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A classical result of Cohn [See eg. Polya and Szego (1964)] states as follows:- 

 

Theorem 1.1: If a prime p is expressed in the decimal system as  

 9a0,10ap k

n

0k

k
k 



 

then the polynomial 


n

0k

k
kxa  is irreolucible in Z[x]. In this paper, we shall give a generalization of Cohn’s Theorem. We 

shall also prove a criterion to test the irreducibility of a wide class of polynomials.  

 

Theorem 1.2 : Let f(x)  Z[x] be a polynomial of degree n with z with zeroes i, 2, ... , n. If there is an integer b for 

which f(b) is a prime, f (b – 1)  0 and Re(i) < b - 
2

1
 for  1  i  n, then f(x) is irreducible in Z[x]. 

 

Proof : Let f(x) be reducible in Z[x] that is f (x) = g(x) h(x) where g(x), h(x)  Z[x] with degree (g(x)), degree (h(x))  1. If 

j are the zeroes of g(x) then Re(j) < b - 
2

1
. Let degree g(x) be m. Let g(x) be factored over the complex field that is g(x) 

= am(x - 1) (x - 2).... (x - r) (x - r+1) ....  (x - m), where 1, 2 .... r, are reals and r+1, r+2 .... m are complex number 

with non-zero imaginary part. Further, complex roots occur in pairs so that  
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where jj
2

1
b   for j = 1, 2, ...., r 

and jj
2

1
b   for j = r + 1,  r + 3, ......, m – 1 
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2
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2
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2
1rr21m x...xx...xxa       ...(1.2.1) 

 

Since ’s are one of ’s so 

  
2

1
bRe j   for j = 1, 2, .... , m. 

01   for all i occuring in question. So each term occurring in (1.2.1) is positive except possibly for am. So if  
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2
1m1m

22
2r

2
1r1r

2
r1 x2xx2xx...xx'g   . 



International Journal of Enhanced Research in Educational Development (IJERED), ISSN: 2320-8708 
Vol. 2, Issue 3, May-June, 2014, pp: (39-49), Impact Factor: 1.125, Available online at: www.erpublications.com 

 

Page | 40  

 

 

Then each coefficient in  x'g  is positive and no term is missing in  x'g . So all the terms in 









2

1
bxg  have the same 

sign and no term is missing.  

Now, the coefficients of 









2

1
bxg  are strictly alternating.  

Thus 

 
















 t

2

1
bgt

2

1
bg   for any t > 0. 

If we take t = 
2

1
, then 

 |g(b – 1)| < |g(b)| 

from the given conditions for f(x), these conditions also hold for g(x) that is 

 g(b – 1)  Z[x] and g(b -1 )  0, 

it follows that |g(b – 1)|  1 and |g(b)|  2. 

 

Similarly we get |h(b)|  2 which gives us a contradiction to the assumption that f(b) = h(b) g(b) is a prime. So our 

supposition that f(x) is reducible, is wrong. Hence f(x) is irreducible in Z[x]. 

 

Theorem 1.3 : Let f(x) = ,xa
n

0k

k
k



  Z[x] be a polynomial with an > 0, an-1  0 and an-2  0. 

Let m = maxi. 
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|a|
 for 0  k  n – 2. 
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where s = 27m+2. If there is an integer 

 b > maxi
2

1
r,

2

r
2

1 








 

for which f(b) is prime and f(b – 1)  0 

then f(x) is irreducible in Z[x]. 

 

Proof : Firstly let us consider the set 

 A = 




















 2
1 r,
2

r
maxi)zRe(:Z . 

 

In this theorem, we first prove that all zeroes of f lie in A by proving that |f(z)| > 0 for z  A
c
, the complement of A and 

then we will apply theorem 1.2 and get the required result.  

 

Now since r1 = 1
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1m41



 since m  0. 
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Squaring both sides, we get  
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Thus r1 is a positive zero of x
2
 – x – m and x

2
 – x – m > 0 for x > r1 
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where s = 27m + 2 and m = max. 
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Let f(y) = 
3

1

y9

1
y   where y 

3

1
. 

Then 0
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1
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2
  for y  

3

1
. 

 f(y) is an increasing function of y. 

for y = 
3

1
, f(y) = 

3

1
 + 

3

1
 + 
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1
 = 1 

 r2  1 for x = 
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1
 

i.e. r2  1 for s = 27m + 2. 

 

Let A
c
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In second case, let z  A
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Thus r2 is a root of the equation 
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 since |z|  > r2 

which is a positive zero of x
3
 – x

2
 0 m and r2  1 gives 
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 0)z(f   for  z  A
c
  B. 

 

Thus we have shown that all zeros of f lie in A by proving that |f(z)| > 0 for z  A
c
. Hence all the hypothesis of theorem 1.2 

are satisfied for integer b which gives f(x) is irreducible in Z[x]. 

 

Remark 1.3.1 : We can note that theorem 1.3 does not depend upon the actual value of an-1.  

 

Remark 1.3.2 : In the part of the proof of theorem 1.3 where z  A
c
  B

c
, if we take z  B

c
 only in place A

c
  B

c
, we get 

that the result is true for this z i.e., |f(z)| > 0 for any z  B
c
. 

 

Corollary 1.3.1 : Let b  2 be an integer and let B = 1 if b = 0 and   
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where brackets are greatest integer function. Also, let a prime p be expressed as  
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where an > 0, an-1  0, an-2  0, 

 and 
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 for 0  k  n – 2 

 and define f(x) = 
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k
kxa . 

If f(b – 1) = 0 then f(x) is irreducible in Z[x]. 

 

Proof : Because all the hypothesis of Theorem 1.3 except one are satisfied so to apply Theorem 1.3 we have only to show 

that 
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Let 
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We have already proved that 
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For b = 3, B = 
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Thus all the hypothesis of Theorem 1.3 are satisfied. Hence by applying that theorem we get f(x) is irreducible in Z[x]. 

 

Corollary 1.3.2 : If a prime p is expressed in the number system with base b  2 as 



n

0k

k
kbap , 0  ak  b – 1 then the 

polynomial 


n

0k

k
kxa = f(x) is irreducible in Z[x].  

 

Proof : In order to prove it, we shall prove that f(x) satisfies all the conditions of Corollary 1.3.1, that is 
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and B
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where B =1 if b = 2 
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where brackets are greatest integer function. 
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Hence, all the conditions of for 1.3.1. are satisfied so by applying for 1.3.1 we get f(x) is irreducible in Z[x].  
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