { for } \mathrm{j}=1,2, \ldots ., \mathrm{m} .
$$

$\therefore \delta_{1}>0$ for all i occuring in question. So each term occurring in (1.2.1) is positive except possibly for a_{m}. So if

$$
\mathrm{g}^{\prime}(\mathrm{x})=\left(\mathrm{x}+\delta_{1}\right) \cdot .\left(\mathrm{x}+\delta_{\mathrm{r}}\right)\left(\mathrm{x}^{2}+2 \mathrm{x} \delta_{\mathrm{r}+1}+\left(\delta_{\mathrm{r}+1}^{2}+\gamma_{\mathrm{r}+2}^{2}\right)\right)\left(\mathrm{x}^{2}+2 \mathrm{x} \delta_{\mathrm{m}-1}+\left(\delta_{\mathrm{m}-1}^{2}+\gamma_{\mathrm{m}}^{2}\right)\right)
$$

Then each coefficient in $g^{\prime}(x)$ is positive and no term is missing in $g^{\prime}(x)$. So all the terms in $g\left(x+b-\frac{1}{2}\right)$ have the same sign and no term is missing.
Now, the coefficients of $g\left(x+b-\frac{1}{2}\right)$ are strictly alternating.
Thus

$$
\left|g\left(b-\frac{1}{2}-t\right)\right|<\left|g\left(b-\frac{1}{2}+t\right)\right| \quad \text { for any } t>0
$$

If we take $t=\frac{1}{2}$, then

$$
|\operatorname{g}(\mathrm{b}-1)|<|\mathrm{g}(\mathrm{~b})|
$$

from the given conditions for $f(x)$, these conditions also hold for $g(x)$ that is

$$
\mathrm{g}(\mathrm{~b}-1) \in \mathrm{Z}[\mathrm{x}] \text { and } \mathrm{g}(\mathrm{~b}-1) \neq 0
$$

it follows that $|g(b-1)| \geq 1$ and $|g(b)| \geq 2$.
Similarly we get $|h(b)| \geq 2$ which gives us a contradiction to the assumption that $f(b)=h(b) g(b)$ is a prime. So our supposition that $f(x)$ is reducible, is wrong. Hence $f(x)$ is irreducible in $Z[x]$.

Theorem 1.3: Let $f(x)=\sum_{k=0}^{n} a_{k} x^{k}, \in Z[x]$ be a polynomial with $a_{n}>0, a_{n-1} \geq 0$ and $a_{n-2} \geq 0$.
Let $\mathrm{m}=$ maxi. $\left\{\frac{\left|\mathrm{a}_{\mathrm{k}}\right|}{\mathrm{a}_{\mathrm{n}}}\right\}$ for $0 \leq \mathrm{k} \leq \mathrm{n}-2$.

$$
r_{1}=\frac{1+\sqrt{4 m+1}}{2} r_{2}=\left[\frac{s+\sqrt{s^{2}-4}}{54}\right]^{\frac{1}{3}}+\left[\frac{s-\sqrt{s^{2}-4}}{54}\right]^{\frac{1}{3}}+\frac{1}{3}
$$

where $s=27 m+2$. If there is an integer

$$
b>\operatorname{maxi}\left\{\frac{r_{1}}{\sqrt{2}}, r_{2}\right\}+\frac{1}{2}
$$

for which $f(b)$ is prime and $f(b-1) \neq 0$ then $f(x)$ is irreducible in $Z[x]$.

Proof : Firstly let us consider the set

$$
A=\left[Z \in \mathbb{C}: \operatorname{Re}(z) \leq \operatorname{maxi}\left\{\frac{\mathrm{r}_{1}}{\sqrt{2}}, \mathrm{r}_{2}\right\}\right]
$$

In this theorem, we first prove that all zeroes of f lie in A by proving that $|f(z)|>0$ for $z \in A^{c}$, the complement of A and then we will apply theorem 1.2 and get the required result.

Now since $r_{1}=\frac{1+\sqrt{4 \mathrm{~m}+1}}{2} \geq 1$ since $\mathrm{m} \geq 0$.
$\Rightarrow \quad \mathrm{r}_{1} \geq 1$
and $\quad \mathrm{r}_{1}=\frac{1}{2}+\frac{\sqrt{4 \mathrm{~m}+1}}{2}$
$\Rightarrow \quad r_{1}-\frac{1}{2}=\frac{\sqrt{4 m+1}}{2}$.
Squaring both sides, we get

$$
\left(\mathrm{r}_{1}-\frac{1}{2}\right)^{2}=\frac{4 \mathrm{~m}+1}{4}
$$

$$
\begin{array}{ll}
\Rightarrow & \mathrm{r}_{1}^{2}+\frac{1}{4}-\mathrm{r}_{1}=\frac{4 \mathrm{~m}+1}{4} \\
\Rightarrow & \mathrm{r}_{1}^{2}-\mathrm{r}_{1}+\frac{1}{4}=\mathrm{m}+\frac{1}{4} \\
\Rightarrow & \mathrm{r}_{1}^{2}-\mathrm{r}_{1}=\mathrm{m} \\
\Rightarrow & \mathrm{r}_{1}^{2}-\mathrm{r}_{1}-\mathrm{m}=0 .
\end{array}
$$

Thus r_{1} is a positive zero of $x^{2}-x-m$ and $x^{2}-x-m>0$ for $x>r_{1}$

$$
r_{2}=\left[\frac{s+\sqrt{s^{2}-4}}{54}\right]^{\frac{1}{3}}+\left[\frac{s-\sqrt{s^{2}-4}}{54}\right]^{\frac{1}{3}}+\frac{1}{3}
$$

where $\mathrm{s}=27 \mathrm{~m}+2$ and $\mathrm{m}=\max .\left\{\frac{\left|\mathrm{a}_{\mathrm{k}}\right|}{\mathrm{a}_{\mathrm{n}}}\right\}$ for $0 \leq \mathrm{k} \leq \mathrm{n}-2$.
Since $\mathrm{s}=27 \mathrm{~m}+2, \mathrm{~m} \geq 0$
$\Rightarrow \quad \mathrm{s} \geq 2$
Set $x=\left[\frac{s+\sqrt{s^{2}-4}}{54}\right]^{\frac{1}{3}}$. Then $x \geq \frac{1}{3}$
Now $\left[\frac{s-\sqrt{s^{2}-4}}{54}\right]^{\frac{1}{3}}=\left[\frac{s-\sqrt{s^{2}-4}}{54} \times \frac{s+\sqrt{s^{2}-4}}{s+\sqrt{s^{2}-4}}\right]^{\frac{1}{3}}$

$$
=\left[\frac{s^{2}-\left(s^{2}-4\right)}{54\left(s+\sqrt{s^{2}-4}\right)}\right]^{\frac{1}{3}}
$$

$$
=\left[\frac{4}{54\left(\mathrm{~s}+\sqrt{\mathrm{s}^{2}-4}\right)}\right]^{\frac{1}{3}}
$$

$$
=\left[\frac{2}{27\left(s+\sqrt{s^{2}-4}\right)}\right]^{\frac{1}{3}}
$$

$$
=\left[\frac{54}{729\left(\mathrm{~s}+\sqrt{\mathrm{s}^{2}-4}\right)}\right]^{\frac{1}{3}}
$$

$$
=\frac{1}{9}\left[\frac{54}{s+\sqrt{s^{2}-4}}\right]^{\frac{1}{3}}
$$

$$
=\frac{1}{9 \mathrm{x}}
$$

$$
\mathrm{r}_{2}=\mathrm{x}+\frac{1}{9 \mathrm{x}}+\frac{1}{3}
$$

Let $\mathrm{f}(\mathrm{y})=\mathrm{y}+\frac{1}{9 \mathrm{y}}+\frac{1}{3}$ where $\mathrm{y} \geq \frac{1}{3}$.
Then $\mathrm{f}^{\prime}(\mathrm{y})=1-\frac{1}{9 \mathrm{y}^{2}} \geq 0$ for $\mathrm{y} \geq \frac{1}{3}$.
$\therefore \quad f(y)$ is an increasing function of y.
for $\mathrm{y}=\frac{1}{3}, \mathrm{f}(\mathrm{y})=\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1$
$\therefore \quad \mathrm{r}_{2} \geq 1$ for $\mathrm{x}=\frac{1}{3}$
i.e. $r_{2} \geq 1$ for $\mathrm{s}=27 \mathrm{~m}+2$.

Let A^{c} be partitioned into two sets $\mathrm{A}^{\mathrm{c}} \cap \mathrm{B}$ and $\mathrm{A}^{\mathrm{c}} \cap \mathrm{B}^{\mathrm{c}}$ where

$$
\mathrm{B}=\left\{\mathrm{Z} \in \mathbb{C}: \operatorname{Re}(\mathrm{z})<0 \text { or }|\mathrm{z}| \leq \mathrm{r}_{1}\right\}
$$

Let $\mathrm{z} \in \mathrm{A}^{\mathrm{c}} \cap \mathrm{B}^{\mathrm{c}}$. Then $\left(|\mathrm{z}|^{2}-|\mathrm{z}|-\mathrm{m}\right)>0$ since $|\mathrm{z}|>\mathrm{r}_{1}$.
Now $\operatorname{Re}\left(\frac{1}{z}\right)=\operatorname{Re}\left(\frac{\bar{z}}{z \bar{z}}\right)$

$$
\begin{aligned}
& =\operatorname{Re}\left(\frac{\bar{z}}{|z|^{2}}\right) \\
& =\frac{1}{|z|^{2}} \operatorname{Re}(\bar{z}) \\
& \Rightarrow \operatorname{Re}\left(\frac{1}{z}\right)>0
\end{aligned}
$$

and $\left|\frac{f(z)}{z^{n}}\right|=\left|\frac{a_{0}}{z^{n}}+\frac{a_{1} z}{z^{n}}+\ldots .+\frac{a_{n-1} z^{n-1}}{z^{n}}+\frac{a_{n} z^{n}}{z^{n}}\right|$

$$
=\left|\frac{a_{0}}{z^{n}}+\frac{a_{1}}{z^{1-n}}+\ldots .+\frac{a_{n-1}}{z}+a_{n}\right|
$$

$$
=\left|a_{n}+\frac{a_{n-1}}{z}+\sum_{k=2}^{n} \frac{\left|a_{n-k}\right|}{|z|^{k}}\right|
$$

$$
\leq\left|\mathrm{a}_{\mathrm{n}}+\frac{\mathrm{a}_{\mathrm{n}-1}}{\mathrm{z}}\right|+\left|\sum_{\mathrm{k}=2}^{\mathrm{n}} \frac{\mathrm{a}_{\mathrm{n}-\mathrm{k}}}{\left.\mathrm{z}\right|^{k}}\right|
$$

$$
\geq\left|a_{n}+\frac{a_{n-1}}{z}\right|-\sum_{k=2}^{n} \frac{\left|a_{n-k}\right|}{|z|^{k}}
$$

$$
\geq \operatorname{Re}\left(a_{n}+\frac{a_{n-1}}{z}\right)-\sum_{k=2}^{n} \frac{m a_{n}}{|z|^{k}}\left(\text { Since }\left|a_{k}\right|<m a_{n} \text { for } k=1,2, \ldots ., n-2\right)
$$

$$
>\operatorname{Re}\left(a_{n}+\frac{a_{n-1}}{z}\right)-\sum_{k=2}^{\infty} \frac{m a_{n}}{|z|^{k}}
$$

$$
=\operatorname{Re}\left(a_{n}+\frac{a_{n-1}}{z}\right)-\left(m a_{n}\right) \sum_{k=2}^{\infty} \frac{1}{|z|^{k}}
$$

$$
=\operatorname{Re}\left(a_{n}+\frac{a_{n-1}}{z}\right)-m a_{n}\left(\frac{1}{|z|^{2}}+\frac{1}{|z|^{3}}+\ldots .+\infty\right)
$$

$$
\begin{aligned}
& =\operatorname{Re}\left(a_{n}+a_{n-1}\right)-m a_{n} \frac{\frac{1}{|z|^{2}}}{1-\frac{1}{|z|}} \\
& =\operatorname{Re}\left(a_{n}+\frac{a_{n-1}}{z}\right)-\frac{m a_{n}}{|z|^{2}-|z|} \\
& =a_{n}+a_{n-1} \operatorname{Re}\left(\frac{1}{z}\right)-\frac{m a_{n}}{|z|^{2}-|z|} \\
& \geq a_{n}-\frac{m a_{n}}{|z|^{2}-|z|}\left(\because \operatorname{Re}\left(\frac{1}{z}\right)>0\right) \\
& =\frac{a_{n}\left(|z|^{2}-|z|-m\right)}{|z|^{2}-|z|}>0 \text { since } z \in A^{c} \cap B^{c}
\end{aligned}
$$

$$
\Rightarrow \quad|\mathrm{f}(\mathrm{z})| \neq 0 \text { for } \mathrm{z} \in \mathrm{~A}^{\mathrm{c}} \cap \mathrm{~B}^{\mathrm{c}}
$$

$$
\Rightarrow \quad \mathrm{f}(\mathrm{z}) \neq 0 \text { for } \mathrm{z} \in \mathrm{~A}^{\mathrm{c}} \cap \mathrm{~B}^{\mathrm{c}}
$$

In second case, let $\mathrm{z} \in \mathrm{A}^{\mathrm{c}} \cap \mathrm{B}$ then if $\mathrm{z} \in \mathrm{A}^{\mathrm{c}}$.
$\Rightarrow \quad \operatorname{Re}(z)>\operatorname{maxi} .\left\{\frac{r_{1}}{\sqrt{2}}, r_{2}\right\}>0$ and if $z \in B \Rightarrow \operatorname{Re}(z)<0$ or $|z| \leq r_{1}$. But $\operatorname{Re}(z)<0$ not possible so $|z| \leq r_{1}$. Since any complex number z can be written as

$$
\begin{array}{ll}
& z=r(\cos \theta+i \sin \theta) \text { where }-\pi<\cos \theta \leq \pi \\
\text { Now } & z \in B \Rightarrow \operatorname{Re}(z) \leq r_{1}, \text { i.e., } r \leq r_{1} \\
& z \in A^{c} \Rightarrow \operatorname{Re}(z)>\frac{r_{1}}{\sqrt{2}} \quad \text { i.e., } r>\frac{r_{1}}{2} \\
\therefore & r_{1} \cos \theta>r \cos \theta>\frac{r_{1}}{\sqrt{2}} \\
\Rightarrow & \cos \theta>\frac{1}{\sqrt{2}} \\
\Rightarrow & |\theta|<\frac{\pi}{4} . \\
\Rightarrow & |\arg . z|<\frac{\pi}{4}
\end{array}
$$

Since $\operatorname{Re}\left(\frac{1}{z}\right)=\frac{1}{|z|^{2}} \quad \operatorname{Re}(z)$
Replacing z by z^{2}, we get

$$
\operatorname{Re}\left(\frac{1}{z^{2}}\right)=\frac{1}{|z|^{4}} \operatorname{Re}\left(z^{2}\right)=\frac{r^{2} \cos 2 \theta}{r^{4}}=\frac{\cos 2 \theta}{r^{2}}>0
$$

since $|\theta|<\frac{\pi}{4}$.
Now $r_{2}=\left[\frac{s+\sqrt{s^{2}-4}}{54}\right]^{\frac{1}{3}}+\left[\frac{s-\sqrt{s^{2}-4}}{54}\right]^{\frac{1}{3}}+\frac{1}{3}$

$$
\Rightarrow \quad \mathrm{r}_{2}-\frac{1}{3}=\mathrm{a}+\mathrm{b} \text { where } \mathrm{a}=\left[\frac{\mathrm{s}+\sqrt{\mathrm{s}^{2}-4}}{54}\right]^{\frac{1}{3}} \text { and } \mathrm{b}=\left[\frac{\mathrm{s}-\sqrt{\mathrm{s}^{2}-4}}{54}\right]^{\frac{1}{3}} .
$$

Cubing both sides, we get

$$
\begin{aligned}
& {\left[\mathrm{r}_{2}-\frac{1}{3}\right]^{3}=(\mathrm{a}+\mathrm{b})^{3}} \\
& \Rightarrow \quad r_{2}^{3}-\frac{1}{27}-3 r_{2} \cdot \frac{1}{3}\left(r_{2}-\frac{1}{3}\right)=a^{3}+b^{3}+3 a^{2} b+3 a b^{2} \\
& \Rightarrow \quad r_{2}^{3}-\frac{1}{27}-r_{2}^{2}+\frac{r_{2}}{3}=a^{3}+b^{3}+3 a b(a+b) \\
& \Rightarrow \quad r_{2}^{3}-\frac{1}{27}-r_{2}^{2}+\frac{r_{2}}{3}=\frac{s+\sqrt{s^{2}-4}}{54}+\frac{s-\sqrt{s^{2}-4}}{54}+3\left(\frac{s+\sqrt{s^{2}-4}}{54}\right)^{\frac{1}{3}} \\
& \left(\frac{s-\sqrt{s^{2}-4}}{54}\right)^{\frac{1}{3}}\left(r_{2}-\frac{1}{3}\right) \\
& \Rightarrow \quad r_{2}^{3}-\frac{1}{27}-r_{2}^{2}+\frac{r_{2}}{3}=\frac{s}{27}+3\left(\frac{s^{2}-\left(s^{2}-4\right)}{54 \times 54}\right)^{\frac{1}{3}}\left(r_{2}-\frac{1}{3}\right) \\
& =\frac{\mathrm{s}}{27}+3\left(\frac{4}{54 \times 54}\right)^{\frac{1}{3}}\left(\mathrm{r}_{2}-\frac{1}{3}\right) \\
& =\frac{\mathrm{s}}{27}+\frac{3}{9}\left(\mathrm{r}_{2}-\frac{1}{3}\right) \\
& =\frac{\mathrm{s}}{27}+\frac{\mathrm{r}_{2}}{3}-\frac{1}{9} \\
& r_{2}^{3}-\frac{1}{27}-r_{2}^{2}+\frac{r_{2}}{3}=\frac{s}{27}+\frac{r_{2}}{3}-\frac{1}{9} \\
& \Rightarrow \quad \mathrm{r}_{2}^{3}-\mathrm{r}_{2}^{2}=\frac{\mathrm{s}}{27}-\frac{1}{9}+\frac{1}{27} \\
& =\frac{\mathrm{s}-3+1}{27} \\
& =\frac{\mathrm{s}-2}{27}=\mathrm{m} \text {. (given) } \\
& \Rightarrow \quad r_{2}^{3}-r_{2}^{2}-m=0 \text {. }
\end{aligned}
$$

Thus r_{2} is a root of the equation

$$
x^{3}-x^{2}-m=0 \text { that is } r_{2} \text { is a zero of } x^{3}-x^{2}-m
$$

$$
\begin{aligned}
\left|\frac{f(z)}{z^{n}}\right| & =\left|\frac{a_{0}}{z^{n}}+\frac{a_{1}}{z^{1-n}}+\ldots+\frac{a_{n-2}}{z^{2}}+\frac{a_{n-1}}{z}+a_{n}\right| \\
& =\left|\frac{a_{n-2}}{z^{2}}+\frac{a_{n-1}}{z}+a_{n}+\sum_{k=3}^{n} \frac{a_{n}-k}{(z)^{k}}\right| \\
& \geq\left|a_{n}+\frac{a_{n-1}}{z}+\frac{a_{n-2}}{z^{2}}\right|-\sum_{k=3}^{n} \frac{\left|a_{n-k}\right|}{|z|^{k}}
\end{aligned}
$$

$$
\begin{aligned}
& \geq\left|a_{n}+\frac{a_{n-1}}{z}+\frac{a_{n-2}}{z^{2}}\right|-\sum_{k=3}^{n} \frac{m a_{n}}{|z|^{k}} \\
& >\operatorname{Re}\left(a_{n}+\frac{a_{n-1}}{z}+\frac{a_{n-2}}{z^{2}}\right)-\sum_{k=3}^{\infty} \frac{m a_{n}}{|z|^{k}} \\
& =\operatorname{Re}\left(a_{n}\right)+a_{n-1} \operatorname{Re}\left(\frac{1}{z}\right)+a_{n-2} \operatorname{Re}\left(\frac{1}{z^{2}}\right)-m a_{n} \cdot\left(\frac{1}{|z|^{3}}+\frac{1}{|z|^{4}}+\ldots .\right) \\
& =a_{n}+a_{n-1} \operatorname{Re}\left(\frac{1}{z}\right)+a_{n-2} \operatorname{Re}\left(\frac{1}{z^{2}}\right)-\frac{m a_{n}}{|z|^{3}-|z|^{2}} \\
& \geq a_{n}-\frac{m a_{n}}{|z|^{3}-|z|^{2}} \\
& =\frac{a_{n}\left(|z|^{3}-|z|^{2}-m\right)}{|z|^{3}-|z|^{2}}>0 \text { since }|z|>r_{2}
\end{aligned}
$$

which is a positive zero of $x^{3}-x^{2} 0 m$ and $r_{2} \geq 1$ gives $\left|\frac{f(z)}{z^{n}}\right|>0$

$$
\Rightarrow \quad f(z) \neq 0 \quad \text { for } \quad z \in A^{c} \cap B
$$

Thus we have shown that all zeros of f lie in A by proving that $|f(z)|>0$ for $z \in A^{c}$. Hence all the hypothesis of theorem 1.2 are satisfied for integer b which gives $\mathrm{f}(\mathrm{x})$ is irreducible in $\mathrm{Z}[\mathrm{x}]$.

Remark 1.3.1 : We can note that theorem 1.3 does not depend upon the actual value of a_{n-1}.
Remark 1.3.2 : In the part of the proof of theorem 1.3 where $z \in A^{c} \cap B^{c}$, if we take $z \in B^{c}$ only in place $A^{c} \cap B^{c}$, we get that the result is true for this z i.e., $|f(z)|>0$ for any $z \in B^{c}$.

Corollary 1.3.1 : Let $b \geq 2$ be an integer and let $B=1$ if $b=0$ and

$$
B=\left[\frac{(b-1)(2 b-1-\sqrt{2})}{2}\right] \text { is } b \geq 3
$$

where brackets are greatest integer function. Also, let a prime p be expressed as

$$
\mathrm{p}=\sum_{\mathrm{k}=0}^{\mathrm{n}} \mathrm{a}_{\mathrm{k}} \mathrm{~b}^{\mathrm{k}}
$$

where $a_{n}>0, a_{n-1} \geq 0, a_{n-2} \geq 0$,

$$
\begin{aligned}
& \text { and } \frac{\left|\mathrm{a}_{\mathrm{k}}\right|}{\mathrm{a}_{\mathrm{n}} \leq \mathrm{B}} \text { for } 0 \leq \mathrm{k} \leq \mathrm{n}-2 \\
& \text { and define } \mathrm{f}(\mathrm{x})=\sum_{\mathrm{k}=0}^{\mathrm{n}} \mathrm{a}_{\mathrm{k}} \mathrm{x}^{\mathrm{k}} .
\end{aligned}
$$

If $f(b-1)=0$ then $f(x)$ is irreducible in $Z[x]$.
Proof: Because all the hypothesis of Theorem 1.3 except one are satisfied so to apply Theorem 1.3 we have only to show that

$$
\mathrm{b}>\operatorname{maxi} .\left\{\frac{\mathrm{r}_{1}}{\sqrt{2}}, \mathrm{r}_{2}\right\}+\frac{1}{2} .
$$

Let r_{1}^{*} and r_{2}^{*} be the positive zeros of $x^{2}-x-B$ and $x^{3}-x^{2}-B$ respectively.
Let us denote $g(x)=x^{2}-x-B$. Now since $m \leq B$, we have

$$
\begin{aligned}
& \mathrm{r}_{1}^{*}=\frac{1+\sqrt{4 \mathrm{~B}+1}}{2} \geq \frac{1+\sqrt{4 \mathrm{~m}+1}}{2}=\mathrm{r}_{1} \\
\Rightarrow \quad & \mathrm{r}_{1}^{*} \geq \mathrm{r}_{1}
\end{aligned}
$$

We have already proved that

$$
f(y)=y+\frac{1}{9 y}+\frac{1}{3} \text { is an increasing function of } y .
$$

Also r_{2}^{*} is a zero of $x^{3}-x^{2}-B$.
and $\mathrm{r}_{2}^{*}=\left[\frac{\mathrm{s}+\sqrt{\mathrm{s}^{2}-4}}{54}\right]^{\frac{1}{3}}+\left[\frac{\mathrm{s}-\sqrt{\mathrm{s}^{2}-4}}{54}\right]^{\frac{1}{3}}+\frac{1}{3}$
where $\mathrm{s}=27 \mathrm{~B}+2$.

Now since $m \leq B$.

$$
\begin{aligned}
& \mathrm{s}^{*}=27 \mathrm{~B}+2 \geq 27 \mathrm{~m}+2=\mathrm{s} \\
& \Rightarrow \quad \mathrm{~s}^{*} \geq \mathrm{s} \\
& \therefore \quad\left[\frac{\mathrm{~s}+\sqrt{\mathrm{s}^{2}-4}}{54}\right]^{\frac{1}{3}} \leq\left[\frac{\mathrm{s}^{*}+\sqrt{\mathrm{s}^{* 2}-4}}{54}\right]^{\frac{1}{3}} .
\end{aligned}
$$

Thus we have to show that $\mathrm{b}>\operatorname{maxi} .\left\{\frac{\mathrm{r}_{1}^{*}}{\sqrt{2}}, \mathrm{r}_{2}^{*}\right\}+\frac{1}{2}$.
$\because \quad r_{1}^{*}$ is a zero of $x^{2}-x-B$.
$\therefore \quad \frac{r_{1}^{*}}{\sqrt{2}}$ is a zero of $(\sqrt{2} x)^{2}-(\sqrt{2 x})-B=2 x^{2}-\sqrt{2 x}-B=h(x)$.
Now $h\left(b-\frac{1}{2}\right)=2\left(b-\frac{1}{2}\right)^{2}-\sqrt{2}\left(b-\frac{1}{2}\right)-B$.

$$
\begin{aligned}
& =\frac{2}{4}(2 b-1)^{2}-\frac{\sqrt{2}}{2}(2 b-1)-B \\
& =\frac{2 b-1}{2}(2 b-1-\sqrt{2})-B>0 \text { for } b \geq 3 \text { by definition of } B . \text { Also if } b=2, h\left(b-\frac{1}{2}\right)>0, \text { since } B=1 .
\end{aligned}
$$

Thus $h\left(b-\frac{1}{2}\right)>0$ for $b \geq 2$.

$$
\begin{aligned}
\mathrm{g}\left(\mathrm{~b}-\frac{1}{2}\right) & =\left(\mathrm{b}-\frac{1}{2}\right)^{3}-\left(\mathrm{b}-\frac{1}{2}\right)^{2}-\mathrm{B} \\
& =\left(\mathrm{b}-\frac{1}{2}\right)^{2}\left[\left(\mathrm{~b}-\frac{1}{2}\right)-1\right]-\mathrm{B} \\
& =\left(b-\frac{1}{2}\right)^{2}\left(b-\frac{3}{2}\right)-B
\end{aligned}
$$

For $\mathrm{b}=2$.

$$
\begin{aligned}
g\left(b-\frac{1}{2}\right) & =\left(b-\frac{1}{2}\right)^{2}\left(b-\frac{3}{2}\right)-B \\
& =\left(2-\frac{1}{2}\right)^{2}\left(2-\frac{3}{2}\right)-1 \\
& =\frac{9}{4} \cdot \frac{1}{2}-1 \\
& =\frac{9}{8}-1=\frac{1}{8}>0
\end{aligned}
$$

$$
\begin{aligned}
& \text { For } \mathrm{b}=3, \mathrm{~B}=\left[\frac{5(5-\sqrt{2})}{2}\right] \\
& \begin{aligned}
\Rightarrow \quad \mathrm{B} & =8 \\
\mathrm{~g}\left(\mathrm{~b}-\frac{1}{2}\right) & =\left(3-\frac{1}{2}\right)^{2}\left(3-\frac{3}{2}\right)-8 \\
& =\frac{75}{8}-8 \\
& =\frac{11}{8}>0
\end{aligned}
\end{aligned}
$$

Now let $\mathrm{b}>3$, Then $\mathrm{b} \geq 4$ since b is an integer.

$$
\begin{aligned}
g\left(b-\frac{1}{2}\right)= & \left(b-\frac{1}{2}\right)^{2}\left(b-\frac{3}{2}\right)-B \\
& =\left(b-\frac{1}{2}\right)^{2}\left(b-\frac{3}{2}\right)-\frac{(2 b-1)(2 b-1-\sqrt{2})}{2} \\
& >\left(b-\frac{1}{2}\right)^{2}\left(b-\frac{3}{2}\right)-\left(b-\frac{1}{2}\right)(2 b-1-\sqrt{2}) \\
& =\left(b-\frac{1}{2}\right)\left[\left(b-\frac{1}{2}\right)-\left(b-\frac{3}{2}\right)(2 b-1-\sqrt{2})\right] \\
& =\left(b-\frac{1}{2}\right)\left(b^{2}-2 b+\frac{3}{4}-2 b+1+\sqrt{2}\right) \\
& =\left(b-\frac{1}{2}\right)\left(b^{2}-4 b+\frac{7}{4}+\sqrt{2}\right) \\
& =\left(b-\frac{1}{2}\right)\left(b(b-4)+\frac{7}{4}+\sqrt{2}\right) \\
& >0 \text { for } b \geq 4 .
\end{aligned}
$$

Thus $\mathrm{g}\left(\mathrm{b}-\frac{1}{2}\right)>0$ for $\mathrm{b} \geq 2$.
Hence, we then have

$$
\begin{aligned}
& \mathrm{b}-\frac{1}{2}>\operatorname{maxi} .\left\{\frac{\mathrm{r}_{1}^{*}}{\sqrt{2}} \cdot \mathrm{r}_{2}^{*}\right\} \\
& \mathrm{b}-\frac{1}{2}>\operatorname{maxi} \cdot\left\{\frac{\mathrm{r}_{1}}{\sqrt{2}} \cdot \mathrm{r}_{2}\right\} \text { since } \mathrm{r}_{1}^{*} \geq \mathrm{r}_{1} \text { and } \mathrm{r}_{2}^{*} \geq \mathrm{r}_{2}
\end{aligned}
$$

Thus all the hypothesis of Theorem 1.3 are satisfied. Hence by applying that theorem we get $f(x)$ is irreducible in $\mathrm{Z}[\mathrm{x}]$.
Corollary 1.3.2: If a prime p is expressed in the number system with base $b \geq 2$ as $p=\sum_{k=0}^{n} a_{k} b^{k}, 0 \leq a_{k} \leq b-1$ then the polynomial $\sum_{\mathrm{k}=0}^{\mathrm{n}} \mathrm{a}_{\mathrm{k}} \mathrm{x}^{\mathrm{k}}=\mathrm{f}(\mathrm{x})$ is irreducible in $\mathrm{Z}[\mathrm{x}]$.

Proof : In order to prove it, we shall prove that $f(x)$ satisfies all the conditions of Corollary 1.3.1, that is
$\mathrm{f}(\mathrm{b}-1) \neq 0$.
and $\quad \frac{\left|a_{k}\right|}{a_{n}} \leq B$ for $0 \leq k \leq n-2$.
where $B=1$ if $b=2$
and $B=\left[\frac{(2 b-1)(2 b-1-\sqrt{2})}{2}\right]$ if $b \geq 3$
where brackets are greatest integer function.
Now $f(x)=\sum_{k=0}^{n} a_{k} x^{k}, a_{n} \neq 0,0 \leq a_{k} \leq b-1$

$$
\mathrm{f}(\mathrm{~b}-1)=\sum_{\mathrm{k}=0}^{\mathrm{n}} \mathrm{a}_{\mathrm{k}}(\mathrm{~b}-1)^{\mathrm{k}}
$$

For $b=2, B=1$

$$
\geq \mathrm{a}_{\mathrm{n}}(\mathrm{~b}-1)^{\mathrm{n}}>0 \forall \mathrm{~b} \geq 2 \text { since all } \mathrm{a}_{\mathrm{n}}^{\prime} \text { 's are positive and }(\mathrm{b}-1) \geq 1 .
$$

Since $0 \leq a_{n} \leq 1$ and $a_{n} \neq 0$
$\Rightarrow \quad a_{n}=1$.
Also $0 \leq \mathrm{a}_{\mathrm{k}} \leq 1=\mathrm{B}$
$\Rightarrow \quad \mathrm{a}_{\mathrm{k}} \leq \mathrm{B}$
$\Rightarrow \quad B \geq a_{k}$
So $\quad \frac{\left|a_{k}\right|}{a_{n}} \leq B$ for $b=2$
Let $\mathrm{b} \geq 3$. Then

$$
\begin{array}{ll}
& \quad B=\left[\frac{(2 b-1)(2 b-1-\sqrt{2})}{2}\right] \\
\text { Now } & \frac{(2 b-1)(2 b-1-\sqrt{2})}{2} \geq b-1 \\
\Leftrightarrow & (2 b-1)(2 b-1-\sqrt{2}) \geq 2 b-2 \\
\Leftrightarrow & 2 b-1-\sqrt{2} \geq \frac{2 b-2}{2 b-1}
\end{array}
$$

which holds if

$$
2 \mathrm{~b}-1-\sqrt{2} \geq 1
$$

or if $\quad 2 b \geq 2+\sqrt{2}$
which holds if $2 \mathrm{~b} \geq 4$

$$
\Rightarrow \quad b \geq 2
$$

Thus $\mathrm{B} \geq \mathrm{b}-1$ only if $\mathrm{b} \geq 2$.
But in case $b=2$, we have proved that $\frac{\left|a_{k}\right|}{a_{n}}<B$ so we take $b \geq 3$. Thus if $b \geq 3$ then

$$
\begin{array}{ll}
& \\
& \frac{\left|a_{k}\right|}{a_{n}} \leq\left|a_{k}\right| \leq b-1 \leq B \\
\Rightarrow & \frac{\left|a_{k}\right|}{a_{n}} \leq B \\
\text { so } & \frac{\left|a_{k}\right|}{a_{n}} \leq \text { B for } b \geq 2 .
\end{array}
$$

Hence, all the conditions of for 1.3.1. are satisfied so by applying for 1.3 .1 we get $f(x)$ is irreducible in $Z[x]$.

References

[1]. Hardy, G.M., and W.Right, E.M. (1938(a)), An introduction to the theory of numbers.
[2]. John Brillhart, Michael Filaseta and Andram Odlyzko (1981), On an irreducibility theorem of A, Cohn, Can. J. Math. Vol. XXXIII, No. 5, pp. 1055-1059.
[3]. Michael Filaseta, (1982), A further Generalization of an irreducibility theorem of A. Cohn., Can. J. Math. Vol. XXXIV, No. 6, pp.1390-1395.
[4]. Michael Filaseta, (1988), Irreducibility criteria for polynomials with non-negative coefficients, Can. J. Math. Vol. XL, No. 2, pp.339.351.

