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Abstract: The aim of this paper is to introduce and define the notion of external distance and the extreme of a 

collection of external numbers. More precisely under certain conditions we obtain the following results: 

 

 If :  f R R™  is an internal continuous increasing function and if    is an external number, then 

     sup :     inf{  :  },f x x f x x     

      sup :     inf   :  f x x f x x     

 If  :  f R R™ is an internal increasing function and J is an external interval of R, then 

           sup         :        ,   sup{ sup { :  } }.
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1. Introduction 

 
It is known that the integral of a constant function f(x)=1on agiven interval (a,b) of R is equal to b-a which is the 
difference between the least upper bound and the greatest lower bound of the interval (a,b). 

We will extend this fact to the external numbers. We define thenotion of the external distance and then the concepts of 
theleastupper bound and the greatest lower bound of an external interval. 

We recall here that the external sets in R (see[2],[3],[4]) are not sets in the normal sense of the world ,but the collections 
of real numbers satisfying an external formula and not satisfying at least one theorem of conventional mathematics (see 
[2],[5] ). 

The external sets play an essential role in this paper, especially those external sets not satisfying the least upper bound 
theorem. 

 

2. Preliminaries 

 
Throughout this paper the following definitions and notations will be used. 

Definition 2.1 [2] 

Every set or formula which does not involve a new predicate "standard, infinitesimal, limited,…etc." is called an internal 
set or formula,otherwise,it is called an external set or formula . 

 
Definition 2.2 (see[3],[8] ) 
 
The set of all real numbers which are infinitely near to a real number a is called the monad of a,denoted m(a).So the 
external set of all infinitesimals is called the monad of 0, denoted by m(0). 
 
Definition 2.3 (see[2 ],[6],[7] ) 
 

The external set of all limited real numbersis called the principle galaxy. The notations ,   ,@  LÄ  and U are used for 

collection of infinitesimal, limited, appreciable and unlimited numbers respectively (see [2], [6],[9],[10] ) . 
E denotes the set of all external numbers, the symbol   denotes identical, conv, Lconv, Uconv denotes convexity, lower 

convexity, upper convexity respectively. 

The notation (∞,L) means that the interval does not contain any limited real numbers and the notation (-∞,L] means that 
the interval contains all limited real numbers. 
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Definition 2.4[1] 

A cut in R is an ordered pair (A,B) of convex subsets of R such that ,A B R A B     and A is dominated by B 

.The convex subset A is called a lower half line of R and the convex subset B is an upper half line of R. 

The following theorem is a reformation of the classification of internal and external cuts of R using external numbers. 

Theorem 2.1 

 If (M,N) is a cut of R, then there exists a unique external number α such that M=(-∞,α) or M=(∞,α]. 

Proof : 

 Let   be an external number, { : },A a a   and { : },B b b   then A=(-∞,α] and B=(α,∞). Since 

A B R and A B  , then (A,B) is a cut of R. 

 Now we have to prove that α is unique, suppose that there exists an external number 𝛽 different from α such that 
A=(-∞, 𝛽] , then either α > 𝛽 or α<𝛽. If α> 𝛽 , then A∪B=(-∞, 𝛽] ∪ (α, ∞), if α< 𝛽 , then A∩B=(-∞, 𝛽]∩(α,∞). In both 
cases we get contradiction, hence there exists a unique external number α such that A=(-∞,α) or A=(-∞ ,α ]. 

 

Definition 2.5 

 A microscopic set is a convex subgroup of R which may be internal or external. 

 

Definition 2.6 

 An external number is the algebraic sum of a real number and a microscopic set. 

 

3. External Distance 

 
Let E

+ 
denote the set of all positive external numbers α ≥ 0. 

Definition 3.1 

 We define a mapping λ:E→E
+
 which is associated to any two fixed external numbers α =a+M and 𝛽=b+N an 

external number λ(α, 𝛽) in E
+
. This mapping is called the external distance between α and 𝛽, and it is given by λ(α, 𝛽) 

=│b–a│ +(M+N). From the above definition we have the following remark: 

Remark 3.2 

1. λ(α, α) =M which is the microscopic part of α for all α in E. 

2. λ(α, 𝛽 )≥ 0 ∀α, 𝛽 ∈E ,λ(α, ɤ) ≤(α, 𝛽)+ (𝛽, ɤ)∀α, 𝛽,ɤ ∈E. 

3. If λ(α, 𝛽)=the microscopic part of one of them ,then it does not necessary imply that  α= 𝛽. For example if 
α=a+M,𝛽 =a+N, then λ(α, 𝛽 )=│a-a│+(M+N)=M+N=the microscopic part of α or 𝛽 while α ≠ 𝛽. 

Proof (3): 

 Let  α =a+M, 𝛽=b+N and ɤ =c+K ,then 

λ(α,ɤ)=│c-a│+(M+K), λ(α,𝛽)=│a-b│+(M+N) and,  

λ(𝛽, ɤ) =│c-b│+(N+K), It is clear that 

│c-a│=│c+b-b-a│=│(b-a)+(c-b)│≤│b-a│+│c-b│      (1) 

Since (M+K) ≤ (M+K)+N, then(M+K) ≤ (M+K)+2N this implies that  

(M+K) ≤ (M+N)+(N+K)         (2) 

From (1) and (2), we get the result. 

 

Definition 3.3 

 If P is a collection of external numbers, we say that P is convex in E if ∀α, 𝛽ϵ P,∀ δϵ E and α ≤ δ ≤ 𝛽 then δ ϵ P. 

Example 3.4 

1. The collection of all external numbers defined by P1={x:x ≤1+ε} is a convex set, the union of  its elements in R 
gives the external interval (-∞,1+ε). 
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2. The collection of external numbers  defined by P2={x+ε:x≤1+ε} is not a convex set,because {0}ϵP2, nevertheless, the 
union of its element in R gives the externalinterval (-∞,1+ε]. 

3. The collection of external numbers defined byP3={x ϵ R:x≤1+ε}is not a convex set because ε∉P3,while the union of 
its elements in  R gives the external interval(-∞,1+ε].  

 

4. Extremes of a Collection of External Numbers 

 
Definition 4.1 

Let T be a collection of external numbers, the lower convexity of T denoted by Lconv(T) is defined by 

  :      }{Lconv T E Tand         

The upper convexity of T denoted by Uconv(T) is defined by   :      }{Uconv T E Tand         and the convexity 

of T denoted by conv(T) is defined by 

     Conv T conL Uv T conv T  . 

Definition 4.2 

 Let T be a non-empty set of external numbers ,the least upper bound of T is upper boundary of conv(T), it is 
denoted by sup(T) and the greatest lower bound of T is the lower boundary of conv(T), it is denoted by inf(T). 

 It is clear that for any bounded set of external numbers the following relation holds  

Sup(T)=inf(T)          (3) 

 The following example gives the supremum and infimum of some sets 

 
Example 4.3 

(i) If P={x: x ≤1+ε} and P1={x: x >1+ε}, the sup(P)=inf(P1)=1+ε 

(ii)  :
1

Inf st n N
n

 
 
 

ò  and   :sup n st n Nò  

(iii) Sup{x+𝜀𝐿: x< 2+𝜀}=2+ 𝜀 

(iv) Sup{1 − 𝜀𝑛 − 𝐿𝜀𝑛+1: 𝐸 > 0, st(n) ∈ N}=1 − 𝐿𝜀𝑛  infinitely large. 

Remark 4.4 

 The concepts of the l.u.b and g.l.b of sets of external numbers are different from the common concepts of the 
l.u.b. and the g.l.b. of sets of real numbers. For example, 

If P={x:X< 1+α},then sup{P)=1+α yet 1≤1+α∀ 𝑥 ∈ 𝑃 , 𝑥 ≤ 1 

 
Theorem 4.5 

 If T is a non-empty set of external numbers not containing the external number R. Then 

1. Lconv(T) is a lower half line of R 

2. Uconv(T)is an upper half line of R 

3. Conv(T) is an external interval whose upperboundary meets the upper boundary of Lconv(T) and whose lower 
boundary meets the lower boundary of Uconv(T). 

Proof: 

 Suppose that sup(T)=a and inf(T)=b where a,b are two external numbers and a,b∈ T 

1. Lconv(T)={ 𝛾 ∈ 𝐸: ∃𝛿 ∈ 𝑇 𝑎𝑛𝑑  𝛾 ≤ 𝛿 } =   𝛾 ∈ 𝐸: 𝛾 ≤ 𝑠𝑢𝑝 𝑇  =   𝛾 ∈ 𝐸: 𝛾 ≤ 𝑎 = ( −∞, 𝑎 ] is a lower half 
line of R. 

2. Uconv(T)=   𝛾 ∈ 𝐸: ∃ 𝛿 ∈ 𝑇 𝑎𝑛𝑑 𝛾 ≥ 𝛿  =  𝛾 ∈ 𝐸: 𝛾 ≥ 𝑖𝑛𝑓 𝑇  =  𝛾 ∈ 𝐸: 𝛾 ≥ 𝑏 =   𝑏, ∞  is an upper half 
line of R. 

3. conv(T)=[Lconv(T)∩Uconv(T)] =(-∞, 𝑎] ∩  𝑏, ∞ = [𝑏, 𝑎] is an external interval whose upper boundary meets 
the upper boundary  of Uconv(T). 

 If a,b∉T, then Lconv(T)=(-∞,a),Uconv(T)=(b,∞) and conv(T)=(b,a). 
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Example 4.6 

 Let T={1+ε1,1+ε2,1+ε3:ε1≤ε2≤ε3 and ε1, ε2, ε3 are ∈ 𝛼}, we find Lconv(T), Uconv(T) and conv(T). 

Solution: 

Lconv(T)= 𝛾 ∈ 𝐸: ∃𝛿 ∈ 𝑇 𝑎𝑛𝑑𝛾 ≤ 𝛿 = {𝛾 ∈ 𝐸: 𝛾 ≤ 1 + 𝜀3} 

Uconv(T)={𝛾 ∈ 𝐸: ∃𝛿 ∈ 𝑇𝑎𝑛𝑑𝛾 ≥ 𝛿} = {𝛾 ∈ 𝐸 ∶ 𝛾 ≥ 1 + ε1 } 

Conv(T)=Lconv(T) ∩ uconv(T) ={ 𝛾 ∈ 𝐸 ∶ 1 + ε1≤ 𝛾 ≤ 1 + 𝜀3} 

 The following theorem extends the classical characterization of the supremum and justifies this terminology. 

Theorem 4.7 

 If P is a nom empty collection of external numbers and if 𝛽 is an external number, then 𝛽 =sup(P) iff one of the 
following holds: 

1. (𝛽∩Lconv(P)=Ф ) and ( ∀ 𝛾 < 𝛽 ∃ 𝛿 ∈ 𝑃: 𝛿 > 𝛾}      (i) 

2. (𝛽 ∈ Lconv(P)) and (∀𝛿 ∈ 𝑃, 𝛿 ≤ 𝛽   )       (ii) 

Proof: 

1. Let P be a non-empty collection of external numbers, then 

(ß∩Lconv(P)=φ) and  ∀ 𝛾 < 𝛽, ∃ 𝛿 ∈ 𝑝: 𝛿 > 𝛾 iff (−∞, 𝛿)𝑠∈𝑝 =(-∞, 𝛽), i.e. 𝛽 =sup(P). 

Suppose that 𝛽 ∩Lconv(P)= Фand(∀ 𝛾 < 𝛽∃𝛿 ∈ 𝜌: 𝛿 > 𝛾 ) thus it is clear that 𝛽 =sup (𝜌). 

Conversely, suppose that 𝛽 =sup (𝜌) i.e.  (−𝛿∈𝑝 ∞, 𝛿) =  −∞ , 𝛽 , it is clear that 𝛽 ∩ 𝐿𝑐𝑜𝑛𝑣 𝑝 = Ф.Now let 

𝛾 < 𝛽  this implies that 𝛾 ∈  −∞, 𝛽 ⟹ 𝛾 ∈  (−𝛿∈𝑝 ∞, 𝛿 ], 𝑡ℎ𝑒𝑛   ∃ 𝛿 0 ∈ 𝑃  such that 𝛾𝜖(−∞ , 𝛿0 ] . This 

implies that 𝛿0 >  𝛾 . Hence  ∀ 𝛾 < 𝛽, ∃ 𝛿 ∈ 𝑝: 𝛿 > 𝛾  . 

2.  𝛽 ∈ 𝐿𝑐𝑜𝑛𝑣 𝑝   𝑎𝑛𝑑  ∀𝛿 ∈ 𝑃, 𝛿 ≤ 𝛽  iff   −∞, 𝛿 = (−∞, 𝛽)𝛿∈𝑝  

Similarly we can proof this part. 

Remark 4.8 

 From relations (i) and (ii) we conclude that an external number 𝛽 is the l.u.b. of a collection of external numbers 
P iff one of the following statements holds: 

1. 𝛽strictly dominates all elements of P, and any external number strictly dominated by 𝛽 is strictly dominated by 
an element of P.  

Or 

2. 𝛽is totally included in the conv(P) and dominates all elements of P. Similarly, an external number 𝛾 is the g.l.b. 
of the set P of external numbers iff one of the following holds: 

1.  𝛾 ∩ 𝑢𝑐𝑜𝑛𝑣 𝑃 = Ф 𝑎𝑛𝑑 (∀𝛽 > 𝛾, ∃𝛿 ∈ 𝑝: 𝛿 < 𝛽) 

Or 

2. (𝛾 ⊂ 𝑢𝑐𝑜𝑛𝑣(P) )and ∀ 𝛿 ∈ 𝑝, 𝛿 ≥ 𝛾). 

Concerning the l.u.b.and the g.l.b. of external numbers, we have the following theorem: 

Theorem 4.9 

 Every non empty subset of E has unique l.u.b. and unique g.l.b. 

Proof follows directly from Theorem (1.2) 

Proposition 4.10 

 If f:R⟶R is an internal, continuous  and increasing function, and if 𝛽 is an external number, then 

Sup{f(x):x ≤ 𝛽=Inf{f(x):x> 𝛽}         (A) 

Sup{f(x):x<𝛽}=Inf{f(x):x ≥ 𝛽}         (B) 

Proof: 

 It is clear that (-∞,f(𝛽)] is a lower half line of R. If (–∞,f(𝛽)] isan internal interval ,then the result is trivial. 
Suppose that (-∞,f(𝛽)] is an external lower half line of R, then{(-∞,f(𝛽)], (f(𝛽),∞)} is an external cut of R. By theorem 



International Journal of Enhanced Research in Science Technology & Engineering, ISSN: 2319-7463 
Vol. 3 Issue 1, January-2014, pp: (37-41), Impact Factor: 1.252, Available online at: www.erpublications.com 

 

Page | 41 

 

(1.2).The upper boundary of(-∞,f(ß)] is exactly the lower boundary of (f(𝛽), ∞), hence the first relation is proved. The 
relation (B) can be proved in a similar way. 

 
Proposition  4.11 

 If f:R⟶R is an internal increasing function and I is an external interval of R, then 

Sup{f(t)-f(s):s<t and s,tϵ I}=𝑠𝑢𝑝 
𝑡∈𝐼

{{𝑠𝑢𝑝 
𝑠∈𝐼

{f(t)-f(s) }:s<t}}. 

Proof: 

 Let  ( ) ( )
s L

B Sup f t f s


  and  t
s L

B b N Sup B


   , then we have f  or , tt L B    , So 

B             (1) 

Now, let T be a real number which strictly larger than M, thenƎ(sr,tr)ϵ 𝐿 × 𝐿: f(tr)-f(sr)>a-T, consequently  

a-T≤𝑠𝑢𝑝 
𝑠∈𝐿

{f(tr)-f(s)}≤ 𝛽 , since α=sup{a-T:T>M} we get  

B             (2) 

From (1) and (2) we get α =𝛽. 
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