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ABSTRACT

Flow through a composite of three porous layers is considered. The middle layer is assumed to be of variable
permeability and the bounding layers are of constant permeability. Flow through the layers is governed by
Brinkman’s equation which, for the chosen configuration, is reduced to an Airy’s differential equation valid in
the variable permeability layer. Exact solutions are obtained and extensive computations are provided to
evaluate Airy’s functions and the Nield-Kuznetsov function.
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1. INTRODUCTION

Vafai and Thiyagaraja, [1], identified the flow through one porous layer over another porous layer as the second
problem in the flow over porous layers. This problem has been less studied than flow through a Navier-Stokes channel
over a porous layer, which has received extensive analysis over the last five decades due to the need to derive
appropriate interfacial conditions and to determine the most appropriate flow model to use in describing the flow
through the porous layer, [2], [3].

Flow through composite porous layers (defined here as porous layers of differing porosities and permeabilities), is of
interest due to its many applications that arise in both natural settings and in biological and industrial applications, [4],
[5], [6]. Of particular interest in these applications is the flow through variable permeability porous layers, due to the
natural occurrence of non-constant permeability porous layers such as earth layers where oil and water recovery are of
great importance, [6].

Some studies have already been devoted to flow through variable permeability media, [6], [7], [8]. In fact, in a recent
article, Nield and Kuznetzov [9] presented elegant analysis of flow over a porous layer based on a formulation in which
they considered the flow through a transition Brinkman layer, [10], [11], of variable thickness and variable permeability
bounded by a constant permeability Brinkman layer, on one side, and a free-space channel on the other. They expressed
their solution in terms of Airy’s functions and introduced an important new function, N; (x) , that proved to be of great

utility in the solution of inhomogeneous Airy’s ODE with a variable forcing function. Hamdan and Kamel [12] studied
extensively the N;(x), and introduced a new function, K;(x) , that complements the N;(x) function in obtaining the

solution to inhomogeneous Airy’s ODE. The pair of functions N;(x) and K;(x) are known as the Nield-Kuznetsov
functions.

The approach used by Nield and Kuznetsov [9] in formulating and solving the transition layer problem proved to be of
great utility in solving similar practical problems, [11]. Their approach is also well-suited in the general analysis of
flow through composite porous layers of variable thicknesses and permeabilities, which is the subject matter of this
current work. We consider the flow through a Brinkman porous layer that is bounded by two constant permeability
Brinkman layers. The bounding lower and upper layers are themselves bounded by impermeable, macroscopic
boundaries on which the no-slip condition is imposed. The flow through each bounding layer is assumed to be
governed by Brinkman’s equation with a different, yet constant permeability for each layer. The middle layer is
governed by Brinkman’s equation with variable permeability. At the interfaces between layers, it is assumed that
permeability is continuous. Other conditions at the interface between layers are velocity continuity and shear stress
continuity. The objectives here are to derive expressions for velocity and shear stress at the interface, and to determine
the velocity profiles in the layers. Velocity in the variable permeability layer is expressed and evaluated in terms of the
Nield-Kuznetsov function. The derived velocity expressions are compatible with the equations governing flow through
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two-dimensional channels, hence should serve as velocity entry conditions to flow through two-dimensional
configurations.

2. PROBLEM FORMULATION
Consider the flow through three porous layers of different thicknesses, and of different permeability, shown in Fig.1.
The middle layer is of variable permeability, while the bounding lower and upper layers are of constant permeability.
Each of the bounding layers is terminated by a solid wall on their outer sides and join the middle variable-permeability

layer along an assumed sharp interface. The flow is assumed to be driven by the same pressure gradient and governed
by Brinkman’s equation in each layer.

A
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Porous Layer 1

Solid Wall, y *=0

Figure 1. Representative Sketch

In layer 1: the permeability, K, in layer 1 is assumed constant and given by:
K, =aKy0<y <pH. ()

In layer 2: the permeability, K, , in layer 2 is assumed to be a variable function of Y , and given by:

o abKy(p-oH
K,(y)= 0
)= ey + @n-b9

In layer 3: the permeability, K;, in layer 3 is assumed constant and given by:

Y H<y” <&, )

K, = bk, H <y <H. ..03)

In (1), (2) and (3), K, is a reference constant permeability, a and b are constants to be selected, £ and 1] are parameters
that determine the thickness of each layer. We note that at each interface between layers the permeability is continuous
with K, = K, (7H) = aK, ad K, = K, (&H) = bK,.

The governing equations and boundary conditions associated with the configuration in Figure 1 are stated as follows.

In layer 1, the flow is governed by:

2..* *
7. d lizl—ﬂu’*HG:o; O<y <nmH. )

dy K,

In layer 2, the flow is governed by:
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d®u™ M
dy*2 Kz(y*)

Lo U2 +G=0; H<y <H. )

In layer 3, the flow is governed by:

2, * *
u3effd—u23—&u*3+G=0 ; 6H<y <H. ...(6)
dy” Ks

In (4), (5) and (6), G :—? is the constant pressure gradient, U i=U i(Y) is the velocity in the ith layer, for
X

i=1,2,3, K; is the permeability in the ith layer, z; is the viscosity of the base-fluid saturating the ith layer, and Hieff

is the effective viscosity of the fluid in the ith layer. We note that the viscosities of the base fluids in the three layers

should be equal, z4 =11, = 145, if the base fluid is the same. The effective viscosities, aeff , Hoeff , and Haeff ,

however, are not necessarily equal.

Now, introducing the dimensionless variables:

*

Y . K -
y:q,ui: . MI:/'lleff

Ui (7
GH’ Hi

and defining Da = % as the Darcy number, and (4), (5) and (6) take the following dimensionless forms, respectively:

d2u, H?

——-—Wu+1=0: o . ...(8
1dy2 K, 1 <y<n ®)
d2u, H?

———Uy+1=0: p<cy<e ...(9
Py Ky(y) n<y<e ©
d2; H?

— ——\u +1=0; 1. ...(10
3 dy2 K3 3 §<y< ( )

Upon using the permeability distributions (1), (2), and (3) in (8), (9), and (10), respectively, we obtain:

ﬂ— L W+—=0: 0
dy2 aDaM, i M, 7 O<y<n. ..(11)

d2, (b-a)y+ap-hé 1
- U +—=0 .
&2 abDaM,(p-&) 2 M, ¢ T<Y<e -(12)

@_ 1 u +i—0. 1
dy2 bDaM, 3 M, ;o E<y<l. ...(13)

Equations (11), (12) and (13) are to be solved subject to the conditions of no-slip at the solid walls (y = 0 and y = 1),
velocity and shear-stress continuity at the interfaces between layers (Y=17 and y = &), where the shear stress in each

dy

layer is defined based on the effective viscosity, namely Hieff dy for i=1,2,3. These conditions are stated as follows:
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u,(0) =u,(@) = 0; u,(77) = u,(77) U(&) =u3(<) ..(14)
% = dﬁ . dﬁ :% . /’lZEff . /’IZeff
& () =4 & m; % & ) & ©); 9 = L g, = .(15)

Mgt Mgt
3. METHOD OF SOLUTION

3.1. Solving the Governing Equations

Defining
1 1 1
21:—122: 113: ...(16)
JaDaM; "* " 3fanb—ay?DaM,(7-&)  /bDaMs
then (11), (12) and (13) can be written, respectively, as:
— -1y +—=0 -
dy2 1t M]_ ’ 0<y<77' (17)
d2U2 3 2 1
— —A2b-a)[(b-a)y+an-bllu,+—=0; p<y<e& ...(18)
dy M,
—= 13U +—=0:
dy2 3U3 M, ;o E<y<l. ...(19)

Now, (17) and (19) are linear, inhomogeneous, second-order ODE whose general solutions are given, respectively, by:

Uy (y) = a exp(Ay) +a, exp(=4y) + ...(20)

M A4

Us(Y) = exp(4zY) +C, eXp(=AgY) + .21

M, 4%

where a, , a, , c, and c, are arbitrary constants to be determined using boundary and interface conditions (14) and
(15).

Shear stress across the first and third layers is given by the first derivative of each of (20) and (21), namely

du
d_yl = a4 eXp(AY) — A exp(=4yY) .(22)
dd—“y3=% exp(AaY) — Coa EXP(~aY). (23)

In order to solve (18), we first introduce the transformation:
Y =Z[(b-a)y+an—bsl]; u,(y)=U,(Y). (24

Equation (18) then takes the form:
d’y, 1

w2 2t i, 0 bR <Y <at(r-2) +(25)
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which is Airy’s inhomogeneous differential equation. Solution to the homogeneous part of (25) is given in terms of
Airy’s functions, A(Y) and B;(Y), [13], and the complementary function is given by the linear combination:

Upo(Y) =BA(Y) +88,(Y) ..(26)
where b, and b, are arbitrary constants. The Wronskian of A(Y) andB;(Y) is given by, [13]:
1
WA, B()) = AMB)-ANB ) =— -.(27)

where prime notation denotes ordinary differentiation with respect to the argument. The particular integral of (32) can
thus be obtained by the method of variation of parameters, and takes the form:

P Y Y
Uy, —M{A(Y) [BOd-B(Y) (J)Ai(t)dt}. ..(28)

The expression in brackets on the RHS of (28), and its derivative, namely

N, (Y) = A(Y)[ B (t)dt - B,(Y)[ A t)dt -.(29)
N;(Y) = A(Y)IB ()t~ BI(Y)S A (t)clt .(30)

are recognized as the Nield-Kuznetsov function and its derivative, and has been studied extensively by Hamdan and
Kamel [12]. Upon using (26), (28) and (29), we express the general solution to (25) as:

V4

UZ(Y):blA(Y)+szi(Y)+mNi(Y); bA,(7—&)<Y <ai,(n—&). ...(31)
Using (24) in (31), we obtain:
U,(y) =B A (Z[(b~a)y +an-b])+b,B (4[(b-a)y +an-be])

S A— i - — ; <y<é. ...(32)
+ﬂzz(b_a)zM2 N;(Z[(b—a)y+an—bé]) n<y

Derivative of (32) with respect to y is the shear stress term across the second layer, and is given by:

dTuyz=%(b—a)%\'(zg[(b—a)y+an—b51)+bzzz(b—a)8((ﬂg[(b—a)v+an—bfl)
) | b - ...(33)
+mNi(ﬂz[( —a)y+an-bghn<y <&

3.2. Determining the Arbitrary Constants
Equations (20), (21) and (32) represent the general solutions to the governing equations (11), (12) and (13). Using

conditions (14) and (15) in (20)-(23) and (32)-(33), we obtain the following system of linear equations for the arbitrary
constants appearing in the velocity equations, written in the matrix-vector form

MX =C
...(34)

where
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1
M, A%

(bl -£1) 1

o AZb-a)P’M, Mt

q

2, aNi(Laln-£) 1
. El . (b-a)’M, M,2%

2

c SNi (200 - ¢])

G | A (b-a)M,

9paNi(A,aln - £1)

A(b-a)M,
1
- M, 4% ]

1 1 0 0 0 0
opl) () - Alzbln-¢]) -Bi(/zbln-¢)) 0 0
u| 0 0 ~Alizeln-4) Blin-6) ool en(-d)
hexp(n) -hep(-An) -Sb-a)Kln-a) -4hb-aBihilh-&) 0 0

0 0 ~Shb-aA(Ran-¢) -%hb-a)Bhilr-£) Lep(isl) -en(-i)
I 0 0 0 0 exp(4s) exp(-4s)

Solution to (34) requires evaluations functions of Airy’s functions, their derivatives and integrals. This is discussed in
what follows.

3.3. Asymptotic Approximations of the Functions A, B; and N;

The velocity profile and shear stress term in the variable permeability Brinkman layer involve Airy’s functions and
their first derivatives, and the Nield-Kuznetsov function and its first derivative. These functions will be evaluated at
their respective arguments using asymptotic approximations. We find it convenient to first introduce the following
acronyms:

T B /4
n=xb-2a), y, =4 @r-bs), 73_/122(b—a)2M2 , 74_12(b—a)M2' ...(35)
Using (35), equations (32) and (33) can be written, respectively, as
7
Uz(Y):blA(7/1y+7’z)"‘(bz‘?)Bi(%)""?’z); n<y<é ...(36)
e b2 o-a)A(ny-+7,)+ I, (0-2) - 1By + 75):
dy = ny+7, b4 3 iNYT7) n<y<é. ...(37)

The values of 5, and », are dependent on A, , which is a function of Da,&,77,a,b and M, , as shown in (16) and
(35). For a given variable porous layer thickness, & —77, and permeability parameters, a and b, the values of 2, are
sensitive to variations in Darcy number, Da. For small values of Da, the value of A, is large, and for large arguments of
Airy’s and Nield-Kuznetsov function, we can use the asymptotic approximations in Table 1, [12]:
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Table 1. Asymptotic Approximations

_ exp(=2Y %2 /3) vy o Y exp(=2Y %2 /3) Y 1
AI(Y) -2\/_Y1/4 Al(Y)“‘ 2\/; éAl(t)dt ~ 3
exp(2Y ¥2/13) , YY4exp(2Y®2/3) | ™ exp(2Y¥%/3)
Bi(Y)~———37— Bi(Y)~— B (t)dt ~ - s 1Y)
T Jz JB® o
N, (V) ~ - 20 N¢(Y) ~— B N ()t ~ - T8, @)t
3 3 0 30

3.4. Calculating the Mean Velocity through the Three Layers

Mean velocity across the channel layers is defined as

n I 1
U:U1+u2+u3:Iuldy+_fu2dy+ju3dy ...(38)
0 ¢

n

where T,,U,,U; are the mean velocities in layers 1, 2, and 3 respectively.

In order to utilize the asymptotic approximations of Table 1 in (38), the middle integral in (38) must be converted to
one with a lower bound of zero. We first write the integral as:

< g Ui
qudy:qudy —qudy- ..(39)
7 0 0

Using Table 1 in (39), we obtain

¢ ¢
qudy:I[blAi(Vly"‘72)"'szi(71y+72)+73Ni(7/1y+72)]dy_

n

.(40)
n
j[b].Ai (71y +72)+ b, B; (71y +72)+ 73Ni(71y+ 72)]dy
0
Letting t = (y,y + y, ) We obtain dt = y,dy, and (3,77 + y,) <t < (,& + », ). We can then write (40) as
I3 (n&+r2) b (n&+72) v (n&+72)
juzdy— IA (dt+=2  [B(t)dt+22 [N, (t)t ..(41)
n 71 ) Y1 Gunr) Y1 (urers)
where
(n&+72) 1E+472) (rm+72)
IA(t)dt j A(t)dt+ jA(t)dt jA,(t)dt— [A(t)t=0 -.(42)
(rr+72) (an+r2) 0 0
(né+7,) 0 (1&+72) (né+7,) (rm+72)
[Bit)t= | B (t)dt+ jB = [B(t)dt- [B(t)t
(rin+72) (rin+72) 0 0 3)

_ eXp(2(71§+ 72)3/2 I3) eXp(2(7177 + 72)3/2 /3)
(& +7,)" Jr(p+7,)"
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(ng+r2) (n&+r2) (ror+72) 1 (n&+r2) 1 (ror472)
[N(dt= [N()dt— [N()dt=—7 [B@dt+Z [B(t)t
(r1+72) 0 0 3 % 3 % (44)
_ 1 eXp(2(71§ + 72)3/2 /3) +£ eXp(2(7177 + 7/2)3/2 /3)
3 Ja(ne+n)" 3 Axlm+r)"
We thus have
- ¢ b, _ 73 &P+, 13) _ exp(2yn +7,)"*13)
0, = ju,dy =[-2 - 22 o772 - 12 . ...(45
2= =t 371][ Vr(né+y,)" Vr(mn+7,)" “
Other integrals appearing in the mean velocity, (38), are evaluated using (22) and (23), as follows:
o, = Zuldy =Z;;[a1 exp(4Y) +a, exp(—4Yy) + ﬁ]dy = %[al{exp(ﬂm) B -a{exp(—An) -+ M’Z /11]
...(46)
1 1 1
0, = [udy = [[e, X0 (Aay) + ¢, €4 (~Aay) + =1y
: : 2 @7)

=ﬂcl{expug)—exp(ﬂg)}—cz{exp(—ﬂg)—exp(—ﬂgg)}+ hlﬂ‘fj

Upon using (45), (48) and (49) in (38) we obtain the following expression for mean velocity across the flow domain:

0= %[al{expum) 1 ay{exp(- ) T+ M’Z X

+ﬂcl{est) — exP(aL))} — C {EXD(~a) — EXD(~4a) |+ hlﬂ‘z ;j | .49)

Z-L {exp(zwﬁ +72)"°13) _ exp(rn+7,)"° 3)}
no 3| Valpgep" Va(rn+7,)"

4. RESULTS AND DISCUSSION
4.1. Choice of Permeability Parameters, Layer Thickness and Effective Viscosities

The constant permeability control parameters a and b influence the choice of the variable permeability in the middle
layer, as can be seen from equation (2). We must choose b < @, so that choice of 77 < & gives A, < 0, which renders
bA,(n—&) <Y <ad,(n—&) as the interval over which equation (31) is defined. Without loss of generality, we
take in this work @ =2 and b=1. We consider the cases: 7=1/3;=2/3; n=1/4,£=3/4; n=0.49;£=051, to
define layer thickness.

In expressions (15), in the absence of concrete data for the effective viscosities, we will choose 4 =9, =1and

M; = Hietf
Hi

=1,i =1,2,3. The method of solution adopted in this work is still valid for different values of .4 ,.9, and

1

R T
Mi.ThUS, \/ﬁ,’b‘m, \/D_a

4.2. Choice of Darcy Number
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Darcy number, Da, is the dimensionless permeability and has a maximum value of unity. We tested in this work the
range of Da = 1; 0.1; 0.01; 0.001; 0.0001; 0.00001. It is clear that the lower the value of Da the higher the values of 4 ,

A, and A;. These values are given in Table 2. Equation (35) gives the following expressions for y,7,,3,7,, which

i3
are tabulated in Table 3: 3, = 1,5 », = 4, (27— &) i 73 :%and Va :Z.
2

Table 2. Values of ﬂi , 1=1,2,3 for choices of layer thicknesses and Darcy number
Da=1 Da=0.1 Da=0.01 Da=0.001 Da=0.0001 | Da=0.00001
Da
n=1/3 | A4 0.707107 2.2360689 7.071068 22.3606797 70.710678 223.606798
§ ~92/3 A, -1.144714 -2.4662121 -5.313293 -11.447142 -24.662121 - 53.132928
13 1 3.162278 10 31.622777 100 316.2277660
n= 1/4 | 2, | 0.7071067810 | 2.236067977 | 7.071067814 | 22.36067977 | 70.71067814 | 223.6067977
¢=314 1 -2.15443469 | -4.64158883 10 21544346 | -46.4158883
13 1 3.16227766 10 31.62277660 100 316.227766
n= 049 | 4, 0.707106781 | 2.236067977 | 7.07106781 22.360679 70.71067814 | 223.606797
¢=051 A, -2.9240177 -6.2996052 -13.572088 -29.240177 -62.99605 -135.72088
13 1 3.1622777 10 31.62277660 100 316.227766
Table 3. Values of Vi j=1,2,3,4, for choices of layer thicknesses and Darcy number
Da=1 Da=0.1 Da=0.01 Da=0.001 Da=0.0001 Da=0.00001
n=1/ 3Da1 yy | -1.14471 -2.466212 -5.313293 -11.447142 -24.66212 -53.132928
§=213 2 0 0 0 0 0 0
75 2.397484 0.516522 0.111281 0.023975 0.0051652 0.001113
v, | -2.744434 -1.273853 -0.591270 -0.274443 -0.127385 -0.059127
n= 1/4| » -1 -2.154434 -4.6415888 -10 -21.54434 -46.415888
c=3/4 75 0.25 0.538608 1.1603972 25 5.386086 11.603972
75 3.141592 0.676835 0.14582 0.031416 0.0067683 0.001458
v. | -3.14159 -1.458198 -0.676835 -0.314159 -0.14582 -0.067683
n= 0.49| 5, | -2.92401 -6.2996052 -13.572088 | 29.2401773 -62.99605 -135.72088
95 =051 Vo -1.37428 -2.960814 -6.378881 -13.742883 -29.60814 -63.788812
2 0.367443 0.0791632 | 0.017055189 | 0.003674429 0.000792 0.00017

Page | 17




International Journal of Enhanced Research in Science, Technology & Engineering
ISSN: 2319-7463, Vol. 5 Issue 4, April-2016

-1.07441 -0.498696 -0.231475 -0.107441 -0.04987 -0.023147

Va4

4.3. Calculations of A,B; and N; using the selected parameters

In order to calculate the arbitrary constants appearing in the velocity profile and shear stress terms, shown in the next
subsection, we need values of

Aol - €D Bi (Al - W Ni(Agln - £1), A2A,[n - £1), B(24,[n - £1), Ni(24,[n - €]),
Aol - DBl (Al - EWNi(Agln - £1), A(245[n - £1), Bi(24,[n - £1), Ni(24,[n - £]).

Using the asymptotic approximations of Table 1, we approximate these values and produce Tables 4(a)-4(d). For
small values of Da, the approximations become extremely large. Therefore, we restrict our attention to results using Da
=0.001to Da=1.

Table 4(a). Values of A (/12 [7— f]), B, (/12 [7— f]), N; (/12 [7— f]) for choices of layer thicknesses and Darcy

number
Da=1 Da=01 | Da=00l | Da=0.001
Da
n=1/3 | A | 0259106 | 0165765 | 004905 | 0.00138494
£=2/3 [g | 0792477 | 1058740 | 2511501 | 5901173
| -0023237 | -0.110574 | -0.6523860 | -19.58325
n=1/4 | A | 0231694 | 0123404 | 00211112 | 0.00010834
¢=3/4 "o 0854277 | 128320 | 502700 | 657792
I
N | -0.04008 | -0.196488 | -152716 | -219.199
n=049 | A | 0339904 | 032253 | 0285841 | 0213048
£-051
B | 0641164 | -0.0005443 | 0738865 | 0.902112
I
N, | -0:00054 | -0.0025266 | -0.0117383 | -0.0549768

Table 4(b). Values of A{(ﬂz[n - 5]), B{(ﬂz[n - f]), Ni’(ﬂz[ry —§]) for choices of layer thicknesses and Darcy number

Da=1 Da=0.1 Da=0.01 Da=0.001
Da
n=1/3 A | ~0.237682 | -0.183409 | -0.0710035 | -0.00278963
£=2/3 B/ | 0.501540 0. 7488125 2.853765 110.9774
N/ | -0.122302 | -0.2801354 | -1.021887 -37.01812
n=1/4 A | -0.224911 0.123404 -0.0341414 | -0.000247414
¢= 3/4 Bi’ 0.544573 1.28320 6.94790 1435.82
N/ | ~0.16165] -0.196488 -2.37563 -478.622
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n =0.49 A’ -0.237682 -0, 183409 -00T7T10035 -0.00278963
£=051

B/ | 0.501340 0.7488125 2853765 110.9774

Ni' -0.122302 | -0.2801354 -1.021887 -37.01812

Table 4(c). Values of A(Zﬂz[n - §]), B (2/12[77 - f]), N; (222[77 —§])f0r choices of layer thicknesses and Darcy

number
Da=1 Da=0.1 Da=0.01 Da=0.001
Da
n= 1/3 A| 0176810 00587933 0.00238078 1.33009 ”_','7"
é: =2/3 Bi 1.00607 2. 18260 35,6583 4.33301 ”_;5
i -0.094765 -0.533733 -11.7911 ~1.44434 10°
n= 1/4 A 0.135292 0.0122423 0000242211 1.10475 1070
$= 3/4 Bi 1.20742 0.0531997 305.491 4.55641 10%
Ni -0.167255 0.0120870 -101.760 ~1.518&%0 10%
n=0.49 A 0.324847 0290670 0222157 0. 110220
£=051
Bi 0667330 0.729679 O.ETRO3R 1.38479
Ni -0,0021774 -0.0101137 00472823 -0.235643

Table 4(d). Values of A{(Zﬂz[n - 5]), Bl (2/12[77 - é]), N; (22,2[77 —§]), for choices of layer thicknesses and Darcy

number
Da=1 Da=0.1 Da=0.01 Da=0.001

Da
n =1/3 Ai’ -0, 191405 -0L.082654 1 -0.00463577 -3.71675 1[}'7
£=2/3 Bi’ 0.700355 2.34566 64.2671 118234 10°

Ni' -0.256582 -0.853129 -21.4525 ~3.04113 107
77:1/4 A’ -0.159147 -0.0431308 | -0.000534159 | _3 52063 107'°
¢=3/4 Bi’ 0.932436 5.27076 640.470 1.42024 107

Ni' -0.35924% - 182079 -213.507 —4.76413 10%
n=0.49 A’ -0.25652%9 -0.248917 -0L.219838 -0 136680
£-051

Bi’ 0.452734 0.470224 0.563943 117072

Ni' -0.0372374 | -0.0803695 -0.176277 -0.450232

4.4. Calculations of the arbitrary constants in the velocity profiles
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Using the asymptotic approximations of Table 1, and the parameters and functions of sections 4.1-4.3 above, we can
solve the matrix-vector equation (34) for the arbitrary constants appearing in the velocity profiles and the shear stress
terms. Values of arbitrary constants for different layer thickness and various values of Darcy number are given in Table
5, below.

Table 5. Values of arbitrary constants, a;,a,,b,,0,,¢;,C,, for choices of layer thicknesses and Darcy number

Da=1 Da=0.1 Da=0.01 Da=0.001
Da
n=1/3 [ a | -0.664631 | -0.0239774 | -0.000231142 | _g23032 10"
£=2/3 | a, | -1.33537 | -0.176023 | -0.0197689 | -0.00199994
b, | -0.807367 | -0.291343 | -0.0997572 ~0.145990
b, | 0.465189 | 0.161843 0.0371009 0.00799161
¢, | ~0.269959 | -0.00415357 | _4 55516107 | -1.84673 10"
c, | ~0.723537 | -0.0442889 | 0.736007 384543
n=1/4 | a | -0.664844 | -0.0243588 | -0.000310951 | _2 84904 10~
c=3/4 a, | -1.33516 | -0.175641 | -0.0196890 | -0.00199972
b, | ~1.61511 | -0.712949 ~0.323800 ~1.13782
b, | 0.688040 | 0216601 0.0486053 0.0104720
¢, | ~0.270011 | -0.00416127 | _4 56230 107 | -1.84686 107
c, | ~0.723152 | -0.0399921 1.08239 378771 10°
n=0.49 a, | ~0.664447 -0.0236392 -0.000170384 | _g 30069 107"
=051 [ a, | -1.33555 | -0.176361 | -0.0198296 | -0.00199999
b, | 0.139427 | 00796919 | 0.00956677 | -0.000921628
b, | 0107055 | 0.0657693 0.0144172 0.00183344
¢, | 0269915 | -0.00414758 | _455117 107 | -1.84673 1077
c, | ~0.723864 | -0.0476304 0.542381 3065.34

4.5. Velocity and shear stress computations at the interfaces between layers

Velocity and shear stress term at the interface between the first and second layers take the following formsaty=7:

Uy (17) = a exp(Aym) + a, exp(—A4) + 2Da

‘3_‘;1(,7) = 2,4, X0 (7) - s EXp(~)

At the upper interface, y =&, velocity and shear stress term take the forms:

U5(€) =y ©Xp(sc) ¢, 84p(/c) + Da

duy(6) _
dy

Numerical values of velocity and shear stress term at the interfaces are provided in Table 6(a,b), below, for different

Gy XP(455) ~ A X[~/

values of Darcy number and layer-thicknesses.
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Table 6(a). Velocity and shear stress at the lower interface y=7.

Da=1 Da=0.1 Da=0.01 Da=0.001
Da
n=1/3 U1(77) 0.103747 | 0.0659408 | 0.0156871 0.00189131
£=2/3 du, ) -1.80251 | -0.318990 | -0.0272058 | -0.00241784
dy
n=1/4 U1(’7) 0.0B77852 | 0.0569713 | 0.0148173 0.00191624
c=3/4 dul( ) -1.67983 | -0.311624 | -0.0284810 | -0.00178064
Y
dy
n=0.49 U1(’7) 0115829 | 00696752 | 0.0131867 0.00125557
=051
dul( ) 2.04900 0. 189834 00370620 | -0.0166447
-\
dy
Table 6(b). Velocity and shear stress at the upper interface y = &.
Da=1 Da=0.1 Da=0.01 Da=0.001
Da
n=1/3 U, (&) 0.102716 0.0604231 0.0105787 000102684
E=2/3 | du -0.154332 | -0.0911319 | -0.0129460 | -0.000850393
3
— (<)
dy
n=1/4 Uy (&) 0.0867926 0.0516770 | 0.00977377 000118938
=3/4
g du, () -0.230021 -0.129207 | -0.0142354 | -0.00601194
dy
n=0.49 Uy (&) 0.115954 0.0703539 0.0139778 000157148
=051
du, ©) 0.00287020 | -0.0297808 | -0.04 10000 -0.0180717
dy

4.6. Mean velocity across the layers

Equation (50) provides an expression for the mean velocity across each layer and across the channel composed of the
three layers. For different layer thicknesses and various Darcy number values, Table 7 provides numerical values for

the mean velocity.

Table 7. Mean velocity across the composite layers for different layer thicknesses and various values of Da.

Da=1 Da=0.1 Da=0.01 Da=0.001
n=1/3 U | 00775308 | 0.0480058 | 0.0107074 0.000875
£=2/3
n=1/4 U | 00775269 | 0.0479474 0.004101 0.000632
£=3/4
n=0.49 U | 0.0397180 | 0.0236304 | 0.00450508 | 0.00136549
£=051
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4.7. Permeability distribution across the layers

We have assumed that layer 1 and layer 3 are of constant permeability, and layer 2 of variable permeability. The
dimensionless permeability in layer 1 is given by K; =aK, and that in layer 3 by Kj =bK, , where we have chosen

N o o _ 2Ky (n=2) .
b=1 a=2. Dimensionless permeability in layer 2 is given by KZ_—y+—277—§' The above permeability
distributions, K;,K, and Kj can be rewritten to replace Ky by Da as:

« Ky
Kl :F = 2Da (53)
« K, 2Da(n-¢&)
Ky=—2=—"7"—2 ..(54)
H -y+2n-¢&
« Kj
K3 :?: Da . (55)

Permeability distributions in (56) is tabulated in Table 7, below, for each thickness. Permeability distributions across

the layers are plotted for the selected range of Da and layer thicknesses in Figs 2 to 4. These figures show the constant
permeability in the lower and upper bounding layers, and the variable permeability (decreasing) in the middle layer.

Table 7. Variable Permeability function for each middle layer thickness

—y+2n-¢
n=1/3 2&
£=213 3y
n=1/4 Da
&=3/4 y+1/4
n =049 4Da
¢=051 100y —47

Perm eability Di stributi on
14 =

0.6+

044

02 0.4 0.6 0.8 1.0 12 1.4 1.6 1.8 2.0
K*

[—Da=1----- Da=0.1 — — Da=0.01]

Figure 2. Permeability Distribution 77 ==& = % and different values of Darcy number.
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Figure 3. Permeability Distribution 77 = %,g = %,and different values of Darcy number.
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Figure 4. Permeability Distribution 77 = %,g = %and different values of Darcy number.

4.8. Velocity distribution across the layers

Velocity distributions across the variable permeability middle layer, for different layer thicknesses and Darcy number,
are illustrated in Figs 5 through 7. These figures show the shape and demonstrate the increase in velocity with
increasing Da. Velocity distributions across the composite three layers, for different layer thicknesses and Darcy

number, are illustrated in Figs 8 through 10. These figures show the shape, smoothness in the velocity profiles, and
demonstrate the increase in velocity with increasing Da.

Welocity Profile
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0.02 0.04 0.5 0.08 0.10
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[—Da=1----- Da=01 — — Da=0.01]

Figure 5. Velocity profiles in the second layer for 7 = %,g = % and different values of Darcy number.
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Velocity Profile
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Figure 6. Velocity profiles in the second layer for 7, = %,g = % and different values of Darcy number.

Velocity Profile
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Figure 7. Velocity profiles in the second layer for 77 = 0,49, & = 0.51, and different values of Darcy number.
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Figure 8. Velocity profiles in the three layers for 77 = l &= E and different values of Darcy number.
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Velocity Profile
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Figure 9. Velocity profiles in the three layers for 77 = 0.25,& = 0.75, and different values of Darcy number.
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Figure 10. Velocity profiles in the three layers for 77 = 0.49,& = 0.51, and different values of Darcy number.

CONCLUSION

In this work we considered the flow through a composite of layered media, composed of three layers the flow through
which is governed by Brinkman’s equation. The middle layer is taken to be of variable permeability and the bounding
layers of constant permeability. Flow through the middle layer is governed by an Airy’s differential equation. Its
solution has been obtained and expressed in terms of the Nield-Kuznetsov function, and characteristics of the flow in
the configuration have been thoroughly analyzed.
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