

Auxiliary Power Saving In Air Cooled Heat Exchanger by Fans

Parag Mishra¹, Dr Manoj Arya²

¹Department of Mechanical Engineering, Radharaman Institute of Research & Technology, Bhopal, MP, India ²Department of Mechanical Engineering, MANIT Bhopal, MP, India

ABSTRACT

A heat exchanger is a heat transfer device that exchanges heat between two or more process fluids. A heat exchanger is used for transfer of internal thermal energy between two or more fluids available at different temperatures. In most heat exchanger fluids are separated by a heat-transfer surface, and ideally they do not mix. Heat exchangers have widespread industrial and domestic applications. Today's heat exchangers must meet a variety of highly demanding requirements. In terms of performance, they have to ensure maximum heat transfer while keeping size to a minimum. Furthermore, the durability of heat exchangers must be extremely high, providing trouble-free performance throughout its service life at low manufacturing costs. The obvious advantage of an air cooler is that it does not require water, which means that equipment requiring cooling need not be near a supply of cooling water. In addition, the problems associated with treatment and disposal of water have become more costly with government regulations and environmental concerns. The air-cooled heat exchanger provides a means of transferring the heat from the fluid or gas into ambient air, without environmental concerns, or without great ongoing cost. This is made possible by the large variety of aluminumbased materials and product forms that empower system designers and manufacturers with multiple options for significant design improvement and cost reduction. Aluminum, in its various forms, offers clear possibilities to achieve these goals and is also well positioned to meet the challenges of the increasing market demands for cost effective, energy-efficient products and new customized, innovative applications.

INTRODUCTION

An air cooled heat exchanger, or ACHE, is simply a pressure vessel which cools a circulating fluid within finned tubes by forcing ambient air over the exterior of the tubes. The Air-cooled heat exchanger is a device for rejecting heat from a fluid or gas directly to ambient air. When cooling both fluids and gases, there are two sources readily available, with a relatively low cost, to transfer heat to.....air and water. A heat exchanger consists of heat-exchanging elements such as a core or matrix containing the heat-transfer surface, and fluid distribution elements such as headers or tanks, inlet and outlet nozzles or pipes, etc. Usually, there are no moving parts in the heat exchanger; however, there are exceptions, such as a rotary regenerator in which the matrix is driven to rotate at some design speed. The heat-transfer surface is in direct contact with fluids through which heat is transferred by conduction. The portion of the surface that separates the fluids is referred to as the primary or direct contact surface. To increase heat-transfer area, secondary surfaces known as fins may be attached to the primary surface

FANS

The air-cooled heat exchanger is controlled by two factors, the tube bundle size and configuration, and the ability to move air across the surface area that the bundle provides. Therefore, a major consideration of air cooler manufactures is not only the selection of the proper fan, but also the design of plenums to force the air across the surface area. The common means of moving air across the air cooler bundle is an axial flow, propeller type fan that either pushes (forced draft) the air across the bundle or pulls (induced draft) it across.

Even distribution of the air across the tube bundle is critical for uniform heat transfer. this is normally achieved by adequate fan to bundle coverage and controlling the static pressure loss across the bundle. A good design practice, and API661 requirement, is to maintain a forty percent (40%) coverage of the face area of the tube bundle to the area of the fan. Coverage's of less than this will allow for lower airflows on the outer surfaces of the tube bundle, and can

result in poor performance. In addition, the distance from the fan to the coil can be critical. Again, good design practice requires an air dispersion angle of forty five percent (45%). The angle is measured from the outlet side of the fan ring to the center of the depth of the coil. This distance will allow the air to disperse, rather than channel directly through the bundle in front of the fan.

In horizontal configurations, the face coverage and air dispersion angle control the plenum size. On vertical configurations, many times the forty five percent dispersion angle is more difficult, since the overall size of the cooler is affected. Therefore, the designer must compensate for this design flaw by other means. This can be accomplished by additional air flow from the fan, resulting is more air flow than required directly in front of the fan, with the outside surfaces at the design velocity. It can also be accomplished by adding additional surface area to the coils affected. On vertical coolers with vertical air discharge, the designer also has to deal with the problem of discharging the air from the cooler, without causing additional pressure losses to the fan. Careful design of the size of the discharge plenum must be undertaken to assure the air can discharge the cooler.

Fans can vary in size from 2 to 20 feet in diameter, and can have from 2 to 16 blades. Common sizes are in one-foot increments, but can be supplied in any diameter desired. Generally the blades are aluminum, but other materials are available, including steel, fiberglass, reinforced plastic and wood. Normally the blades of the air cooler have a profile that allows an even distribution of air across the length of the blade. This can be accommodated for by a blade that has a wide chord width at the tip, and tapers to a narrow chord at the tip. In addition, most blades have a twist that compensates for the slower velocity at the portion of the blade closer to the center of the fan. This helps produce a more uniform, efficient air velocity pressure.

Heat Exchanger Fan Selection

Fan Engineering Nomenclature

ACFM - Actual cubic feet per minute of air moved by the fan.

Actual Conditions - Resistances related to actual inlet or outlet temperature and fan elevation above mean sea level compared to standard conditions.

Air Density - Air density at the plane of the fan based on standard or actual conditions. Beam Passing Frequency - Number of times per revolution that one fan blade passes over a beam or strut thought of as "how the structure interacts with the fan blade" ex- pressed in cycles/sec (Hz).

Blade Natural Frequency - Frequency at which a blade freely vibrates when it is struck in cycles/sec (Hz). **Blade Passing Frequency** - Number of times per revolution that a fan tip passes a point on the fan ring expressed in cycles/sec (Hz) thought of as "how the fan interacts with the structure".

Brake Horsepower - (BHP) - Net power required by the fan at actual conditions to perform the required design work. **Chord** - Straight line distance between the leading and trailing airfoil edges. **Fan Diameter** - Width/distance between opposite blade tips.

Fan Laws - Set of laws that predict performance changes if one or more parameters are changed from one fan or operating condition to another. These laws govern airflow, pres- sure capability and power required among many other parameters.

Fan Ring Diameter - Inside diameter of fan housing at the plane of fan.

First Mode Resonant Frequency - Frequency at which a blade freely vibrates when struck ("natural" frequency) in cycles/sec (Hertz).

Forced Draft ACHE - Fan is located below the heat transfer surface forcing ambient air through the bundle.

Harmonic Frequency - Integer multiples of fan RPM and expressed as 1x, 2x and 3x fan speed in cycles/second (Hertz). Harmonic frequency is checked against resonant frequencies to prevent vibration and fatigue.

Induced Draft ACHE - Fan is located above the heat transfer surface drawing ambient air through the bundle. The fan is exposed to the heated exhaust air.

Leading Edge - Thicker portion of the air-foil that is the first part of the blade to meet the air.

Net Free Area - Net area at the plane of the fan through which all air must pass. Usually based on the nominal fan diameter minus seal disc area or hub diameter. Note that blade area is not considered.

Pitch Angle - Blade tip angle below the horizontal required to do the design work and move air upward. Hudson fans all rotate clockwise looking into the airflow.

Static Efficiency - Fan efficiency based on static pressure and fan brake horsepower at the same density. **Static Pressure** - Sum of all the system resistances against which the fan must work, expressed in inches of H_2O .

This is the useful work required from the fan. (Velocity pressure excluded).

Tip Clearance - Distance between the tip blade and the fan ring or housing, sometimes expressed as a percent of the fandiameter.

Tip Speed - Peripheral speed of the fan tip expressed in feet per minute.

Total Efficiency - Fan efficiency based on the total pressure and fan brake horsepower at the same density for standard or actual conditions.

Fan Selection - Horsepower Requirements: The fan diameter must assure that the area occupied by the fan is at least 40 percent of the bundle face area. The fan diameter must be 6 inches less than the bundle width. Fan performance curves are used to select the optimum number of blades and pitch angle as well as the horsepower.

To calculate the required horsepower for the fan driver:

Motor Shaft Horsepower =Actual ft3/min (at fan) - Total Pressure Loss (inches water) 6356 - Fan (System) Efficiency - Speed Reducer Efficiency

The actual volume at the fan is calculated by multiplying the standard volume of air (by the density of standard air (0.075 lb/ft) divided by the density of air at the fan. From this relationship it can be seen that the ratio of the fan horsepower required for a forced draft unit to that required for an induced draft unit is approximately equal to the ratio of the exit air density to the inlet air density, which is in turn equal to the ratio of absolute air temperatures (t1 + 460) / t2 + 460). The total pressure difference across the fan is equal to the sum of the velocity pressure for the selected fan diameter, the static pressure loss through the bundle, and other losses in the aerodynamic system. Fan diameters are selected to give good air distribution and usually result in velocity pressures of approximately 0.1 inch of water. The design of the fan, the air plenum chamber, and the fan housing, (in particular fan tip clearance), can materially affect system efficiency, which is always lower than shown on fan curves based on idealized wind tunnel tests. Industrial axial flow fans in properly designed ACHEs have fan (system) efficiencies of approximately 75%, based on total pressure. Poorly designed ACHEs may have system efficiencies as low as 40%. Speed reducers usually have about 95% mechanical efficiency. The value of driver output horsepower from the equation above must be divided by the motor efficiency to determine input power.

Fan Blade Photograph by Cofimco fans

Fan Hub Photograph by Cofimco fans

Auxilary Power Saving in Air Cooled Heat Exchanger Input Data for heat exchanger design-

	1	2	3	4	5
Flow (1000 kg/hr)	27.7810	27.7810	27.7810	144.87	91.212
Temp In(deg c)	122	111	107	82	70.84
Temp out(deg c)	52	57	57	75.45	54
Pressure In (kgf/cm2A)	21.79	39.37	70.88	4.602	4.602
Pressure drop (kg/cm2)	. 714	.714	.714	.816	.612

Data is obtained from HTRI Software (From input data)

		d to the follow	ry wing HTRI Me	ember Comp	any:						Page
Xace Ver. 6.00 5/9/2012	2 12 15 SN: 150	2014117					MKH Unite			_	
CCEG.	¢ 12.19 QN, 190	0419117					APCH UNITS				
RFQ-001374/10-11	KPCL .PUNE	Summary	Init								
Rating-Horizontal air-coole				ant to peneed	Rouse						
Bundle Number	ed ment excitation	in norceo dra	1 countercuri	tent to cross	iow al		31		4		
Outside film coef	kcal/m2-hr-C)		901.97		901.33		904.17		901.00		931.4
Tubeside film coef	kcal/m2-hr-C)		928.52		1562.08		1036.52		7317.47		5005.5
Clean coef	kcal/m2-hr-C)		17.07		21.78		18.10		31.96		31.0
Duty	(MM kcal/hr)		1.0627		0.9061		0.9009		0.9467		1.530
Actual U	kcal/m2-hr-C)		17.07		21.78				31.96		
Required U	kcal/m2-hr-C)		15.03				18.10				31.0
EMTD			20.8		19.22		16.36		27.11		28.1
Overdesign	(C) (%)						16.9		13.7		7.1
			13.60		13.32		10.64		17.88		10,10
Tubeside Process Condi	tions										
Fluid name			HC Gas		HC GAS		HC GAS		WATER		WATER
Fluid condition			Sens. Gas		Sens. Gas	c	cond, Vapor	5	iens. Liquid	1	Sens. Liquid
Total flow rate	(1000-kg/hr)	10000	27.7810		27.7810	101.001	27.7810	1.000 (1000 - 11.000 - 11.000 - 11.000 - 11.000 - 11.000 - 11.000 - 11.000 - 11.000 - 11.000 - 11.000 - 11.000	144.870		91.2120
Weight fraction vapor, In/C		1.000	1.000	1.000	1.000	1.000	0.999	0.000	0.000	0.000	0.000
Temperature, In/Out	(Deg C)	122.00	57.00	111.00	57.00	107.00	57.00	82.00	75.45	70.84	54.00
Skin temperature, Min/Max		49.55	104.56	49.69	101.60	49.67	94.32	67.77	81.23	52.47	68.94
Pressure, Inlet/Outlet	(kgf/cm2A)	21.794	21.475	39.374	38.814	70.882	70.748	4.602	4.356	4.602	4.235
Pressure drop, Total/Allow	(kgf/cm2)	0.319	0.714	0.560	0.714	0.134	0.714	0.247	0.816	0.368	0.612
Midpoint velocity	(m/a)		16.22		10.63		4.83		1.48		1.02
- In/Out	(m/s)	18.47	15,15	11.91	9.95	5.46	4.52	1,48	1.48	1.03	1.02
Heat transfer safety factor	()	100000	1	11-11-11-11-11-11	1		1	0.0110.0	1		1
Fouling	m2-hr-C/kcal)		0.000000		0.000000		0.000000		0.000000		0.000000
Airside Velocities	1242201020022200	Actual	Standard	Actual	Standard	Actual	Standard	Actual	Standard	Actual	Standard
Face	(m/s)	3.10	2.84	3.05	2.80	3.09	2.83	3.00	2.75	3.62	3.32
Maximum	(m/a)	6.18	5.67	6.43	5.90	6.44	5.91	6.37	5.84	6.75	6.19
Now	(100 m3/min)	28.625	26.256	23.376	21.441	27.568	25.287	21,123	19.375	70,956	65.084
Airside Pressure Drop	(in a marinity	80.020	20.200	20.010		27.000	20.201	#1.1EP	10.010	19.999	00.004
	(model20)		17.004		47.803		17.003		17 800		127 700
Bundle pressure drop	(mmH2O)		17.804		17.803		17.803		17.809		17.797
Steam coil pressure drop	(mmH2O)		0.00		0.00		0.00		0.00		0.00
Geometry		CONTRACTOR NO.	10000000	////////////		20101000		0.0000000000	100000000	100000000000	
Area Extended/Bare	(m2)	3391.45	144.340	2781.45	118.379	3254.90	138.529	2550.59	108.553	6920.31	294.529
Tubecount Odd/Even	()	14	14	12	11	14	13	11	10	29	28
Tube OD/ID	(mm)	25.400	20.580	25,400	20.580	25.400	20,580	25.400	20.580	25.400	20,580
Pitch Trans/Long	(mm)	63.500	54.991	63.500	54,991	63.500	54.991	63.500	54.991	68.000	58,888
Jundle width	(mm)		933.		775.		902		711.		1980.
lube type	()		tigh-finned		-ligh-finned		-ligh-finned		ligh-finned	1	High-finned
lube length	(mm)		16500.		16500.		16500.		16500.		16500.
rea ratio(out/in)	()		28,9992		28.9992		28.9992		28.9992		28.9992
ayout	()		Staggered		Staggered		Staggered		Staggered		Staggered
lumber of passes	()		1		1		1		1		3
lumber of rows	()		8		8		- 8		8		8
ubecount	()		112		92		108		84		228
ube material		C	srbon steel	Ci	arbon steel	C	arbon steel	C	arbon steel	C	arbon steel
in Geometry											
ype	()	6	lain round	5	Main round	1	Plain round		Plain round		Plain round
ins/length	fin/meter		433.0		433.0		433.0		433.0		433.0
in root	mm		25,400		25.400		25.400		25.400		25.400
leight	mm		15.875		15.875		15.875		15.875		15.875
ase thickness	mm		0.400		0.400		0.400		0.400		0.400
over fin	mm		57,150		57,150		57,150		57,150		57,150
fliciency	(%)		76.8		76.9		76.9		77.2		78.4
vea ratio (fin/bare)	(%)		23.4962		23.4962		23,4962		23.4962		23.4962
Aaterial	()	Aluminum 1		Aluminum 1		Aluminum 1		Aluminum 1		Aluminum	

Data is obtained from HTRI Software (From input data)

	eased to the fo		I Member Company:		Page	
Xace Ver. 6.00 5/9/2012 12:15 CCEG, RFQ-001374/10-11 KPCL Rating-Horizontal air-cooled heat	,PUNE : Sum	mary Unit	ntercurrent to croseflow		MKH Units	
No Data Check Messages.						
No Runtime Messages.	Overall	Exchange	r Performance			
Minimum overdesign Maximum overdesign	(%)	10.1		kcal/hr)	5.3473	
Outside Process Conditions Fluid name Fluid condition Total flow rate (1000-kg Weight fraction vapor, In/Out Temperature, In/Out (Dec	() 1.000		and the second se	() () (m2) (m2)	1 5 18898.7 804.329	
Skin temperature, Min/Max (De Pressure, Inlet/Outlet (kgf/cm Pressure drop, Total/Allow (mmH	C) 49.46 (2A) 1.033 2O) 19.864 n/s) ()	103.98 1.031	Fan Ge No/bay Fan ring type Diameter Ratio, Fan/bundle face area Driver power Tip clearance	ometry () (mm) () (kW) (mm)	4 Flanged 3505. 0.44 24.72 17.525	
	Actual n/s) 3.62	3.32	Efficiency	(%)	65	
Maximum (r Flow (100 m3/r Velocity pressure (mmH Bundle pressure drop (mmH	20) 3.093	157.444	Airside Pressure Drop, (Ground clearance Fan ring Fan guard Louvers Fan area blockage Hail screen		mmH2O) 0.00 1.54 0.00 0.51 0.00 0.00	
Structure weight Total weight, Dry / Wet	(kg) (kg) (kg) (kg)	43066 11225 60705 6413	/ 84687			

Calculations -

Flow Rate,

$$\begin{array}{l} Q = m \ x \ Cp \ x \ (T_i - T_0) \\ 5.3473 \ x \ 10^6 = m \ x \ .2409 \ (63.79 - 47.2) \\ (From output summary, Q = 5.3473 \ metric million \ kcal \ /hr) \\ (1metric million \ = 10^6) \\ m \ = \ 1.338 \ x \ 10^6 \ kg \ /hr \end{array}$$

HTRI Software summary report is based on experimental data & Air side correction factor (benefit factor varies from 10 to 20%)

Number of fans calculation -

per API 661, fan coverage area to the bundle face area must be greater than 40 % fan coverage of area From Summary report

So,

$$L = 16.5m$$
$$B = 5.3m$$
$$\frac{\pi}{4}Xd^{2} = L X B$$

$$D = 16.68 = 17m$$

Hence ,number of fans=d/b= 3.21

Therefore, number of fans = 4

As

Cofimco Fan Selection Software

	Port Prot Laront Print		openal report - Microsoft World	
Part Mark Ware 128 20 20 10 10 10 10 10 10 10 10 10 10 10 10 10	Transfigueter Briter	 Art 💌 📥 🖷 🗮 🗮 🗮 🗐 (2011) (24) 	Threading 1 Heading 1 Heading 2	The Taking Charles of Sheet-
Pie Image: Table 1 Image: Table 2 Image: Table 2 </td <td></td> <td></td> <td></td> <td></td>				
Image: That fit Words 1, Land Market Transment The strength Transment Transment Transment Image: That fit Words 1, Land Market Transment The strength Transment Transment Transment Image: That fit Words 1, Land Market Transment The strength Transment Transment Transment Image: That fit Words 1, Land Market Transment The strength Transment Transment Transment Image: That fit Words 1, Land Market Transment Diff Words 1, Transment Transment Image: That fit Words 1, Land Market Transment Diff Words 1, Transment Transment Image: That fit Words 1, Land Market Transment Transment Transment Image: That fit Words 1, Land Market Transment Transment Transment Image: That fit Words 1, Land Market Transment Transment Transment Image: That fit Words 1, Land Market Transment Transment Transment Image: That fit Words 1, Land Market Transment Transment Transment Image: That fit Words 1, Land Market Transment Transment Transment Image: That fit Words 1, Land Market Transment Transment Transment Image: That fit Words 1, Land Market Transment Transment Transment Image: That fit Words 1, Land Market Transment Transment Transment Image: That fit Words 1, Land Market Transment Transment Transment Image: That fit Words 1, Land Market Tr			FanTastic VL_Longitudes and Charge	
Image That Fit Works 1,000 To set of the proof 1 (set of the set			E I DI	
Page-T1 of fit Wents 1 (200)		PHOLECT REGISTANTION Customer Have fold Have fold Have fold Have fold Reserve fold	DUTY POINT DATA Prequest Visare Prequest Visare Prequest Visare Prequest Visare Prequest Visare Prequest Preque	
			Image: Selection Image: Selection Pack Selection Image: Selection Image: Selection	
😋 /2 🔛 刘 🕑 🚾 🖅	Auge That Ne Weater 12,000 35			THE REAL PROPERTY AND ADDRESS OF THE PARTY AND

By feeding the data into the software, We obtained the following data,

Screen shots original by Parag

Kai Suan I	fun Yumri, 1	amaol, 62 - 260 Inwald Road - 6 11 Zhong Cao P	ioao, orneraria		Reference	1374			
Gustomer Name	KPCL					02		5/9/201	2
Job Name	CCEG						Date	6/6/201	-
Item Number	E01			ABACT	ERISTICS				mm H2C
				Annor	tequired Stat	ic Pressure		9.8640	mm H2C
Required Volume		283730.00			an static pre			19.86	
Pressure recovery	e	0.0			otal pressure			22.86	mm H2C
Velocity pressure		2.99			ite Elevation			10.0	m
Air Temperature		47.2	"O					1.101	kg/mª
Inlet Air Humidity	(24.)				niet Air Densi			3633	mm
		3505	mm		an ring diam			83	
Fan diameter		34N	ALU		totor hub type			41.10	m/880
Blade Airfoil		224.0			lade Tip Spe			209	opm
Speed		7		10	lade frequen	cy +/-5%		75.5	34
4" blades			36	т	otal efficienc	Y			KWV
Static efficiency		65.6		12	otor shaft po	wer		21.3	
stade pitch angle		12.5	(-)	12	otor shaft po	wer @ 16.0	-C	23.6	KVV
Ann. Ambient Tem	perature	16.0	-G		and an or other				
			12		olume Margi	0 (26)		10'	
ressure Margin C	14.3	21 /	44				Fie	nged	
		0.004			lot				
ip Glearance/D					muser:Lengt				
offluser angle (")				tes	let Obstacle	x/D			
niet Obstacle a/A					utlet Obstack			2163	N
outlet Obstacle all				~	erod axial for	0.0		2100	
natallation Type		Forced							
totor total weight		128	kg						
totor inertia PD*		365	kg × m [*]						
tax residual unbal	ance	18.9	2						
lade Failure Load		4643	2						
		8366	N					102	111111
Blades Failure Lo		138	mm	367	Running del	lection			
a Static deflection	2	n Pitch Angle				and the second states in the second		and waited	a +/- 2 disc/
					100 X 100 X				de (± 2)
OISE CHARAC	TERISTI	CB			SPL OD	Inlet / out			.6 dB(A)
PWL (± 2)					1.0 m	79.4	dB(A)		
92.3 dB(A)					From Fan				8000
			100	250	500	1000	2000	76.3	71.3
otave (Ha)	31.5	63	125	93.3	90.3	87.3	79.3	62.4	6.0.4
AVL (dB)	95.3	97.3	84.4	80.4	77.4	74.4	66.6	62.6	48.6
let/Outlet SPL [dB]	82.4	74.0	74.6	70.6	67.6	2.0	2.0	2.0	2.0
de SPL (dB) sterance +/-	5.0	6.0	3.0	2.0		10000000			PAG

All data must be approved by Cofimco

Moore fan selection software

- M	-	64 million					Acore fait Excel Com	petit Hty P	Ante: - Micies	A Deal				-	- Ge	-
Hone	Draeff.	Pape	Lagend P	bernalten Dette	Erner										W -	-
A Cut Suite Transi Chathant D6	11	Rathur B - 2			6 8 8		i tona tod Jenego i Cierro –		+ 54.0	Strettline tree Screeting schule	THE REAL	1. 11 1. 111	Parent a	Allen - Allen	A Linta	
Castomer Ref. No. Dem No.	Tags	1		1100				8/8/35 8/8/35	058							
	forma				ssembl	y		instrair	THE OWNER WATER OF THE OWNER OF T		Default	Concession of the local diversion of the loca	-		Noise	-
Diameter Design Temp Design Temp Design Design Volume Pressure 1976	12 90 0,9638 150000 0.9 515	Feat Deg. P Feat Ramo ACPH Dis H3D 318 323	Tip Speed	Quantity Rotation Adjustment Tip Cleanatore Love None Tips Motor Shaft Dia Doub	IIII Man 0.36 B 35 Foroat	stres • bo	Max 5p apeed Max 5PL dBA View 1000 View 1000 BC View 10000 BC View 10000 EC Missiman Temp	0.0.0.0.0	() 1923-1	Earry Connection Tail Correction or Cone Height (N.) Turque Pactor API Tip Clearance API Tip Clearance API No. Blackes Even Blackes Only & Correction Pactor Export Job	1.00 10 2 0	Vert diete	Beparwice be Widt	h of one bay h of one bay ement point the to point ine to grade	0.95	a la
Reconn	unded 1	denite					5	lection								
election	Class		Hub Type	Dia. (fest)	Blades	Bld Chord		Pawer (BHP)	Def. Angle	Bisds Load	Design Angle	SPL dBA I us below fas	SPL dBA 1 m from tip	Bushing		
Caster I	3000	33	SD	12	6	SC .	RH	19.24	30.04	83.4%	10.0	86.4	41.4	ST		
Com 2	3008	40	SD	12	5	SC	RH	20.38	44.14	83.3%	9.2	\$25.6	81.6	557		
Canor 3	5000	49	SD	12	.4	8C	RH	21.52	37.73	86.3%	8.3	88.9	\$1.9	SE		_
Cotor -	10000 1, 40 F 4	P0 M	SD ND	12 12 13 13 13	amièrra	SC IC	NR VE PR	22.69 19.76	41.38 41.45	72.3%	5.2	87.1 87.5	37.5	E U U U U U U U	-	
5 10	1			2	12	181	-			-		10		-	11.42 A	

Screen shots original by Parag

By feeding the data into the software, We obtained the following data,

the obtained the following data,

Phone: (6			JIE	Fans	2.14			60) 376-20	909
KPCL	_	_		Ref No.:	0001374/	10-11	Item No:	CCEG	
Class:		10000		Hub Type:	HD		Blade Type:	84	8
Blade Tip:		VT		Adjustment:	MAN		Rotation:	3RJ	HK .
Series:		60		Diameter:	3505	STATES.	Blades	1	1
Temperature:			Deg. C.	Elevation	10	moters	Density Ratio:	0.91	
Volume:		283730		Air Vel.:	8.78	m/s	Speed:	22	4 RPM
Static Pressure:			mm wg	PVI	4.331	mm wg	Pti	28.31	0 mm wg
Power Regd.:		25.72	and the second	Motor	30	kWV	Total Eff:	22.09	
Power @ 16 deg.		28.49	EW.	Bld Natural Freq.:	9.5	Ha	Static Eff:	60.0%	4
Blades Required:		9,96		API Blades Req.:	11		Blade Load:	0.90	T
Tip Speed:		41.1	m/n	Deflection Angle:	51.8	deg.	Pitch Number:	1.5	4
Entry Correction:		1.3		Tip Clearance:	0.68996	inches	Design Angle:		2 deg
Exit Correction		1.50		Draft:	For	bet	Orientation:	Ver	tical
Torque Factor:		2		Motor Torque:	261	kg m	Torq/Bld:	2.	4 kg m
Appr fan weight:		320	12mm	145	kor		Bore Size:		inches
WR2		2202	10-02	93.0			Bushing Type:	U	
Thrust Load:		542	line	246			Oty required:	1	
Noise Levels Per Fa	n (For	ced Dra	ft) (Vert	tical Orientation)	and the state of the				
				Sound Power	Level				
dBA	HZ	63	125	260	600	1000	2000	4000	8000
95.6		101.8	100.8	97.8	92.8	90.8	84.8	28.8	72.6
			Sound P	ressure Level 1 me	ter from fa	ce of un			12000
82.0		88.0	87.0	84.0	79.0	77.0	71.0	65.0	59.0
		Sou	and Pres	sure Level 1 meter	radially fro	om blad	e tip		
77.0		83.0	82.0	79.0	74.0	72.0	66.0	60.0	54.0
		Clas	a 10000,	Series 60, 3505 m	m Diamet	ter, 11 B	lades		
IM	Ianual	Adjust	ment, 1	Heavy Duty, Stand	lard Chor	d, Right	Hand Rotation		
With VT		Tips.							
		Fa	a Mode	1 No. 1060/123-UO-	A/GOR-VT	-3-11.50	-11		
		Fan Dr	awing	http://moorefans.c	om/pdfs/1	MC 811	B.pdf		
	Not	a. Max	frank ma h	lade angle to prev	ont fan st	all is 16.	.0 degrees.		

Costing Of Fans

Cost of Moore Fan = USD 900/ per fan = 900 x 55 =Rs. 49500/-Cost of Cofimco Fan = Euro 868/ Per Fan =868 x 69 = Rs. 59892/-

Total Number of fans $= 4$	
Therefore, Cost of Moore Fan	= 1,98,000
Cost of Cofimco Fan	= 2,39,568

CONCLUSION & RESULT

Auxiliary Power saving in fans -

Power Consumption per fan –	
Power Consumption in Cofimco fan	= 23.6 kw
Power Consumption in Moore fan	$= 28.49 \mathrm{kw}$
And,	
Cofimco fan consumes less power than Moore fan	a = 28.49 - 23.6 = 4.89 kw
Therefore, Power Saving in Cofimco fan	= 4.89 kw
Total Number of fans	= 4

Therefore ,Total Power Saving = 19.56 kw

Both the Fan manufacturer use the Aluminum for fan blade, but power consumption is different due to the following reason:-

- 1. Cofinco fans blade are more flexible as compare to Moore blade Due to flexible blade cofinco fans are easy to absorb jerk during running condition as well as longer life as compare to Moore fans.
- 2. Weight of Cofimco Fans(128Kg) are less than Moore fans(145Kg).
- 3. There are 7 number of fan blades in Cofimco fan & Number of fan blades in Moore fan are 11.

Total Power Saving

= 19.56 KW = 19560 W

Bibliography

- [1]. 1. Optimization mathematical model for the detailed design of air cooled heat exchangers Juan I. Manassaldia, Nicolás J. Scennaa, Sergio F. Mussatia,- Jan 2014
- [2]. Heat exchanger device and method for heat removal or transfer Jeffrey P. Koplow- Dec 2013
- [3]. Experimental investigation on heat transfer performance of View the MathML sourceFe2O3/water nano fluid in an airfinned heat exchanger
- [4]. Y. Vermahmoudia, S.M. Peyghambarzadeha, S.H. Hashemabadib Mar April 2014
- [5]. Mechanism of the air temperature rise at the forced draught fan inlets in an air-cooled steam condenser Weifeng He, Dong Han, Chen Yue, Wenhao Pu, Yiping Dai Oct 2014 Advances in air-cooled heat exchangers **Hooman, K.Guan, Z-2013**
- [6]. Numerical simulation on flow and heat transfer of fin structure in air-cooled heat exchanger Li Li, Xiaoze Du, , Lijun Yang Yan Xu, Yongping Yan -Sep2013
- [7]. Investigation of heat exchanger inclination in forced-draught air-cooled heat exchangers Ian J. Kennedya, Stephen W.T. Spencea, ,Gordon R. Sprattb, Juliana M. Earlya-May 2013
- [8]. Approximation assisted optimization of headers for new generation of air-cooled heat exchangers Khaled Saleha, , Omar Abdelazizb Vikrant Autea Reinhard Radermachera, Shapour Azarma Nov 2013
- [9]. GEI Industrial systems limited
- [10]. GEA Air-cooled Systems
- [11]. SPX Cooling technologies
- [12]. Moore Fans
- [13]. Cofmico Fans
- [14]. Air Cooler Governing bodies
- [15]. API661 standard for air-cooled heat exchangers
- [16]. HTRI (Heat Transfer Research Institute)