
International Journal of Enhanced Research in Science Technology & Engineering, ISSN: 2319-7463 
Vol. 3 Issue 2, February-2014, pp: (358-366), Impact Factor: 1.252, Available online at: www.erpublications.com 

 

 

Page | 358  
 

 

Reactive power compensation in a  

deregulated distribution network 
Vimal Prakash R.

1
,  Rajan Babu S.

2
 

Department of Electrical Engineering, Valliammai Engineering College, Kattankulathur, Chennai, India 
 

 

Abstract: This paper investigates the optimal reactive power compensation using shunt capacitors, considering 

reconstruction of distribution power network. This new scenario allows the distribution network operator to 

consider reactive energy as a service to be sold to the transmission system. So, with considering the two main  

objectives, i.e. reduction of the real power losses and maximizing the reverse  on investment, the distribution    

network operator obtains location,  number and optimum  capacitance of capacitor banks. Such responses by 

consumers can also result in reductions in price spikes, consumer energy bills, and emissions of greenhouse gases 

and other pollutants. Here, proposes a novel binary ant colony optimization (NBACO) method. The proposed 

NBACO is based on the concept and principles of ant colony optimization (ACO), and developed to solve the 

binary and combinatorial optimization problems. It simulates restructured electricity markets, to explore the 

impact of consumers’ price elasticity of demand on the performance of the electricity market. An 11-node test 

network with eight generation companies and five aggregated consumers is simulated for a period of one month. 

At presents of new updating rule for local and global search, the proposed NBACO is applied to test power systems 

of up to 100-unit along with 24-hour load demands. 

 

   Index Terms:  Ant colony optimization modeling, Reactive power, price elasticity of demand, smart grid. 

 

 

I. INTRODUCTION 

 

IN Deregulated electricity markets, market power and imbalances  in the supply demand associated with the marginal 

cost of the last unit dispatched have resulted in large of the fluctuations in wholesale electricity prices [1]. In many of 

the existing electricity markets, only generation companies (GenCos) can respond to the price signals through supply-

side offers to the independent system and/or market operator (ISO). The majority of consumers in deregulated markets 

have contracts with load aggregators or load serving entities who, in turn, submit demand bids to the market 

operator.  If the contract is a pass through contract,  there is no incentive for the load aggregator to provide a 

mechanism for consumers to respond to prices. On the other hand, if it is a fixed price contract, consumers do not 

see the market prices and will not respond to price signals. Moreover,  because  most consumers  do not have access  

to hourly  or daily  electricity  price  information,  their  responses to price changes may lag behind [8]. 

 

In restructured electric market  reactive (and  active)  power   is mutually  supplied  by distribution  and transmission      

networks based  on  new formulation  the transmission   network is not considered  as the only  supplier of reactive   

power for  distribution network; rather it is possible for transmission  system toreceive reactive power through 

distribution network, of  which   the  amount   of  this   service depends  on economic   and technical   conditions   for 

producing and transferring   reactive  power. 

 

There has been considerable research on consumer response to electricity prices.  In addition, efforts have been 

under taken recently to model and simulate the price elasticity in electricity markets. Such studies have shown that 

reductions in electricity consumption in response to prices, particularly by residential customers, are relatively 

inelastic in the short term; even high price increases produce fairly small changes in electricity usage. Large 

consumers, on the other hand, are relatively price sensitive [11]. 

 

Recently, AMI and smart grid have become widely accepted as promising technologies to provide increased 

awareness of electricity usage and cost to consumers. As a result, those technologies could enable consumers to 

overcome the technical and market barriers to participating in electricity markets through improved price elasticity. 

In this paper, we have set up a model for exploring consumers’  price elasticity of demand by Ant Colony 

Optimization that simulates the deregulated markets [14]. 
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The remainder of this paper presents demand side response modeling with price elasticity in Section II. The Section III 

describes the experimental investigation and provides results and discussion. Section IV offers a results and discussion on 

electricity price markets. Section V presents our conclusions. The present  report  uses   intelligent  multi  objective 

optimization technique  decrease   the  loss  while considering the  cost  of  investment,  installation and  maintenance    

of  the capacitor banks. This   paper   optimizes the   allocation  of  a distribution    network capacitors    working  in  a  

restructured electric  market  by genetic  algorithm. 

 
II. DEMAND-SIDE RESPONSE MODELING WITH PRICE ELASTICITY 

A. Price Elasticity           

 
 

Fig. 1.Typical demand and supply curves 

 

TABLE I: Estimates of Electricity Price  Elasticity 

 

 
         

In economics literature, price elasticity is defined as the  percentage change in demand or load result in percentage change 

in price, for mathematically it can be expressed as: 

                                       
L

P

P

L
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
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                                          (1) 

where ɛ is the consumer’s price elasticity of the demand, δL is the consumer’s change in load, δP is the price change, p is 

the forecasted energy price ($/MWh). 

 

The equation indicates that:  a) a price elasticity of it  $ means that a 1 percent increase in price will result in a 1 percent 

decrease  in load,  b) that zero  price  elasticity  means  that the consumers are insensitive to the price of electricity and 

that the load is unaffected  by the price. In the latter case, the demand curve is a vertical line, as shown in Fig. 1. 

However, in electricity markets, the supply curve is more like a hockey stick, in which prices increase moderately for 

most of the supply curve except at the end, where prices increase dramatically with a steep slope. The demand 

responsiveness provides the greatest benefit in this region [4]. 

 

B.  Estimate Price Elasticity of Demand for Electricity 

 

In general, measuring price elasticity is a complex task, and estimated elasticity coefficients usually have a wide range of un-

certainty attached to them. It is common to differentiate between short- and long-run elasticity. Short-run elasticity describes 

the price response from the system with its current infrastructure and equipment; long run elasticity takes into account the 

investments that can be made (e.g., in energy conservation or alternative energy supply) in response to higher prices. Table 

I lists examples of ranges of estimates for short-run and long-run elasticity based on several studies [10]. However, 

because the studies were carried out in regulated systems, they might have limited validity for restructured markets. In 
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general, one would expect the price elasticity of demand to increase with implementation of AMI and smart grid [9]. 

 
 

Fig. 2: Price elastic demand modeling. 

 

 

B.  Demand-Side   Bidding and Market Clearing in the Day-Ahead Market  

                                       
p

p
P




                                           (2)      

Where the elasticity are constants,  is a user input, and can easily be calculated for each hour from  L and  P  are the    

Equation (2) is used to represent the demand-side bidding in the model. However, the continuous curve in Fig. 2 cannot be 

bid directly into the market; a stepwise approximation   is necessary to calculate the market clearing as a linear (LP) 

Problem. The degree of match between the continuous curve and the stepwise approximation depends on the number 

of steps on the demand curve, as defined for each of the consumers. Step size is constant for all the load reduction 

steps and also for all the load-increase steps. The corresponding prices are calculated for the load at the midpoint of 

each step by using the following formula [2]. 

                            P=Max ( La


11

.


  )                                 (3)            

Note that a maximum demand bid price is equal to the value of lost load (VOLL). 

 

The market clears where the supply curve intersects with the demand curve, and the resulting price and load are set 

accordingly. The actual load in the day ahead market can therefore be higher than, lower than, or equal to the 

reference load. The resulting load from the clearing of the day 

  

 
 

Fig. 3.  Day-ahead market clearing modeling. 

 

ahead market, P ref is used as an inelastic load in the real-time market. This is illustrated in Fig. 3, where the demand curve 

is represented as a vertical line with a price equal to VOLL. Note that in Fig. 4, we assume that   of the generators   are on 

forced outage, causing the real-time price, to be higher than the day-ahead price [3].  

 

III.  EXPERIMENTAL STUDY 

 

A . Ant Colony Optimization Algorithm             .   

 

The agents (i.e. ants) are guided by the intensity of pheromone trails. The path rich in pheromone becomes the best tour 
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with time. This concept inspired the ACO algorithm.  Initially, each agent is positioned on a starting node. Agents move to 

feasible neighbour node following state trasition rule. During the transfer path ant modify the pheromone level by applying 

the local updating rule. If the pheromone level on the chosen paths is lowered, these paths become less attractive to other 

agents. This property gives agents a higher probability to explore different paths and find an improved solution [5]. 

 

The number of combinations of 0-1 variables grows exponentially as the number of units grows. Over the past decades, 

many salient methods have been developed for solving the UC problems. The exact solution to the problem can be 

obtained by complete enumeration, which cannot be applied to the real power systems due to its computational burden . 

In the experimental simulations, we use an 11-node trans- mission network configuration; this approach is based on the 

method. The technical specifications and the topology for the transmission lines are listed in Table II.  There are eight 

GenCos in the system, located  at various nodes in the grid (Fig. 5). All of the GenCos have the same set of generating 

units: one base load coal plant (CO), one combined-cycle plant (CC) to cover intermediary load, and one gas turbine (GT) 

peaking unit. For each GenCo, all three generating units (CO, CC, and GT) are connected to the same node. From one 

node to another node circuit reactance and Line capacity are given in the per unit value.  

 

 
 

Fig. 4.  Real-time market clearing modeling 

 
TABLE II: Node Network 

 

 
 

 
 

Fig 5. 6 bus network 
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We use an aggregate representation of the demand side of the market. Five aggregate consumers are included, representing 

total demand in the node where they are connected. The loads are connected to nodes 1, 3, 4, 10, and 11. We are 

simulating the month of July, which is assumed to be the peak load month of the year. The five hourly load series are 

shown in Fig. 6. The highest load is clearly in node 11. 

 

 
 

Fig. 6. Energy losses of reactive price. 

 

B. Scenarios and Price Elasticity Parameters 

In all of these scenarios, we assumed that the GenCos  Incremental production cost of In  order  to  find  the  optimum   

solution   of  the  problem,   a numerical    comparison    must  be  drawn   between   the  present position    (before    

compensation)     and   new   position    (after compensation).     The   economic    components    of  the   present 

position  include  [5]: 

 

a)    Cost of power  loss in distribution   network  lines 

b)    Cost of power  loss in the HV/MV  transformers. 

 

After   utilizing    of  the   system   in  the   new   position    and placing  capacitor   banks  in the  load  nodes  of 

medium  voltage distribution    network    and   HV IMV   bus   bar,   the   economic components   of the new 

position  include: c)    Variable  cost of new  values  of line   losses. their units (as listed in Table IV). In demand-side 

bidding, the consumers had a reference price of various price of electric coefficient. In addition, the lower and upper 

load decrease and increase limits were set at 90% and 105% of the base load, respectively. These scenarios are 

summarized in Table V. The loads served in the base case and in other scenarios for a typical day are shown in Fig. 7, 

which shows that consumers increase their load when prices are lower and decrease their load when prices are higher 

[6]. Tables VI and VII, respectively, present the reductions in peak load, total load served, and total energy cost under 

var- ious scenarios. The overall peak load reduction is in the rangeof 5% to 8%. However, the peak load reduction for 

Consumer 10 is only in the range of 1% to 5%. The lower peak load reduction for Consumer 10 can be attributed to 

the LMPs at node10. The LMPs at node 10 exceed the consumers’ reference price 85% of the time; at other nodes, it 

exceeds the reference price 91% of the time (Fig. 8). Therefore, the peak load reduction for Consumer 10 is much less 

than of the other consumers [7]. 

 

However, other consumers benefit from  a reduction in both load and prices. Table V presents the impact of the 

consumers’ price elasticity on GenCos and TransCos. When consumers exhibit price elasticities in the range of to, the 

GenCos’ profits are reduced by 3.50% to 6.87% and the TransCo’s congestion revenues are almost eliminated.Here the 

Table III is represents the consumers 1, 3,4,10,and 11 are shows the different base cases and the total of these base cases 

are calculated from this five consumers. The maximum of the base case is consumer 11 and the minimum base case is 

consumer 4. 

 
                                                            TABLE III: Peak load and its reduction in 11 node system 
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Fig. 7  Total Installed Capacitance in a network 

 

 

 
Fig. 8  Price (LMP) exceeding curve in Reactive Power 

 
TABLE I V : Total energy cost in 6 bus-node system (MM$) 

 

 
 

This Table presents the impact of the consumers’ price elasticity on GenCos and TransCos. When consumers exhibit price 

elasticities in the range of to, the GenCos’ profits are reduced by 3.50% to 6.87% and the TransCo’s congestion revenues 

are almost eliminated [13]. rate of the calculation is increased by this method, the hour-to-hour switching situation of 

capacitor banks and the maximum installed capacitor bank is determined in the worst loading conditions. Due to the high 

amount of calculations, the seasonal and weekly load variations have been ignored (to decrease in the size of the problem, 

without loss of generality.) The only changes in the load amount are considered to be done in an hour-to-hour way. 

 
TABLE V : Impact of consumer price elasticity and reference price 
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Increase in the GenCos’ profits, because even though they are generating less energy compared with the base case, the 

startup costs decrease; where as  there is a significant reduction  in the congestion charges. The table presents the profits 

of each GenCos, individual consumers load served and total cost respectively, when consumers have a higher reference 

price. When the price response is reduced because of a higher reference price, the total cost for consumers at nodes 3 

and 10 increases compared with the base case. This shows that all consumers do not benefit equally, and some of 

them may actually face a higher cost. The level of the customers served the maximum and minimum power. 

 

We assumed that all consumers exhibit price elasticity. A number of scenarios were run to analyze the impact of price 

elasticity and the reference price of consumers. In all of these scenarios, GenCos bid the incremental production cost of 

their units. In demand-side bidding, the consumers had a reference price of 50 kWon/MWh or 55 kWon/MWh (1 kWon 

is approx- imately equivalent to U.S. $1) and various price elastic coefficients. In addition, the lower- and upper-load 

decrease and increase limits were set at 90% and 110% of base load, respectively [12]. 

 

Because there are several consumers in the system, the r e s u l t s  are presented here at the zonal level. There is a 2% to 

4% reduction in the peak load in all zones as the consumers increase similarly; there is a 1% to 2.5% reduction in the total 

load. By exhibiting price elasticity, consumers were also able to reduce their total cost in the range of 2.0% to 4.0%. 

IV. RESULTS AND DISCUSSION 

The range of the 11 number of the distribution loads are served from minimum to maximum from the priority of power 

ranges. The number of combinations of  0-11 variables grows exponentially as the number of units grows. Over the past 

decades, many salient methods have been developed for solving the economic dispatch problems.  

 

(A) Genco profits  with higher  consumer  reference  price (mm$), (b) Consumers’ load  served  with higher  

consumer  reference price (gwh), (c) Consumers’ total  costs with higher  consumer reference  price  (mm$) 

 

TABLE VI 

 
 

TABLE VI I: Impact of Consumer Price Elasticity and Reference Price 
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The minimum load served is no.5 and the maximum load served is no.11. The number of agent and maximum count are 

chosen same as those in the referred the value of pheromone quantity is obtained through a parameter tuning. When 

the pheromone quantity is more than 0.05, the cost is observed to increase. In otherwords, the solution’s quality 

becomes worse with higher pheromone quantity. 

 

 
 

Fig 9. Surplus of Reactive energy against the unity value of reactive service price 

 

 
 

Fig 10. Reverse on investment index variation against the unity reactive service price  

 

V.  CONCLUSION 

 

At this paper an advanced method is investigated for designing reactive power compensator allocation in distribution 

network. Simulation of market conditions shows that in the restructured distribution networks, the number of installed 

capacitors which are intended to decrease the loss and increase the economic profit  depends  on the  price  of reactive 

energy at the electric market. In  order to increase income  of  distribution  network   operator,  the   economic amount  

allocated  to  reactive  power  sold  to  transmission system  (R)   must  be  reasonable-  not  lesser  than  certain threshold 

value. 

While the  impact  depends  on  the  price  level  at  which  consumers exhibit   the price responsiveness, price-elastic 

consumers could benefit by a reduction  in energy  usages  and prices. And also they could significantly reduce 

congestion charges and, potentially, reduce the market power of GenCos. The conventional ACO algorithm is known 

to have problems such as big memory requirement and long execution time.. The customer use the concept of elastic 

demand, when they are exposed and aware of the price energy and arrange their affairs in such a fashion at reduce their 

demands as the price of the next available offers exceeds in a certain level. The main theme of reduce energy consumption 

by Consumers are well equipped with smart grid technologies to increase their awareness of responsiveness of demand, and 

benefit by a reduction in energy usages and prices. 

 

The produced reactive power in the distribution network is equal to or lowers than the reactive power of loads and 

reactive loss. However, considering unit price of the reactive service as well as the cost of purchasing, installing and 

maintaining capacitor banks, its better purchase all or a part of the required reactive energy from transmission network. If 

this parameter is increased up to the threshold value, the capacitance of installed capacitor will be increased with the 

reverse on investment index. Moreover, if the economic   profit   arising   from   investment   on   installing capacitor 

banks increases more than the network requirement, it will simultaneously lead to network and transformer loss. 
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