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Abstract: Data mining refers to extracting knowledge from large amounts of data. Frequent itemsets is one of 

the emerging task in data mining. Frequent itemsets mining is crucial and most expensive step in association 

rule mining. The problem of mining frequent itemsets arises in large transactional databases where there is need 

to find association rules among the transactional data for the growth of business. Several algorithms have been 

proposed and developed to increase efficiency of mining frequent itemsets. We present a analysis  of various 

algorithms for mining frequent itemsets that work on horizontal, vertical, projected and hybrid layout datasets. 

 

 

 

I. Introduction 

 

Data mining is the process of discovering interesting knowledge from large amounts of data stored in database, data 

warehouse, or other information repositories. Popular research area of data mining was started by the tasks of frequent 

item set mining and association rule induction. The huge research efforts devoted to these tasks have led to a variety of  
sophisticated  and  efficient algorithms to find frequent item sets. Among the best-known approaches are Apriori, Eclat 

and FP-growth [1]. Frequent pattern mining is the process of searching recurring relationships in a given dataset. 

Frequent patterns are patterns (i.e. itemsets) that appears in a dataset frequently. A set of items, i.e. computer and 

antivirus that appears frequently together in a transaction dataset is a frequent itemsets. Frequent patterns mining like 

Frequent itemsets find  frequent itemsets from the small database  and/or large database, where the database are either 

transactional or relational. The frequent itemset mining is the process of finding out frequent itemsets from the DB. 

Frequent itemsets such like 1-frequent, 2-frequent, 3-frequent. . . . . . k-frequent itemsets. 

 

Data mining refers to discovering knowledge in huge amounts of data. The idea is to seek for something called 

knowledge, which means regularities, rule and structure hidden in the data. Association rule mining is one of the most 

important data mining problems. In transactional database it depicts the purchase patterns and reflects items that are 

frequently associated or purchased together.  The mining of association rule include two sub problems (1) Finding all 
frequent itemsets that appear more often than a minimum support threshold, and (2) Generate association rules using 

these frequent itemsets.  

 

Frequent itemsets play an essential role in many data mining tasks that try to find interesting patterns from databases 

such as association rules, correlations, sequences, classifiers, clusters and many more of which the mining of 

association rules is one of the most popular problems. Frequent item set mining is a data analysis method, which was 

originally developed for market basket analysis and which aims at finding regularities in the shopping behaviour of the 

customers of supermarkets, mail-order companies and online shops.[1]. 

 

Frequent pattern mining was first proposed by Agrawal et al. (1993) for market basket analysis in the form of 

association rule mining. It analyses customer buying habits by finding associations between the different items that 
customers place in their “shopping baskets”. For instance, if customers are buying computer, how likely are they going 

to also buy antivirus (and what kind of antivirus) on the same trip to the supermarket? Such information can lead to 

increased sales by helping retailers do selective marketing and arrange their shelf space. Association rules describe how 

often items are purchased together. 

 

Frequent itemsets mining is vital step in mining association rules. Two major approaches towards mining frequent 

itemsets are the candidate generate-and-test approach and the pattern growth approach. Many different algorithms has 

been proposed and developed to increase the efficiency of mining frequent itemsets. Based on the transactional 

database layout we have horizontal layout based algorithms, vertical layout based algorithms, projected layout based 

algorithms and hybrid algorithms. Rest of the paper formally introduces the problem and briefly reviews the frequent 

itemset mining algorithms. 
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In this paper, section 2 discuss the problem definition of  the frequent itemset mining; section 3 discuss the various 

algorithms for frequent itemset mining; section 4 discuss analysis and discussion; Finally section 5 concludes the paper. 

 

II.  Problem Statement 

 

Let I = {i1, i2, i3…., in} be a set of items and „n‟ is considered the dimensionality of the problem. A set of items is called 
itemset. An itemset that contains k items is called k-itemset. Let D be the task relevant database which consists of 

transactions where each transaction T is set of items such that T ∈ I. A transaction is a pair which contains unique 

identifier Tid and set of items [2] and  transaction T is said to contain itemset X, which is called a pattern, i.e. X ∈ T ∈ 

I. An association rule is an implication of the form A⇒B where A ⊂ I, B ⊂ I and A ∩ B = Ø. The rule A⇒B holds 

support „s‟ in D where „s‟ is the percentage of transaction in D that contain AUB that is taken to be the probability 

P(AUB) and confidence „c‟ where „c‟ is the percentage of transaction in D containing A that also contain B which is 

the conditional probability P(B|A). An occurrence frequency of an itemset is the number of transactions that contains 

the itemset. This is also known as frequency, support count or just count. 

 
An itemset X is said to be frequent if its support is greater than or equal to given minimum support threshold i.e. 

count(X) > minsup [3]. A transaction T is said to be maximal frequent if its pattern length is greater than or equal to all 

other existing transactional patterns and also count of occurrence (support) in database is greater than or equal to 

specified minimum support threshold. Transactional database D and minimum support threshold is given, therefore the 

problem is to find the complete set of frequent itemsets from transactional databases, so that relation between 

customers behaviour and various items can be found and can be used to increase the business. 

 

III.  Pattern Mining Algorithms 

 

(1) Apriori algorithm : 

 

R. Aggarwal [3] first proposed the Apriori algorithm. The name of the algorithm is based on the fact that the algorithm 
used a prior knowledge of frequent itemset properties. It‟s a well known algorithm and used in most commercial 

products. The use of support for pruning candidate itemsets is guided by the Apriori property which states that”All 

nonempty subsets of a frequent itemsets must be frequent” [3]. It is also described by antimonotonic property which 

says if the system cannot pass the minimum support test then all its supersets will fail to pass the test [2, 3]. Therefore 

if the one set is infrequent then all its supersets are also frequent and vice versa.  

 

The algorithm is find with the transactional dataset D consisting of n transactions and the minimum support count. The 

algorithm initially scans the database and finds the support count of each item. Upon completion of this step, the set of 

all frequent 1-itemsets will be known. All infrequent items whose support count is less than the minimum support is 

removed obtaining L1. Next, the algorithm will iteratively generate new candidate k-itemsets using the frequent (k-1)-

itemsets found in the previous iteration through join and prune step as follows: 
 

 In the join step the candidate set is generated by self joining Lk-1 with itself and is denoted by Ck. This 

step generates new candidate k-itemsets. 

 In prune step CK is the superset of Lk so members of CK may or may not be frequent but all K-1 

frequent itemsets are included in CK. This step eliminates some of the candidate k-itemsets using the Apriori 

property. A scan of the database to determine the count of each candidate in CK would result in the 

determination of Lk (i.e., all candidates having a count greater than or equal to the minimum support count). 

CK, however, can be huge, and so this could involve grave computation. To shrink the size of CK, the Apriori 

property is used as follows. Any (k-1)-itemset that is not frequent cannot be a subset of a frequent k-itemset. 

Hence, if any (k-1)-subset of candidate k-itemset is not in LK-1 then the candidate cannot be frequent either and 

so can be removed from CK. The join and prune is repeated until no new candidate set is generated. 

  

(2) Eclat algorithm : 

 

Eclat (Equivalence class transformation) uses set intersection and unlike Apriori, it works on vertical layout database. 

Each item use intersection based approach for finding the support. In this way, the support of an itemset P can be easily 

computed by simply intersecting of any two subsets [4]. 

 

First the horizontal data layout is converted into vertical data layout by scanning the data set once. The support count of 

an itemset is length of the TID_set of the itemset. Starting with k=1 the frequent k-itemsets can be used to construct the 

candidate (k+1)-itemset based on Apriori property.  The computation is done by intersecting TID_sets of frequent k-

itemsets to compute the TID_set of the corresponding (k+1)-itemset. The process is repeated until no more frequent 

itemsets or candidate itemsets can be found. The main advantage of this method is that database need not be scanned to 
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find the support count as the TID_set length itself is the support. When the dataset contain many dense and long 

patterns this technique can substantially reduce the total cost of vertical format mining of frequent itemsets. However, 

the TID_sets can be quite long taking substantial memory space as well as computational time for intersecting the long 

sets. The algorithms performance is not up to the mark for small database. 

 

(3) FP-growth algorithm : 

 

FP-algorithm constructs a Frequent Pattern tree by compressing the transactional database and houses the itemset 

association information. The algorithm adopts divide and conquer strategy. It divides the compressed database into 

special kind of projected database sets called conditional databases. Each division locally mines the frequent pattern 

examining only its associated data sets.  

 

FP algorithm is as follows: 

 

 The algorithm first finds the frequent 1-itemsets and their supports from the horizontal database layout and 

arranges them in decreasing order of their support count. When the support count is same then L ordering is 

done. The infrequent items that do not satisfy the minimum support criteria are removed.  

 FP-Growth method then constructs the FP-tree starting from creation of “null” root node. L order processing 
of items in each transaction is done and branch nodes are created for each transaction following the L order 

and accordingly supports are updated. If the same nodes are traversed in another transaction then increment 

the support count of the node by 1. Each item points to its occurrence in the FP-tree via chain of node-link by 

maintaining the header table. 

 

(4) H-mine algorithm : 

 

H-mine [5] algorithm is used for datasets that can fit into main memory for mining frequent patterns. Hyper structure 

H-struct is designed for fast mining. It has polynomial space complexity therefore more space efficient then FP-

Growth. Since its space overhead can be predicted it is much faster than memory-based Apriori and FP-growth.  

 
The major flow of algorithm is as follows. 

 

 First scan of dataset generates 1-frequent itemset. Using Apriori property all infrequent item are eliminated 

and remaining items creates a frequent- item projection. The items in the frequent-item projection are 

alphabetically arranged to obtain F-list. 

 

The second scan of dataset constructs H-struct [5] as follows. The two field‟s item-id and hyper-link is used to store 

frequent item every time it occurs. A header table H with item-id, support count and a hyperlink is created. Once the 

frequent-item projections are loaded into memory, same first item in F-list and frequent item projections are linked 

together as a queue and the entries in header table act as the heads of the queues. The remaining mining is performed 

on the H-struct without referencing any information in the original database. 
 

For the large databases, first partition the database then mine each partition in main memory using H-struct then 

consolidates into global frequent pattern [5]. If the database is dense then it integrates with FP-Growth dynamically by 

detecting the swapping condition and constructing the FP-tree. This working ensures that it is scalable for both large 

and medium size databases and for both sparse and dense datasets. The advantage of using in-memory pointers is that 

their projected database does not need any memory, the memory required only for the set of in-memory pointers. 

 

(5) Frequent Item Graph (FIG) algorithm : 

 

The FIG [6] algorithm is a novel method to find all the frequent itemsets quickly. It discovers all the frequent itemsets 

in only one database scan. The construction of the graphical structure is done in two phases, where the first phase 

requires a full I/O scan of the dataset and the second phase requires only a full scan of frequent 2-itemsets. The first 
initial scan of the database identifies the frequent 2-itemsets with a minimum support. The goal is to generate an 

ordered list of frequent 2-itemsets that would be used when building the graphical structure in the second phase. 

 

The first phase starts by arranging the entire database in the alphabetical order. During the database scan the number of 

occurrences of frequent 2-itemsets is determined and infrequent 2-itemsets with the support less than the support 

threshold are weeded out. Then the frequent 2-itemsets are ordered in the alphabetical order. Phase 2 of constructing 

the graphical structure requires a complete scan of the ordered frequent 2-itemsets. The ordered frequent 2-itemsets are 

used in constructing the graphical structure. 
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Advantages: 

 

 The quick mining process that does not use candidates. 

 Mining the set of all frequent itemsets in the database by scanning the entire database only once. 

 I/O costs spent in mining the set of all frequent itemsets will be reduced. 

 

Disadvantage: 

 

 The second phase requires a full scan of frequent 2-itemsets that would be used when building the 

graphical structure. 

 

(6) Frequent Itemsets Algorithm for Similar Transactions (FIAST) : 

 

The FIAST algorithm [7] for mining frequent itemsets based on similar transactions after deleting infrequent 1-

itemsets. The algorithm applies the BitTable to aggregate transactions that have similar itemsets. The aggregation 

significantly reduces the number of transactions in the BitTable and the time using the divide-and-conquer method to 

reduce the bitwise AND operation for finding itemsets. Also, a depth-first search strategy is used to generate all 
frequent itemsets. And overcome the limitation of memory consumption arises due to generation of large amount of 

datasets but results are not as much accurate. 

 

There are two steps in the FIAST algorithm as follows: 

 

1. Creating the ItemTable and the BitTable: The ItemTable and the BitTable are constructed by a single scan of 

the database and aggregated the transactions that have similar itemsets. 

2. Mining Frequent Itemsets: All frequent itemsets are mined by the FIAST algorithm. 

 
The FIAST algorithm is a pattern growth approach without candidate generation. The algorithm shows the following 

profits: 

 

 Minimize I/O: The FIAST algorithm minimizes I/O resources by scanning database only once for 

mining frequent itemsets. 

 Save space: The FIAST algorithm saves space by storing items in the set of bits regardless of the size 

of the datasets. 

 Reduce time: The FIAST algorithm reduces time by using bitwise AND operation for fast finding 

itemsets, and using a divide-and-conquer method to reduce finding tasks into smaller ones. 

 Appropriate for similar transactions: The FIAST algorithm appropriates for mining frequent itemsets 

that have a number of similar transactions after deleting infrequent 1-itemsets, and works especially 

well for dense datasets. 

 

(7) Indexed Limited Level Tree (ILLT) Algorithm : 

 

ILLT [8] algorithm is to reduce the repeated database scans and to reduce the cost of computation required for 

generating frequent itemsets. Proposed ILLT algorithm is a three level tree structure algorithm composed of two steps. 

First step is construction of ILLTree structures. Second step is mining the tree structures for finding frequent itemsets. 

Frequent itemsets for any given support levels can be discovered quickly from the ILLTree structures. The mining 
process might take in some cases less than one full scan of the data structure for discovering frequent itemsets. First 

step of ILLT algorithm is construction of tree data structures. The levels of the tree are limited to three with an index 

node so it is named as Index Limited Level Tree (ILLT). The compact tree constructed in the first step is done by doing 

only one scan of given transactional database. From the resultant ILLTree it is easy to find frequent itemsets for 

different support levels. Scanning the database again is not needed at any stage. The tree structures store the contents of 

the transactions in their nodes. 

 

Second step is the frequent itemset generation. Association rule mining starts by defining the support level σ. Based on 

the given support, the algorithm finds all frequent itemsets that occur more than σ. ILLTree scans this tree structures 

constructed in the first step to find the frequent itemsets. To find any frequent k-itemsets, the tree with the label k is 

searched. Given support level is compared with the occurrence number in the third level node. If the occurrence value 
matches the given support level, then the itemsets are frequent ones. Frequent itemsets can be achieved for any support 

levels at any time from this tree structure without scanning the database again thus reducing the computational cost and 

time. 
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IV.  Analysis and Discussion  

 

In our experiments we choose wine dataset with different properties, to prove the efficiency of the algorithm. In the 

wine dataset, 178 number of records and 14 number of columns. Table 1 shows the dataset from the UCI repository of 

machine learning databases.  

 
Table 1: The characteristics of Dataset 

 

Itemset Number of Records Number of Columns 

Wine.data.txt 178 14 

 
As a result, the performance of various algorithms shown in Table 2. The run time is the time to mine the frequent 

itemsets. The result is also shown in Figure 1. 

 
Table 2: Total execution time using Wine dataset 

 

Support Total Execution Time in Seconds 

H-mine FIG FIAST ILLT 

30 5.64 5.45 5.40 5.19 

40 4.82 4.71 4.10 3.81 

50 2.73 2.66 2.39 1.77 

 

 

 
Figure 1: Execution Time for Wine data set 

 

 

Conclusion 

 

Frequent pattern mining problem has been studied extensively with alternative problem formulations, as well as new 

variants of existing algorithms. The efficiency with respect to run time of enumerating the complete set of frequent 

patterns has attracted most research. But we turn our attention from run time efficiency to address issues related to the 

interpretation and practicality of frequent itemset mining results. Although run time efficiency is also an important 

aspect of practicality, in real life application settings, coming up with a few high quality patterns is likely to be more 

valuable than simply enumerating a massive number of patterns in a very short time. Efficiency of mining task is no 

longer a bottleneck but there is still an urgent need for methods that derive compact, yet high quality results with good 

application properties. 
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