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ABSTRACT 

 

Flow through a composite of three porous layers is considered. The middle layer is assumed to be of variable 

permeability and the bounding layers are of constant permeability. Flow through the layers is governed by 

Brinkman’s equation which, for the chosen configuration, is reduced to an Airy’s differential equation valid in 

the variable permeability layer. Exact solutions are obtained and extensive computations are provided to 

evaluate Airy’s functions and the Nield-Kuznetsov function. 
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1. INTRODUCTION 

 
Vafai and Thiyagaraja, [1], identified the flow through one porous layer over another porous layer as the second 

problem in the flow over porous layers. This problem has been less studied than flow through a Navier-Stokes channel 

over a porous layer, which has received extensive analysis over the last five decades due to the need to derive 

appropriate interfacial conditions and to determine the most appropriate flow model to use in describing the flow 

through the porous layer, [2], [3].  

 

Flow through composite porous layers (defined here as porous layers of differing porosities and permeabilities), is of 

interest due to its many applications that arise in both natural settings and in biological and industrial applications, [4], 

[5], [6]. Of particular interest in these applications is the flow through variable permeability porous layers, due to the 

natural occurrence of non-constant permeability porous layers such as earth layers where oil and water recovery are of 

great importance, [6].  
 

Some studies have already been devoted to flow through variable permeability media, [6], [7], [8]. In fact, in a recent 

article, Nield and Kuznetzov [9] presented elegant analysis of flow over a porous layer based on a formulation in which 

they considered the flow through a transition Brinkman layer, [10], [11], of variable thickness and variable permeability 

bounded by a constant permeability Brinkman layer, on one side, and a free-space channel on the other. They expressed 

their solution in terms of Airy’s functions and introduced an important new function, )(xNi , that proved to be of great 

utility in the solution of inhomogeneous Airy’s ODE with a variable forcing function. Hamdan and Kamel [12] studied 

extensively the )(xNi , and introduced a new function, )(xKi , that complements the )(xNi  function in obtaining the 

solution to inhomogeneous Airy’s ODE. The pair of functions )(xNi  and )(xKi  are known as the Nield-Kuznetsov 

functions.   

 

The approach used by Nield and Kuznetsov [9] in formulating and solving the transition layer problem proved to be of 

great utility in solving similar practical problems, [11]. Their approach is also well-suited in the general analysis of 

flow through composite porous layers of variable thicknesses and permeabilities, which is the subject matter of this 

current work. We consider the flow through a Brinkman porous layer that is bounded by two constant permeability 

Brinkman layers. The bounding lower and upper layers are themselves bounded by impermeable, macroscopic 

boundaries on which the no-slip condition is imposed. The flow through each bounding layer is assumed to be 

governed by Brinkman’s equation with a different, yet constant permeability for each layer. The middle layer is 
governed by Brinkman’s equation with variable permeability. At the interfaces between layers, it is assumed that 

permeability is continuous. Other conditions at the interface between layers are velocity continuity and shear stress 

continuity. The objectives here are to derive expressions for velocity and shear stress at the interface, and to determine 

the velocity profiles in the layers. Velocity in the variable permeability layer is expressed and evaluated in terms of the 

Nield-Kuznetsov function. The derived velocity expressions are compatible with the equations governing flow through 
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two-dimensional channels, hence should serve as velocity entry conditions to flow through two-dimensional 

configurations.  

 

2. PROBLEM FORMULATION 

 

Consider the flow through three porous layers of different thicknesses, and of different permeability, shown in Fig.1. 
The middle layer is of variable permeability, while the bounding lower and upper layers are of constant permeability. 

Each of the bounding layers is terminated by a solid wall on their outer sides and join the middle variable-permeability 

layer along an assumed sharp interface. The flow is assumed to be driven by the same pressure gradient and governed 

by Brinkman’s equation in each layer.  

 

 
Figure  1. Representative Sketch 

 

In layer 1: the permeability, 
1K , in layer 1 is assumed constant and given by: 

 

.0; *
01 HyaKK                                                                                                                                                 …(1) 

 

In layer 2: the permeability, 
2K , in layer 2 is assumed to be a variable function of  

*y , and given by: 
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In layer 3: the permeability, 3K , in layer 3 is assumed constant and given by: 

 

03 bKK  ; .* HyH                                                                                                                                             …(3) 

 

In (1), (2) and (3), 0K  is a reference constant permeability, a and b are constants to be selected,   and   are parameters 

that determine the thickness of each layer. We note that at each interface between layers the permeability is continuous 

with 
021 )( aKHKK    and .)( 023 bKHKK                                                 

 

The governing equations and boundary conditions associated with the configuration in Figure 1 are stated as follows.  

 

In layer 1, the flow is governed by: 

 

01
*

1

1

2*

1
*2

1  Gu
Kdy

ud
eff


  ;   .0 * Hy                                                                                                    …(4) 

 

In layer 2, the flow is governed by: 
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In layer 3, the flow is governed by: 
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In (4), (5) and (6),
dx

dp
G  is the constant pressure gradient, )( *** yuu ii   is the velocity in the ith  layer, for 

i=1,2,3, iK  is the permeability in the ith  layer, i  is the viscosity of the base-fluid saturating the ith  layer, and ieff  

is the effective viscosity of the fluid in the ith  layer.  We note that the viscosities of the base fluids in the three layers 

should be equal, 321    , if the base fluid is the same. The effective viscosities, eff1 , eff2 , and eff3 , 

however, are not necessarily equal. 

 

Now, introducing the dimensionless variables:  
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and defining 
2
0

H

K
Da   as the Darcy number, and (4), (5) and (6) take the following dimensionless forms, respectively: 
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Upon using the permeability distributions (1), (2), and (3) in (8), (9), and (10), respectively, we obtain: 
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Equations (11), (12) and (13) are to be solved subject to the conditions of no-slip at the solid walls (y = 0 and y = 1), 

velocity and shear-stress continuity at the interfaces between layers ( y  and y ), where the shear stress in each 

layer is defined based on the effective viscosity, namely 
dy

dui
ieff  for i=1,2,3. These conditions are stated as follows:  
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3. METHOD OF SOLUTION 

 

3.1. Solving the Governing Equations 

 

Defining 
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then (11), (12) and (13) can be written, respectively, as: 
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Now, (17) and (19) are linear, inhomogeneous, second-order ODE whose general solutions are given, respectively, by: 

1
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where
1a ,

2a ,
1c and

2c are arbitrary constants to be determined using boundary and interface conditions (14) and 

(15). 

 
Shear stress across the first and third layers is given by the first derivative of each of (20) and (21), namely 
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In order to solve (18), we first introduce the transformation: 
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which is Airy’s inhomogeneous differential equation. Solution to the homogeneous part of (25) is given in terms of 

Airy’s functions, )(YAi  and )(YBi , [13], and the complementary function is given by the linear combination: 

 

)()()( 212 YBbYAbYU iic
                                                                                                                                           …(26) 

 

where 
1b and

2b are arbitrary constants. The Wronskian of )(YAi  and )(YBi  is given by, [13]: 


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                                                                                …(27) 

where prime notation denotes ordinary differentiation with respect to the argument. The particular integral of (32) can 

thus be obtained by the method of variation of parameters, and takes the form: 
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The expression in brackets on the RHS of (28), and its derivative, namely 
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are recognized as the Nield-Kuznetsov function and its derivative, and has been studied extensively by Hamdan and 

Kamel [12]. Upon using (26), (28) and (29), we express the general solution to (25) as: 
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Using (24) in (31), we obtain: 
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Derivative of (32) with respect to y is the shear stress term across the second layer, and is given by: 
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3.2. Determining the Arbitrary Constants 

 

Equations (20), (21) and (32) represent the general solutions to the governing equations (11), (12) and (13). Using 

conditions (14) and (15) in (20)-(23) and (32)-(33), we obtain the following system of linear equations for the arbitrary 

constants appearing in the velocity equations, written in the matrix-vector form  
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where 
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Solution to (34) requires evaluations functions of Airy’s functions, their derivatives and integrals. This is discussed in 
what follows. 

3.3. Asymptotic Approximations of the Functions ii BA ,  and iN  

The velocity profile and shear stress term in the variable permeability Brinkman layer involve Airy’s functions and 

their first derivatives, and the Nield-Kuznetsov function and its first derivative. These functions will be evaluated at 

their respective arguments using asymptotic approximations. We find it convenient to first introduce the following 

acronyms:  
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Using (35), equations (32) and (33) can be written, respectively, as 

 

   21
3

22112 )
3

()( 


  yBbyAbyu ii ;        .  y                                                                   …(36) 

 

   21
4

222121
2 ]

3
)([)( 


  yBabbyAabb

dy

du
ii ;   .  y                                      …(37) 

 

The values of 
1  and 

2  are dependent on 
2 , which is a function of baDa ,,,,   and 

2M , as shown in (16) and 

(35). For a given variable porous layer thickness,   , and permeability parameters, a and b, the values of
2 are 

sensitive to variations in Darcy number, Da. For small values of Da, the value of
2 is large, and for large arguments of 

Airy’s and Nield-Kuznetsov function, we can use the asymptotic approximations in Table 1, [12]: 
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Table 1. Asymptotic Approximations 

 

4/1

2/3

2

)3/2exp(
)(

Y

Y
YAi




  

2

)3/2exp(
)(

2/34/1 YY
YAi


   

Y

i dttA
0 3

1
)(  

4/1

2/3 )3/2exp(
)(

Y

Y
YBi


  



)3/2exp(
)(

2/34/1 YY
YBi   

 

Y

i
Y

Y
dttB

0

4/3

2/3 )3/2exp(
)(


 

3

)(
)(

YB
YN i

i   
3

)(
)(

YB
YN i

i


   

Y

i

Y

i dttBdttN
00

)(
3

1
)(  

 

3.4. Calculating the Mean Velocity through the Three Layers 

 

Mean velocity across the channel layers is defined as 
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where 321 ,, uuu  are the mean velocities in layers 1, 2, and 3 respectively. 

In order to utilize the asymptotic approximations of Table 1 in (38), the middle integral in (38) must be converted to 

one with a lower bound of zero. We first write the integral as: 
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Letting  21   yt  we obtain dydt 1 , and    2121   t . We can then write (40) as 

 
 

 

 
 

 

 
 

 















21

21

21

21

21

21
1

3

1

2

1

1
2





















dttNdttB

b
dttA

b
dyu iii

                                                                                …(41) 

where 

 
 

 

   
 

 

 
 

 
 

0
2121

21

2121

21 00

0

0

  
















dttAdttAdttAdttAdttA iiiii
                                                      …(42) 

 

 
 

 

   
 

 

 
 

 
 

 
 

 
  4/7

21

2/3

21

4/7

21

2/3

21

00

0

0

)3/2exp()3/2exp(

2121

21

2121

21



























  








dttBdttBdttBdttBdttB iiiii

                                                               …(43) 
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 
 

 

 
 

 
   

 
 

 
 

 
  4/7

21

2/3

21

4/7

21

2/3

21

0000

)3/2exp(

3

1)3/2exp(

3

1

3

1
)(

3

1 2121212121

21























 




dttBdttBdttNdttNdttN iiiii

.                                                  …(44) 

We thus have 

 
 

 
  




















 

4/7
21

2/3
21

4/7
21

2/3
21

1

3

1

2
22

)3/2exp()3/2exp(
]

3
[



















b
dyuu .                                                                 …(45) 

Other integrals appearing in the mean velocity, (38), are evaluated using (22) and (23), as follows: 

 





0 1
2

1

1211
0

11 ]
1

)exp()exp([ dy
M

yayadyuu ]}1){exp(}1){exp([
1

11
1211

1 




 M
aa          

                                                                                                                                                                                     …(46) 

    






 


 

32

332331

3

1

3
2

2

3231

1

33

1
)exp()exp()exp()exp(

1

]
1

)exp()exp([













M
cc

dy
M

ycycdyuu

.                                                     …(47) 

Upon using (45), (48) and (49) in (38) we obtain the following expression for mean velocity across the flow domain: 

   

 
 

 
  


















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





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 
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

4/7
21

2/3
21

4/7
21

2/3
21

1

3

1

2

32
332331

3

11
1211

1

)3/2exp()3/2exp(
]

3
[

1
)exp()exp()exp()exp(

1

]}1){exp(}1){exp([
1





























b

M
cc

M
aau

.                                                                         …(48) 

 

4. RESULTS AND DISCUSSION 

 

4.1. Choice of Permeability Parameters, Layer Thickness and Effective Viscosities 

The constant permeability control parameters a and b influence the choice of the variable permeability in the middle 

layer, as can be seen from equation (2). We must choose ab  , so that choice of    gives 02  , which renders 

)()( 22   aYb  as the interval over which equation (31) is defined. Without loss of generality, we 

take in this work 2a  and 1b . We consider the cases: 3/2;3/1   ; 4/3;4/1   ; 51.0;49.0   , to 

define layer thickness. 

 

In expressions (15), in the absence of concrete data for the effective viscosities, we will choose 121  and 

3,2,1,1  iM
i

ieff
i




. The method of solution adopted in this work is still valid for different values of 

1 ,
2  and

iM . Thus,
Da2

1
1  ; 

3
2

)(2

1







Da
; 

Da

1
3  .       

 

4.2. Choice of Darcy Number 
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Darcy number, Da, is the dimensionless permeability and has a maximum value of unity. We tested in this work the 

range of Da = 1; 0.1; 0.01; 0.001; 0.0001; 0.00001. It is clear that the lower the value of Da the higher the values of
1 , 

2  and 3 . These values are given in Table 2. Equation (35) gives the following expressions for 4321 ,,,  , which 

are tabulated in Table 3: 
21   ; )2(22   ;

2
23



  and 

2
4




  .          

Table 2. Values of i  ,  i=1,2,3 for choices of layer thicknesses and Darcy number   

 

       

           Da          

Da=1 Da=0.1 Da=0.01 Da=0.001 Da=0.0001 Da=0.00001 

3/2

3/1








 

1  0.707107 2.2360689 7.071068 22.3606797 70.710678 223.606798 

2  -1.144714 -2.4662121 -5.313293 

 

-11.447142 -24.662121 - 53.132928 

3  
1 3.162278 10 31.622777 100 316.2277660 

4/3

4/1








 

1  0.7071067810 2.236067977 7.071067814 22.36067977 70.71067814 223.6067977 

2  -1 -2.15443469 -4.64158883 -10 -21.544346 -46.4158883 

3  
1 3.16227766 10 31.62277660 100 316.227766 

51.0

49.0








 

1  0.707106781 2.236067977 7.07106781 22.360679 70.71067814 223.606797 

2  -2.9240177 -6.2996052 -13.572088 -29.240177 -62.99605 -135.72088 

3  
1 3.1622777 10 31.62277660 100 316.227766 

 

Table 3. Values of j ,  j=1,2,3,4, for choices of layer thicknesses and Darcy number 

 

       

           Da          

Da=1 Da=0.1 Da=0.01 Da=0.001 Da=0.0001 Da=0.00001 

3/2

3/1









 

1

 

-1.14471 -2.466212 -5.313293 -11.447142 -24.66212 -53.132928 

2

 

0 0 0 0 0 0 

3
 

2.397484 0.516522 0.111281 0.023975 0.0051652 0.001113 

4

 

-2.744434 -1.273853 -0.591270 -0.274443 -0.127385 -0.059127 

 

4/3

4/1









 

1

 

-1 -2.154434 -4.6415888 -10 -21.54434 -46.415888 

2

 

0.25 0.538608 1.1603972 2.5 5.386086 11.603972 

3
 

3.141592 0.676835 0.14582 0.031416 0.0067683 0.001458 

4

 

-3.14159 -1.458198 -0.676835 -0.314159 -0.14582 -0.067683 

51.0

49.0









 

1

 

-2.92401 -6.2996052 -13.572088 29.2401773 -62.99605 -135.72088 

2

 

-1.37428 -2.960814 -6.378881 -13.742883 -29.60814 -63.788812 

3
 

0.367443 0.0791632 0.017055189 0.003674429 0.000792 0.00017 
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4

 

-1.07441 -0.498696 -0.231475 -0.107441 -0.04987 -0.023147 

 

4.3. Calculations of ii BA ,  and iN  using the selected parameters 

 

In order to calculate the arbitrary constants appearing in the velocity profile and shear stress terms, shown in the next 

subsection, we need values of 

 

     ][,][,][ 222   iii NBA ,  ][2 2  iA ,  ][2 2  iB ,  ][2 2  iN ,

     ][,][,][ 222   iii NBA ,  ][2 2  iA ,  ][2 2  iB ,  ][2 2  iN . 

 

Using the asymptotic approximations of Table 1, we approximate these values and produce Tables 4(a)-4(d). For 

small values of Da, the approximations become extremely large. Therefore, we restrict our attention to results using Da 

= 0.001 to Da = 1. 

 

Table 4(a). Values of      ][,][,][ 222   iii NBA  for choices of layer thicknesses and Darcy 

number 
 

       
              Da          

Da=1 Da=0.1 Da=0.01 Da=0.001 

3/2

3/1








 iA  0.259106 0.165765 0.04905 0.00138494 

iB  0.792477 1.058740 2.511501 59.01173 

iN

 

-0.023237 -0.110574  

 

 

 

4/3

4/1








 iA  0.231694 0.123404 0.0211112 0.00010834 

iB  0.854277 1.28320 5.02709 657.792 

iN

 

-0.04003  

 

 

 

 

 

51.0

49.0









 

iA  0.339904 0.322532 0.285841 0.213048 

iB  0.641164  

 

0.738865 0.902112 

iN

 

-0.00054  

 

 

 

 

 

 

Table 4(b). Values of      ][,][,][ 222   iii NBA for choices of layer thicknesses and Darcy number 

 
 

       

                   Da          

Da=1 

 

Da=0.1 Da=0.01 Da=0.001 

3/2

3/1








 iA      

iB      

iN       

4/3

4/1








 iA      

iB      

iN       
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51.0

49.0








 iA      

iB      

iN       

 

Table 4(c). Values of      ][2,][2,][2 222   iii NBA for choices of layer thicknesses and Darcy 

number 
 

       

              Da          

Da=1 Da=0.1 Da=0.01 Da=0.001 

3/2

3/1








 iA      

iB      

iN

 

    

4/3

4/1








 iA      

iB      

iN

 

    

51.0

49.0









 

iA      

iB      

iN

 

    

 

Table 4(d). Values of      ][2,][2,][2 222   iii NBA ,  for choices of layer thicknesses and Darcy 

number 

 

 

       

                   Da          

Da=1 Da=0.1 Da=0.01 Da=0.001 

3/2

3/1








 iA      

iB      

iN       

4/3

4/1








 iA      

iB      

iN       

51.0

49.0








 iA      

iB      

iN       

 

 

4.4. Calculations of the arbitrary constants in the velocity profiles 
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Using the asymptotic approximations of Table 1, and the parameters and functions of sections 4.1-4.3 above, we can 

solve the matrix-vector equation (34) for the arbitrary constants appearing in the velocity profiles and the shear stress 

terms. Values of arbitrary constants for different layer thickness and various values of Darcy number are given in Table 

5, below. 

 

Table 5. Values of arbitrary constants, 212121 ,,,,, ccbbaa , for choices of layer thicknesses and Darcy number 

 

       

           Da          

Da=1 Da=0.1 Da=0.01 Da=0.001 

3/2

3/1








 

1a      

2a      

1b      

2b      

1c      

2c      

4/3

4/1








 

1a      

2a      

1b      

2b      

1c      

2c      

51.0

49.0








 

1a      

2a      

1b      

2b      

1c      

2c      

 

4.5. Velocity and shear stress computations at the interfaces between layers 

 

Velocity and shear stress term at the interface between the first and second layers take the following forms at y : 

 

Daaau 2)exp()exp()( 12111                                                                                                          …(49) 

)exp()exp()( 112111
1   aa

dy

du
.                                                                                                        …(50) 

 

At the upper interface, y , velocity and shear stress term take the forms: 

 

Daccu  )exp()exp()( 32313                                                                                                             …(51) 

 

)exp()exp(
)(

323331
3 


 cc
dy

du
.                                                                                                          …(52) 

 

Numerical values of velocity and shear stress term at the interfaces are provided in Table 6(a,b), below, for different 

values of Darcy number and layer-thicknesses.  
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Table 6(a). Velocity and shear stress at the lower interface y . 

 

       

           Da          

Da=1 Da=0.1 Da=0.01 Da=0.001 

3/2

3/1








 

)(1 u      

)(1 
dy

du
 

    

4/3

4/1








 

)(1 u      

)(1 
dy

du
 

    

51.0

49.0








 

)(1 u      

)(1 
dy

du
 

    

 

Table 6(b). Velocity and shear stress at the upper interface y . 

 

       

           Da          

Da=1 Da=0.1 Da=0.01 Da=0.001 

3/2

3/1








 

)(3 u      

)(3 
dy

du
 

    

4/3

4/1








 

)(3 u      

)(3 
dy

du
 

    

51.0

49.0








 

)(3 u      

)(3 
dy

du
 

    

 

4.6. Mean velocity across the layers 

 

Equation (50) provides an expression for the mean velocity across each layer and across the channel composed of the 

three layers. For different layer thicknesses and various Darcy number values, Table 7 provides numerical values for 

the mean velocity.  

 

Table 7. Mean velocity across the composite layers for different layer thicknesses and various values of Da. 

 

  Da=1 Da=0.1 Da=0.01 Da=0.001 

3/2

3/1








 

u     0.000875 

4/3

4/1








 

u    0.004101 0.000632 

51.0

49.0








 

u      



International Journal of Enhanced Research in Science, Technology & Engineering 

ISSN: 2319-7463, Vol. 5 Issue 4, April-2016 

 

Page | 22  

4.7. Permeability distribution across the layers 

 

We have assumed that layer 1 and layer 3 are of constant permeability, and layer 2 of variable permeability. The 

dimensionless permeability in layer 1 is given by 01 aKK  , and that in layer 3 by 03 bKK  , where we have chosen 

.2,1  ab  Dimensionless permeability in layer 2 is given by .
2

)(2 0
2










y

K
K The above permeability 

distributions, 21,KK  and 3K  can be rewritten to replace 0K  by Da as: 

 

Da
H

K
K 2

2

1*
1                                                                                                                                                         ...(53) 










2

)(2
2

2*
2

y

Da

H

K
K                                                                                                                                          ...(54) 

Da
H

K
K 

2

3*
3  .                                                                                                                                                       ...(55) 

 

Permeability distributions in (56) is tabulated in Table 7, below, for each thickness. Permeability distributions across 

the layers are plotted for the selected range of Da and layer thicknesses in Figs 2 to 4. These figures show the constant 

permeability in the lower and upper bounding layers, and the variable permeability (decreasing) in the middle layer. 

 

Table 7. Variable Permeability function for each middle layer thickness 
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Figure 2. Permeability Distribution ,
3

2
,

3

1
  and different values of Darcy number. 
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Figure 3. Permeability Distribution ,
4

3
,

4

1
  and different values of Darcy number. 

 

 

Figure 4. Permeability Distribution ,
4

3
,

4

1
  and different values of Darcy number. 

4.8. Velocity distribution across the layers 

 

Velocity distributions across the variable permeability middle layer, for different layer thicknesses and Darcy number, 

are illustrated in Figs 5 through 7. These figures show the shape and demonstrate the increase in velocity with 

increasing Da. Velocity distributions across the composite three layers, for different layer thicknesses and Darcy 
number, are illustrated in Figs 8 through 10. These figures show the shape, smoothness in the velocity profiles, and 

demonstrate the increase in velocity with increasing Da. 

 

 
 

Figure 5. Velocity profiles in the second layer for ,
3

2
,

3

1
  and different values of Darcy number. 
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Figure 6. Velocity profiles in the second layer for ,
4

3
,

4

1
  and different values of Darcy number. 

 

 

Figure 7. Velocity profiles in the second layer for ,51.0,49,0   and different values of Darcy number. 

 

 

Figure 8. Velocity profiles in the three layers for ,
3

2
,

3

1
  and different values of Darcy number. 
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Figure 9.  Velocity profiles in the three layers for ,75.0,25.0   and different values of Darcy number. 

 

 
Figure 10.  Velocity profiles in the three layers for ,51.0,49.0   and different values of Darcy number. 

 

 CONCLUSION 

 

In this work we considered the flow through a composite of layered media, composed of three layers the flow through 

which is governed by Brinkman’s equation. The middle layer is taken to be of variable permeability and the bounding 

layers of constant permeability. Flow through the middle layer is governed by an Airy’s differential equation. Its 

solution has been obtained and expressed in terms of the Nield-Kuznetsov function, and characteristics of the flow in 

the configuration have been thoroughly analyzed. 
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