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Abstract: Conjugate gradient (CG) methods are famous for solving nonlinear unconstrained optimization problems 

because they required low computational memory. In this paper, we propose a new conjugate gradient (𝛃𝐤
𝐍𝐞𝐰𝟏) 

which possesses global convergence properties using exact line search and inexact line search. The given method 

satisfies sufficient descent condition under strong Wolfe line search. Numerical results based on the number of 

iterations (NOI) and number of function (NOF), have shown that the new 𝛃𝐤
𝐍𝐞𝐰𝟏 performs better than Flecher-

Reeves (FR) CG methods. 
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1. Introduction 

 

The conjugate gradient method (CG) plays an important role in solving the unconstrained optimization problem. In general, 
the method has the following form: 

 

Min  f  x (1.1) 

x ∈ Rn 
 

where, f ∶  Rn →  R is continuously differentiable. The CG method is an iterative method of the form, 

 

xk+1 = xk + αkdk , k = 0,1,2,…  (1.2) 

 

wherexk  is the current iterate point, αk > 0 is a step size and dk is the search direction. Basically dk is defined by 

 

dk =  
−gk ,                      k = 0
−gk+1 + β

k
dk ,   k ≥ 1

 (1.3) 

 

where, gk is the gradient of f (x) at the point xk . β
k
∈ R is known as conjugate gradient  and different β

k
 will yield different 

CG methods. Some well-known formulas are given as follows: 

 

β
k
HS =

gk +1
T yk

dk
T yk

   (1.4) 

β
k
FR =

gk +1
T gk

gk
T gk

  (1.5) 

β
k
PR =

gk +1
T yk

gk
T gk

    (1.6) 

β
k
DX = −

gk +1
T gk

dk
T gk

   (1.7) 

β
k
BA 2 =

yk
T yk

gk
T gk

  (1.8) 

β
k
LS =

gk +1
T yk

−dk
T gk

      (1.9) 
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β
k
DY =

gk +1
T gk +1

dk
T yk

      (1.10) 

β
k
RMIL =

gk
T yk

dk
T (dk−gk +1)

    (1.11) 

β
k
AMRI =

 gk +1 
2−

 gk +1 

 gk 
 gk +1gk  

 dk 
2     (1.12) 

 

Where, gk and gk+1 g are the gradients of f (x) at the point xk  and xk+1respectively. The above corresponding methods, HS 

is known as Hestenes and Steifel [7], FR is Fletcher and Reeves [9], PR is Polak and Ribiere [4], DX is Dixon[3],BA3 is 

AL - Bayati, A.Y. and AL-Assady[2], 

 

LS is Liu and Storey[11], DY is  Dai and Yuan  [10] , RMIL is Rivaie, Mustafa, Ismail and Leong[8] and lastly AMRI 

denotes Abdelrhaman Abashar, Mustafa Mamat, Mohd Rivaie and Ismail Mohd[1]. 
 

In this paper, we propose our new β
k
New 1

and compared its performance with standard formulas of (FR) method . 

The remaining sections of the paper are arranged as follows. in section 2 , the new conjugate gradient formula and 

algorithm method presented, in section 3, we showed the sufficient descent condition and the global convergence proof of 

our new method. In section 4 numerical results, percentages, graphics and discussion. Lastly, In section 5 conclusion.  

 

2. New proposed method and algorithm 

 

In this algorithm, we modification the numerator in the proposed by Fletcher and Reeves method in 1964, where he 

proposed that:  

 

β
k
FR =

gk +1
T gk +1

gk
T gk

(2.1) 

Our proposal is  

gk+1 = gk+1 − γ
gk +1

T vk

vk
T yk

yk(2.2) 

where, γ ∈ (0,1] 
The new method is as follows: 
 

β
k
New 1 =

gk +1
T gk +1

gk
T gk

(2.3) 

 

We programmed the new method and compared with the numerical results of the method Fletcher and Reeves and we 

noticed superiority of the new method that proposed on the method of Fletcher and Reeves. 

 

2.1 Algorithm of the New1 Method 

 

Step (1): Given x0 ∈ Rn ,ε > 0, 0 < γ ≤ 1 

                Set k = 0, Compute f( x0), g0, dk = −gk 

 

Step (2): If  gk+1 < ε stop. 

 

Step (3):Compute αk > 0 satisfying the strong Wolfe condition 

xk+1 =  xk +  αkdk  
 

Step (4):Compute dk+1 =  −gk+1 + β
k
New 1 dk. 

gk+1 = gk+1 − γ
gk+1

Tvk

vk
Tyk

yk  

β
k
New 1 =

gk+1
Tgk+1

gk
Tgk

 

 

Step (5): If  gk+1
Tgk ≥  gk+1 

2 go to step (1) else continue. 

Step (6):Set k = k + 1, go to step (2) 
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3. The Global convergent Analysis of the New Method 

 

The convergence properties of β
k
New 1

 will be studied. For an algorithm to converge, it is necessary to show that the 

sufficient descent condition and the global convergence properties. 

 

3.1 Sufficient Descent Condition 
For the sufficient condition to hold, then    

gk
Tdk ≤ −C gk 

2fork ≥ 0    and  C > 0    (3.1) 

 

Theorem 3.1 

Consider a CG method with search direction (1.3) and β
k
New 1

defined as (2.3), assume that αk is satisfies strong Wolfe 

condition then, condition (3.1) will holds for all k ≥ 0 in both cases exact line search and inexact line search. 

 

Proof 

By using induction mathematical 

If k = 0, then we will have g0
Td0 ≤ −C g0 

2 .  Hence condition (3.1) hold. 

We need to show that for 𝑘 ≥ 1, condition (3.1), we also holds. 

Now we prove the current search direction satisfies (3.1) at the iteration (𝑘 + 1). From (1.3) , multiply by 𝑔𝑘+1 then 
 

𝑔𝑘+1
𝑇 𝑑𝑘+1 = 𝑔𝑘+1

𝑇 (−𝑔𝑘+1 + 𝛽𝑘
𝑁𝑒𝑤 1𝑑𝑘+1

𝑇 ) 

                   = − 𝑔𝑘+1 
2 + 𝛽𝑘

𝑁𝑒𝑤 1𝑔𝑘+1
𝑇 𝑑𝑘  

 

The proof is compete if the line search is exact, then  𝑔𝑘+1
𝑇 𝑑𝑘 = 0, and thus, 

 

𝑔𝑘+1
𝑇 𝑑𝑘 = − 𝑔𝑘+1 

2 
 

Which implies that 𝑑𝑘+1 is a sufficient descent condition. 

Now, if the line search is an inexact line search which requires 𝑔𝑘+1
𝑇 𝑑𝑘 ≠ 0. 

𝑔𝑘+1
𝑇 𝑑𝑘+1 = − 𝑔𝑘+1 

2 + 𝛽𝑘
𝑁𝑒𝑤 1𝑔𝑘+1

𝑇 𝑑𝑘(3.2) 

Put (2.2) and (2.3) in (3.2), we get 

𝑔𝑘+1
𝑇 𝑑𝑘+1 = − 𝑔𝑘+1 

2 +
 𝑔𝑘+1 

2

 𝑔𝑘 
2
𝑑𝑘
𝑇  𝑔𝑘+1 − 𝛾

𝑔𝑘+1
𝑇𝑣𝑘

𝑣𝑘
𝑇𝑦𝑘

𝑦𝑘  

⇒  𝑔𝑘+1
𝑇 𝑑𝑘+1 = − 𝑔𝑘+1 

2 +
 𝑔𝑘+1 

2

 𝑔𝑘 
2
 𝑑𝑘

𝑇𝑔𝑘+1 − 𝛾
𝑔𝑘+1

𝑇𝑣𝑘
𝑣𝑘

𝑇𝑦𝑘
𝑑𝑘
𝑇𝑦𝑘  

⇒  𝑔𝑘+1
𝑇 𝑑𝑘+1 = − 𝑔𝑘+1 

2 +
 𝑔𝑘+1 

2

 𝑔𝑘 
2
 𝑑𝑘

𝑇𝑔𝑘+1 − 𝛾
𝛼𝑘𝑑𝑘

𝑇𝑔𝑘+1

𝛼𝑘𝑑𝑘
𝑇𝑦𝑘

𝑑k
𝑇𝑦𝑘  

Since 𝑑𝑘
𝑇𝑦𝑘 and 𝛼𝑘  are scalars, then 

𝑔𝑘+1
𝑇 𝑑𝑘+1 = − 𝑔𝑘+1 

2 +
 𝑔𝑘+1 

2

 𝑔𝑘 
2 𝑑𝑘

𝑇𝑔𝑘+1(1 − 𝛾)   (3.4) 

By strong Wolfe condition, we have 

𝑔𝑘+1
𝑇 𝑑𝑘+1 ≤ − 𝑔𝑘+1 

2 +
 𝑔𝑘+1 

2

 𝑔𝑘 
2

(−𝑐2𝑑𝑘
𝑇𝑔𝑘(1 − 𝛾)) 

= − 𝑔𝑘+1 
2 +  𝑔𝑘+1 

2(1 − 𝛾) 

=  𝑐2 − 𝑐2𝛾 − 1  𝑔𝑘+1 
2 

Since 0 < 𝑐2 < 1  and 𝛾 ∈  0,1 , then  𝑐2 − 𝑐2𝛾 − 1 < 0 

𝑔𝑘+1
𝑇 𝑑𝑘+1 ≤ −𝐶 𝑔𝑘+1 

2where𝐶 = 𝑐2 − 𝑐2𝛾 − 1 

 

Lemma 3.1 
The norm of consecutive search direction are given by below expression 
 𝑑𝑘+1 ≤  𝛽𝑘

𝑁𝑒𝑤 1  𝑑𝑘 , for all 𝑘 

 

Proof  

From (1.3), we have 

𝑑𝑘+1 + 𝑔𝑘+1 = 𝛽𝑘
𝑁𝑒𝑤 1𝑑𝑘 , By take norm both sides, we have 

 𝑑𝑘+1 + 𝑔𝑘+1 =  𝛽𝑘
𝑁𝑒𝑤 1  𝑑𝑘 , By using triangular inequality, we get 

∎ 
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 𝑑𝑘+1 ≤  𝑑𝑘+1 + 𝑔𝑘+1 =  𝛽𝑘
𝑁𝑒𝑤 1  𝑑𝑘 , Hence, we get 

 𝑑𝑘+1 ≤  𝛽𝑘
𝑁𝑒𝑤 1  𝑑𝑘 , for all 𝑘 

 

Lemma 3.2 

The norm of search direction and the norm of gradient are the same that is 
 𝑑𝑘 

2 =  𝑑𝑘 
2 (3.5) 

 

Proof 

Multiply this equation 𝑑𝑘 = −𝑔𝑘by 𝑔𝑘
𝑇, we get 

𝑔𝑘
𝑇𝑑𝑘 = − 𝑔𝑘 

2(3.6) 

By square (3.6), we have 

 𝑔𝑘
𝑇𝑑𝑘 

2 = − 𝑔𝑘 
4 ⇒  𝑔𝑘 

2 𝑑𝑘 
2 =  𝑔𝑘 

4 

Since 𝑔𝑘 ≠ 0, we get (3.5) 

 

Lemma 3.3 

The following relation holds for 𝑘 ≥ 0 in exact line search. 
 𝑔𝑘+1 − 𝑑𝑘 

2 =  𝑔𝑘+1 
2 +  𝑑𝑘 

2(3.7) 

 

Proof  
 𝑔𝑘+1 − 𝑑𝑘 

2 =  𝑔𝑘+1 − 𝑑𝑘 
𝑇 𝑔𝑘+1 − 𝑑𝑘  

= ( 𝑔𝑘+1
𝑇 − 𝑑𝑘

𝑇) 𝑔𝑘+1 − 𝑑𝑘  

                                                    =  𝑔𝑘+1 
2 − 𝑔𝑘+1

𝑇𝑑𝑘 − 𝑑𝑘
𝑇𝑔𝑘+1+ 𝑑𝑘 

2 

Since 𝑔𝑘+1
𝑇𝑑𝑘 = 0, we get (3.7)  

 

 

3.2 Global Convergent 

The following assumption are often needed to prove the convergence of the nonlinear conjugate gradient method, see [6] 

 

Assumption1: 

(i)  𝑓 is bounded below on the level set 𝑅𝑛  continuous and differentiable in a neighborhood  𝑁 of the level set 

𝐿 =  𝑥 ∈ 𝑅𝑛 : 𝑓(𝑥) ≤ 𝑓(𝑥0)  at the initial point 𝑥0. 

(ii) The gradient 𝑔(𝑥) is Lipschitz continuous in 𝑁, so there exists a   constant 𝐿 > 0 such that  𝑔 𝑥 − 𝑔(𝑦) ≤
𝐿 𝑥 − 𝑦  for any 𝑥, 𝑦 ∈ 𝑁. 

Based on this assumption, we have the below theorem that was proved by Zoutendijk [5] 
 

Theorem 3.1 

Suppose that assumption1 holds. Consider any conjugate gradient of the from (1.3) where 𝑑𝑘  is a descent search direction 

and we take 𝛼𝑘  in both cases exact line search and inexact line search. Then the following condition known as Zoutendijk 

condition holds 

 
 𝑔𝑘

𝑇𝑑𝑘 
2

 𝑑𝑘 
2

∞

𝑘=0

< ∞ 

From the previous information, we can obtain the following convergence theorem of the conjugate gradient methods. 

 

Theorem 3.2 

Suppose that assumption1 is true. Consider any conjugate gradient method of the form (1.3), where, 𝛼𝑘  is obtained by both 

cases exact line search and inexact line search and 𝑑𝑘  is a descent search direction then either, 

𝑙𝑖𝑚𝑘→∞ 𝑔𝑘 = 0Or 
 𝑔𝑘

𝑇𝑑𝑘 
2

 𝑑𝑘 
2

∞
𝑘=0 < ∞ 

 

Proof  

To prove Theorem3.2, we use contradiction. If Theorem 3.2 is not true, then there exists a constant  𝜇 > 0, such that  
 𝑔𝑖 ≥ 𝜇, ∀𝑖 ≥ 0.                                                                           (3.8) 

Rewrite (1.3), we get 

𝑑𝑘+1 + 𝑔𝑘+1 = 𝛽𝑘
𝑁𝑒𝑤 1𝑑𝑘(3.9) 

Squaring the above equation, we get    

∎ 

∎ 

∎ 
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 𝑑𝑘+1 
2 =  𝛽𝑘

𝑁𝑒𝑤 1 2 𝑑𝑘 
2 − 2𝑔𝑘+1

𝑇 𝑑𝑘+1 −  𝑔𝑘+1 
2(3.10) 

Dividing both sides of equation (3.10) by 𝑔𝑘+1
𝑇 𝑑𝑘+1 

2, therefore we end up with  
 𝑑𝑘+1 

2

 𝑔𝑘+1
𝑇 𝑑𝑘+1 

2
=
 𝛽𝑘

𝑁𝑒𝑤 1 2 𝑑𝑘 
2

 𝑔𝑘+1
𝑇 𝑑𝑘+1 

2
−

2

 𝑔𝑘+1
𝑇 𝑑𝑘+1 

2
−

 𝑔𝑘+1 
2

 𝑔𝑘+1
𝑇 𝑑𝑘+1 

2
 

                                  =
 𝛽𝑘

𝑁𝑒𝑤 1 2 𝑑𝑘 
2

 𝑔𝑘+1
𝑇 𝑑𝑘+1 

2
−  

1

 𝑔𝑘+1 
+

 𝑔𝑘+1 

𝑔𝑘+1
𝑇 𝑑𝑘+1

 

2

+
1

 𝑔𝑘+1 
2
 

≤
 𝛽𝑘

𝑁𝑒𝑤 1 2 𝑑𝑘 
2

 𝑔𝑘+1
𝑇 𝑑𝑘+1 

2
+

1

 𝑔𝑘+1 
2
 

Substitute 𝛽𝑘
𝑁𝑒𝑤 1 , we have 

 𝑑𝑘+1 
2

 𝑔𝑘+1
𝑇 𝑑𝑘+1 

2
≤
 
 𝑔𝑘+1 

2

 𝑔𝑘 
2
 

2

 𝑑𝑘 
2

 𝑔𝑘+1
𝑇 𝑑𝑘+1 

2
+

1

 𝑔𝑘+1 
2
 

                   =
 𝑔𝑘+1 

2

 𝑑𝑘 
2 𝑑𝑘+1 

2
+

1

 𝑔k+1 
2
 

From Lemma 3.2, it gives us 
 dk+1 

2

 gk+1
T dk+1 

2 ≤
1

 gk 
2

+
1

 gk+1 
2
 

Hence fork = 0 the above inequality yield 
 d1 

2

 g1
Td1 

2
≤

1

 g0 
2

+
1

 g1 
2
 

Hence for allk, we conclude that  
 dk 

2

 gk
Tdk 

2
≤

1

 g0 
2

+
1

 gk 
2
 

Therefore  

 dk 
2

 gk
Tdk 

2
≤ 

1

 gi 
2

k

i=0

 

 

So, by (3.8) 

 dk 
2

 gk
Tdk 

2
≤ 

1

μ2

k

i=0

  ⟹ 
 dk 

2

 gk
Tdk 

2
≤

1

μ2
 1

k

i=0

⟹
 dk 

2

 gk
Tdk 

2
≤

k

μ2
 

⟹  
 gk

Tdk 
2

 dk 
2
≥

μ2

k
 

We take summation both sides, we get 

 
 gk

Tdk 
2

 dk 
2

∞

k=0

≥ μ2  
1

k

∞

k=0

= ∞ 

 
 gk

Tdk 
2

 dk 
2

∞

k=0

≥ ∞ 

Which contradicts Zountendijk condition in Theorem 3.1 The proof is then complete. 

 

4. Numerical Results and Discussions 

 

This section is devoted to test the implement of the new method. We compare the new conjugate gradient algorithm (New1) 

and standard (F/R). The comparative tests involve well known nonlinear problems (classical test function) with different 

function 4 ≤ N ≤ 5000. all programs are written in FORTRAN 95 language and for all cases the stopping condition  
 gk+1 ∞ ≤ 1 × 10−5 

and restart using Powell condition  gk
Tgk+1 ≥ 0.2 gk+1 

2 .The line search routine was a cubic interpolation which uses 
function and gradient values. The results given in tables (4.1) and (4.2) specifically quote the number of iteration NOI and 

the number of function NOF. Experimental results in tables (4.1) and (4,2) confirm that the new conjugate gradient 

algorithm (New1) is superior to standard algorithm (F/R)  
with respect to the number of iterations NOI and the number of functions NOF. 

∎ 
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No. of  test Test function N 
Standard Formula (FR) New Formula (New1) 

NOI NOF NOI NOF 

1 

 
Rosen 

4 30 
30 

30 

30 

30 

85 
85 

85 

85 

85 

29 
29 

29 

29 

30 

80 
80 

80 

80 

82 

100 

500 

1000 

5000 

2 Cubic 

4 13 

14 

15 

15 

15 

38 

40 

44 

44 

44 

12 

13 

13 

13 

13 

35 

37 

37 

37 

37 

100 

500 

1000 

5000 

3 Powell 

4 40 

42 
43 

43 

43 

109 

123 
125 

125 

125 

27 

29 
30 

36 

41 

76 

89 
91 

110 

128 

100 

500 

1000 

5000 

4 Wolfe 

4 11 

45 

46 

52 

141 

23 

91 

93 

105 

293 

11 

45 

49 

49 

105 

23 

91 

99 

99 

224 

100 

500 

1000 

5000 

5 

 
Wood 

4 27 

27 

27 

27 

29 

61 

61 

61 

61 

66 

25 

26 

26 

26 

26 

57 

59 

59 

59 

59 

100 

500 

1000 

5000 

6 Non-diagonal 

4 23 

27 

27 

27 

27 

61 

73 

73 

73 

73 

23 

27 

27 

27 

27 

61 

73 

73 

73 

73 

100 

500 

1000 

5000 

 
 

 

 

 

 

No. of  test 

 
 

 

 

 

 

Test function 

 
 

 

 

 

 

N 

 

 

 

 

 

Standard Formula (FR) 

 

 

 

 

 

New Formula (New1) 

NOI NOF NOI NOF 

9 

 
G-centeral 

4 18 

24 

28 

28 

28 

123 

194 

251 

251 

251 

12 

16 

17 

17 

23 

65 

118 

131 

131 

213 

100 

500 

1000 

5000 

Comparative Performance of Two Algorithm Standard 𝐅/𝐑 and New1 

 

Table (4.1) 

Table (4.2) 
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Comparing the rate of improvement between the new algorithm (New1) and the standard algorithm (F/R) 

 

 

 

 

 

Table (4.3) shows the rate of improvement in the new algorithm (New1)with the standard algorithm (F/R), The numerical 

results of the new algorithm is better than the standard algorithm, As we notice that (NOI), (NOF) of the  standard 

algorithm are about 100%, That means the new algorithm has improvement on standard algorithm prorate (8.3499%) in 

(NOI) and prorate (10.6352%) in (NOF), In general the new algorithm (New1) has been improved prorate (9.49256%) 
compared with standard algorithm (F/R). 

 

10 Beal  

4 11 

12 

12 

12 

12 

28 

30 

30 

30 

30 

11 

11 

11 

11 

11 

28 

28 

28 

28 

28 

100 

500 

1000 

5000 

11 G-full 

4 3 

141 

299 

392 

891 

7 

283 

599 

785 

1783 
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Total 4024 10845 3688 9692 

Tools Standard algorithm (F/R) New algorithm (New1) 

NOI 100% 91.6501% 

NOF 100% 89.3648% 

Table (4.3) 
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Figure (4.1):  shows the comparison between new algorithm (New1) and the standard algorithm (R/F) according to the total 

number of iterations (NOI) and the total number of functions (NOF). 

 

Conclusion 

 

In this paper, we proposed a new and simple β
k
New 1

 that has global convergence properties. Numerical results have shown 

that this new β
k
New 1

performs better than FR .In the future we can improve the method to HS, PR, DX, DY, LS and other 

method. 
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