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Abstract: Methane is known as a powerful greenhouse gas due to its global warming potential (GWP = 21). Rice 

fields are methane producers because of the flooding irrigation system. Two microbial communities are involved 

in methane cycle in the soil including methanogens and methanotrophic bacteria which are responsible for 

methane production and methane oxidation respectively. Methanotrophic bacteria as aerobic unicellular 

microorganisms dominantly exist in soil oxic area (e.g. surface of the soil and the rhizosphere). These 

microorganisms can regulate the methane emission from rice soil. This experiment applied PCR-DGGE to 

detect methane oxidizer bacteria (MOBs) within the rice soil from two depths 0-5 cm and 5-10 cm in different 

rice growth stages and cultivation systems. Consequently, several MOBs from type I and type II could be 

identified. However, type I was detected in depth of 0-5 cm and drained condition rather than 5-10 cm and 

flooding condition.  

 

Keywords: Methane oxidizer bacteria (MOB), Rice, Denaturing gradient gel electrophoresis (DGGE), Tropical 

soil. 

 

 

 

Introduction 

 

Methane is a strong greenhouse gas with global warming potential 21 times more than carbon dioxide. Rice fields 

because of the flooding irrigation system are main source for this gas (Li et al. 2011) [1]. Two microbial communities 

are involved in methane cycle in flooded soils, methanogens as producers and methanotrophs as oxidizers of methane. 

Methanotrophs are unicellular organisms including aerobic methanotrophic bacteria and anaerobic methanotrophic 

archaea. Methanotrophs have been studied in various environments and by different methods (Fazli et al. 2013) [2]. 

Known methanotrophic bacteria categorize into three types (I, II and X), under 14 genera (Wu et al. 2009 [3], Semrau 

et al. 2010 [4], Vishwakarma et al. 2010 [5] and Rosenzweig and Ragsdale, 2011) [6]. Types I and II have been 

identified in rice soil with different niches depending on oxygen and methane concentration (Hoffmann et al. 2002 [7], 

Vishwakarma et al. 2009 [8] and 2010 [9]). Type I methanotrophs are more active in a higher oxygen and lower 

methane environment compared to type II (Mayumi et al. 2010) [10]. The aim of this study was identifying the 

microbial diversity of methane-oxidizer bacteria in Malaysia rice soil by culture independent microbial detection 

technique (PCR-DGGE). 

 

Material and Method Used 

 

A. Soil Description 

 

Soil samples were taken from Tanjung Karang paddy field located at 30 25 to 30 45 N latitude and 100 58 to 101 

15 E longitude in the state of Selangor Malaysia. The soil was of Jawa series with 51% clay and 43% silt in top 10 cm 

and, 53% clay and 42% silt in sub soil. The soil carbon and nitrogen contents were 6.38% and 0.62%, respectively. 

 

B. Rice Cultivation System 

 

Three rice cultivation systems were studied including, conventional method, original system of rice intensification 

(SRI-O) (Uphoff, 2008) [11] and oblong-triangular system of rice intensification (SRI-T) (Zheng et al. 2004) [12] 

(Table 1). 
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Table 1: Cultivation practices generally recommended for SRI compared to conventional methods 

 (Adapted from Fazli et al. 2012) [13]. 

 

C. Soil Sampling Scheme 

 

A total of 90 soil samples were taken in different rice growth stages including rice transplanting day (0 day after 

transplanting (DAT)), vegetative stage (Vs) (42 DAT), panicle initiation stage (PIs) (62 DAT),  heading stage (Hs) (80 

DAT) and harvest stage. Eh of less than -200 mV was selected as an indicator for methane formation zone to determine 

the boundary depth between aerobic and anaerobic condition in the soil (Chen and Avnimelech, 1986) [14]. Therefore, 

the depth of 10-12 cm was identified as the boundary. Subsequently, soil samples were prepared from two ranges of 

depth 0-5 cm and 5-10 cm in triplicate. In addition, soil sampling points were selected from both interplant and 

rhizosphere areas. Three replicates of soil samples were mixed and then, subjected to the process of homogenisation by 

air drying, separating the plant litters and residues, sieving (2 mm) and mixing thoroughly. Afterwards, soil samples 

were stored at -20C for further microbial analysis or immediately transferred to the laboratory for subjecting to DNA 

extraction.  

 

D. Extraction of Total Deoxyribonucleic Acid (DNA) from Soil Samples 

 

The soil type was hard to lysis; therefore, some modification in lysis section and the last step of the manufacturer’s 

instructions of PowerSoil
®
 DNA Isolation Kit-MO BIO was applied for DNA extraction. Consequently, the lysis 

section procedure performed as follows: 200 l of bead solution was removed from the tube and then 200 l of phenol: 

chloroform: isoamyl alcohol pH 7-8 (PCI) was added in. This step was followed by adding 60 l of solution C1. Then, 

the samples were vortexed for 15 to 20 minutes. Centrifuge was run to pellet for 1 minute at full speed. Afterwards, all 

steps were done according to the manufacturer’s instructions until step 20. However, solutions C2 and C3 each were 

applied at 100 l. At the end, two rounds of adding 50 l of solution C6 was to the center of the filter membrane and 

incubation for 5 minutes were carried out. After each round, centrifuge was run for 30s at full speed. Extracted DNA 

samples were stored at -20C before Polymerase Chain Reaction (PCR) analysis.  

 

E. PCR amplification of pmoA genes 

 

Regarding amplification of methanotrophic DNA, two oligonucleotide primer sets were selected to amplify a 500 bp 

conserved region of the particulate methane monooxygenase (pMMO) gene including, A189f/A682r and 

A189f/mb661r (Table 2).   To amplify pmoA gene sequences, 50l of PCR reactions were carried out on thermocycler 

(eppendorf) using the following reaction mix: 10ul of DNA template, 1×of PCR buffer (MgCl2, 2 mM), 200M of 

dNTP, 200 nM of each primer, 2.5 U of EX Taq DNA polymerase (Takara, Japan). Then re-amplification performed by 

following program: Initial denaturation was performed at 94 C for 3 min, followed by 35 cycles of denaturation at 94 

C for 45 s, primer annealing at 55 C for 30 s and elongation at 72 C for 30 s, and the final extension at 72 C for 6 

min (Holmes et al., 1995) [15].  
 

Practices SRI methods 
Conventional methods 

Original SRI Oblong-Triangular SRI 

Nursery bed One of the paddy tanks was allocated to nursery purpose 

Seed Variety MR219 MR219 MR219 

Seedling age at 

Transplanting 
8-12 days at transplanting 8-12 days at transplanting 21-30 days at transplanting 

Seedling no. 
1 seedling in each hill 

transplanted at 1–2 cm 

depth; 

transplanting 3 seedlings 

per hill separated by 7 cm 

3-5 seedlings in each hill, 

plunged into soil  

Spacing 25×25 cm with regular 

distances 

40×45cm with regular 

distances 
15–20 cm at random intervals  

Irrigation    

Vegetative growth stage 
Intermittent irrigation with wet-dry cycle; only shallow 

standing water during wet periods (±2 cm) 

Continuous irrigation, keeping 

±10 cm of standing water on 

fields 

Reproductive stage 
Continuous irrigation, keeping 2-5 cm of standing water 

Continuous irrigation, keeping 

±10 cm deep standing water 

Weeding Method 
Rotary weeder, weeding tools, or manual weeding 

every 10-12 days starting 10-12 days after transplanting 

Use of weeding tools, or 

manual weeding whenever its 

needed 

Fertilizer use 

Type 
Chemical fertilizer used by farmers (Urea, Compound Fertilizer, Mixed Fertilizer) 
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Table 2:   The oligonucleotide primer sets were used to detect the methanotrophic bacteria. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F. Denaturing gradient gel Electrophoresis (DGGE) 

 

PCR amplicons of soil DNA samples (565 bp) from four rice growth stages were subjected to gel electrophoresis by 

1% (w/v) agarose gel. Then the PCR products with clear bands were applied for DGGE analysis after being 

concentrated. DGGE was performed. For this purpose, about 15 l of the PCR product was loaded and separated by the 

Bio Rad DCode Universal Mutation Detection System / Electrophoresis (Bio-Rad Lab Los Angeles) applying an 8% 

(wt/vol) polyacrylamide gel (40% acrylamide-bisacrylamide [37:5:1] which had a denaturant gradient of 30–70% 

(100% denaturant equal to 7 M urea, 40% formamide [vol/vol], and 8% acrylamide). Then DGGE gel electrophoresis 

was run with 1×TAE buffer (40mM Tris, 20mM acetic acid, and 1mM EDTA, pH 8.0) at 60°C and 100 V for 16 h. Gel 

staining was carried out by SYBR® Safe DNA Gel Stain solution. Selected DGGE bands were eluted in 60 l of 

MilliQ water after excising from the gel. Then, the eluted DNA samples were incubated at 4 C overnight. Fifty l of 

the eluted DNA samples were subjected to PCR and re-amplified by GC Clamp-A189f/mb661r primer set using 

following program: Initial denaturation was performed at 94 C for 3 min, followed by 35 cycles of denaturation at 94 

C for 45 s, primer annealing at 55 C for 30 s and elongation at 72 C for 30 s, and the final extension at 72 C for 6 

min (Holmes et al., 1995) [15].  Sequencing of DNA samples was carried out by a capillary ABI Prism 3100 sequencer. 

Obtained pmoA gene sequences were compared to nucleic acid sequences of pmoA genes in the GenBank database 

applying the BLAST program (www.ncbi.nlm.nih.gov/BLAST) by the Blastn search option.  

 

Results and Discussion 

 

A. Diversity of MOBs based on the pmoA genes 

 

Some PCR products did not give bands or gave a smear band by gel electrophoresis (1% agarose gel) (Table 3). These 

samples mostly were taken during flooded condition from soil depth of 5-10 cm (Fig. 1). Consequently, only PCR 

products which produced clear band through gel electrophoresis supplied for DGGE (Fig. 2).  

 
Table 3:  Presentation of band qualities from taken samples 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note:-  0 = no band; 1= smear band; 2 = clear band 

SRI-O= Original system of rice cultivation; SRI-T= Oblong-triangular system of rice cultivation. 

DAT=Day After Transplanting; Vs= Vegetative Stage; PIs= Panicle Initiation Stage; Hs= Heading Stage. 

Primer Sequence (5─3) 

Amplicon 

length 
(bp)  

Target Reference 

A189f GGnGACTGGGACTTCTGG 565 

pmoA ; 
pMMO/ 

AMO 

Holmes et al. 1995 

[15] A682r GAAsGCnGAGAAGAAsGC 525 

mb661R CCGGmGCAACGTCyTTACC - 

Lin et al. 2005 

[16]  
Wu et al. 2009 [3] 

Yun et al. 2010 

[17] 

GC-clamp 
CCCCCCCCCCCCCGCCCCCCGCCCCCCGC

CCCCGCCGCCC 
  

Tuomivirta et al. 

2009 [18] 

Rice 

Growing 

Stage  
Treatments 

 Conventional 

method 
SRI-O SRI-T 

Conventional 

method 
SRI-O SRI-T 

Soil depth 0-5 cm 5-10 cm 

0 DAT 2 2 2 2 2 2 

Vs 0 1 1 0 1 1 

PIs 1 1 1 0 0 1 

Hs 1 2 2 0 1 1 

Harvest  2 2 2 2 2 2 
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Figure 1: Samples without band or with smear band belong to flooding condition; A: SRI-O, 5-10 cm depth, 42 DAT;  

B: SRI-T, 5-10 cm depth, 42 DAT; C: SRI-T, 5-10 cm depth, 62 DAT; D: SRI-O, 5-10 cm depth, 80 DAT. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: Some of the samples which produced clear bands mostly from 0-5 cm depth of soil and drained periods. M: 100 bp 

DNA ladder; 1: Conventional method, 0 DAT, 0-5 cm depth; 2: SRI-O, 0 DAT, 0-5 cm depth; 3: SRI-T, 0 DAT, 0-5 cm 

depth; 4: SRI-T, 80 DAT, 0-5 cm depth 5: SRI-O, 80 DAT, 0-5 cm; 6: SRI-T, 110 DAT, 5-10 cm; 7: SRI-O, 110 DAT, 5-10 

cm. 

 

The DGGE profile revealed only a few dominant bands so that a same size band (C) was repeated in all samples (Fig. 

3). However, it was smear for 5-10 cm depth compared to 0-5 cm depth at flooded condition. Amplification of pmoA 

gene sequences of 15 bands resulted in identification of 101 clones of MOBs in 0-5 cm depth for SRI treatments, 37 

clones of MOBs in 0-5 cm for Conventional method, and 33 clones of MOBs in 5-10 cm depth samples. The MOBs 

community structure was same at both depths (Liebner et al. 2009) [19]. Nevertheless, the diversity of MOBs was 

higher at 0-5 cm depth of SRIs compared to other treatments. This difference might be due to depth and irrigation 

management so that it has been indicated that methanogens may display different community structure in soil depth 

profile (Bodelier et al. 2005) [20]. In addition, the irrigation pattern of SRI (alternate wetting and drying the soil) could 

change the composition, population and transcriptional activities of soil microbial communities (e.g. methanogenic 

archaea) (Watanabe et al. 2010) [21].   

 

The most dominant band (C) in all samples belonged to α-proteobacteria and uncultured bacterium clones particulate 

methane monooxygenase alpha subunit (pmoA) gene, partial cds (531 bp). Other bands represented uncultured 

bacterium clones ammonia monooxygenase/particulate methane monooxygenase-like (amoA/pmoA) gene (B-590 bp), 

Methylocystaceae (D-481 bp), and uncultured ammonia-oxidizing bacterium (A-670 bp). Furthermore, type I 

methanotrophs including, γ-proteobacteria, Methylococcales, Crenotrichaceae and type II methanotrophs including 

Methylocystaceae (481 bp), uncultured methanotrophic bacterium (496 bp), and uncultured methanotrophic 

proteobacterium were detected at 0-5 cm depth (Table 4 and 5).  

 

Methylocystaceae (Vishwakarma et al. 2009 [8], Ma and Lu, 2011 [22]) and Methylococcales (Hoffmann et al. 2002 

[7], Yun et al. 2010 [17] and Ma and Lu, 2011 [22]) were detected in rice soil by several groups. 
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Figure 3:  DGGE profile of pmoA gene sequences of MOBs from rice soil samples in different rice growth stages and depths 

(There; 1,2,3......14 are the different rice growth stages and depths in GE profile of pmoA gene sequences of MOBs from rice 

soil samples).  

 
Table 4:  Report on operational taxonomic units. 

 
  

 

0-5 cm of the depth of soil  

 1.1 γ -proteobacteria (T1a); (Methylococcales) 

 1.1.1 Crenothrix polyspora,  

 1.1.2 Uncultured Crenothrix sp. 

 1.2 α -proteobacteria (T2b) 

 1.2.1 Environmental samples 

 1.2.1.1 Uncultured αproteobacterium,  

            Uncultured methanotrophic α -   

            proteobacterium 

 1.2.2 Unclassified Methylocystaceae 

 1.2.2.1 methanotroph K3-21, methanotroph K2- 

            14, methanotroph K3-17 

 1.3 Uncultured methanotrophic proteobacterium 

 2.1 Uncultured bacterium 

 2.2 Uncultured bacteria gp ensemble 

 2.3Uncultured methanotrophic bacterium 

 2.4 Uncultured ammonia-oxidizing bacterium 

5-10 cm of the depth of soil  

1.Environmental samples (T2b) 1.1 Uncultured bacterium, Uncultured bacterium  

      gp22 (ammonia-oxidizing bacteria) 

2.Uncultured α -proteobacterium  

    (T2b) 

2.1 Proteobacteria, α proteobacteria 

Note:- T1
a
 means Type I methanotrophs and 

 
T2

b
 means Type II methanotrophs 

Table 5.  Affiliation of excised bands of DGGE. 

Band Nearest relative Accession 
Soil depth 

(cm) 

Band 

size 

Similarity 

(%) 
Phylogeny 

A1 
Uncultured ammonia-

oxidizing bacterium 
JQ735299 0-5 670 99 Bacteria 

A2 
Uncultured ammonia-

oxidizing bacterium 
JQ735350 5-10 670 99 Bacteria 

B1 Uncultured bacterium DQ008438 5-10 590 99 Bacteria 

C1 α-proteobacteria DQ367741 0-5 531 99 Bacteria 

C2 Uncultured bacterium JN591214 0-5 531 100 Bacteria 

C3 
Uncultured alpha 

proteobacterium 
DQ367742 0-5 531 89 Bacteria 

C4 Crenothrix polyspora DQ295904 5-10 531 99 Methylococcales 

C5 Crenothrix polyspora DQ295903 5-10 531 99 Methylococcales 
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Generally, all identified genera of MOBs by researchers have hitherto been classified into two groups, type I and type 

II (Rosenzweig and Ragsdale, 2011) [6]. Type I MOBs are gamma-proteobacteria phylogenetically and assimilate one-

carbon compounds via the ribulose monophosphate cycle and type II are alpha-proteobacteria phylogenetically and 

assimilate C1 intermediates via the serine pathway (Rosenzweig and Ragsdale, 2011) [6]. In addition, Hanson and 

Hanson, (1996) reported type X as other group of methanotrophs. From identified MOBs, Methylococcus is of Type-X, 

because, these microorganisms occupy an intermediate position (Hanson and Hanson, 1996 [23], Bowman, 2006 [24] 

and Dubey, 2005 [25]). In fact, type X can be considered as a split from type I. Because, in spite of some differences 

between the members of group X and other methanotrophs (e.g. differences in phylogeny, chemotaxonomy, internal 

ultrastructure, carbon assimilation pathways, and certain other biochemical aspects), there are some similarities such as 

possessing low levels of enzymes of the serine pathway (Bowman, 2006 [24]). However, group X members grow at 

higher temperatures than type I and type II. They possessed DNA with higher moles percent G + C content (56–65) 

compared to most type I (43–60) but less than type II (60–67) (Hanson and Hanson, 1996 [23] and Bowman, 2006 

[24]). After all, in recent reports MOBs consist of two subgroups, type I and type II so that the genera of type X is 

categorized under type I MOBs (Wu et al. 2009 [3]; Semrau et al. 2010 [4] ; Vishwakarma et al., 2010 [5, 8 - 9] and 

Dubey, 2005 [25]; Rosenzweig and Ragsdale, 2011 [6]). 

 

In current study, type I methanotrophs were obtained only in SRI treatments at 0-5 cm depth. On the other hand, type II 

was mostly dominant in samples of 5-10 cm depth. This finding was in agreement with previous reports (Mayumi et al. 

2010 [10]). Moreover, Type I methanotrophs are more sensitive to environmental condition compared to type II. Thus, 

this group tend to be in more favorable condition especially regarding oxygen availability (Wu et al. 2009 [3]; , Semrau 

et al., 2010 [4], Vishwakarma 2010 [5] and Dubey 2005 [25]). Also, it has been reported that flooding condition has 

decreasing effect on methanotrophs’ population (Yue et al. 2007[26]). Accordingly, in this study, MOBs showed better 

presence at 0-5 cm depth in SRI treatments during flooding periods rather than 5-10 cm depth. In conventional method, 

MOBs exhibited weaker presence even at 0-5 cm depth compared to SRI. This difference could be due to the level of 

standing water which was higher in conventional method (10 cm) compared to SRI treatments (1-2 cm) by influencing 

the oxygen level in the soil. In SRI treatments, MOBs could be identified strongly for both depths during drained 

periods. The irrigation pattern in SRI treatments can provide oxic-condition periodically. Thus, MOBs could enhance 

their population intermittently.  

 

Conclusions and Final Remarks 

 

In conclusion, diversity of MOBs was higher under drained condition. Oxygen availability was a determining factor for 

the type of MOBs in the soil. Type II MOBs showed higher dominancy compared to type I especially at 5-10 cm depth 

because these MOBs can be active in less oxygen concentrate rather than type I. In contrast with SRI treatments, 

conventional rice cultivation system because of applying flooding continuously as the water management could have 

suppressing effect on these microorganisms. Accordingly, higher MOBs diversity (esp. Type I) has been identified in 

SRI treatments.  Therefore, SRI treatments are stimulating cultivation system for MOBs.  
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