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Abstract: Wireless sensor  networks  have  emerged  as  an  important  and  promising  research  area  in  the  

recent  years. They are a special type of ad-hoc networks, where wireless devices collaborate with other devices to 

send data to the destination. The nodes collect the sensed data, process them, and transmit that data over the 

communication channel, which is broadcast by nature. Synchronization is an important issue for wireless sensor 

networks because temporal coordination is required for many of the collaborative tasks they perform. E.g. For 

the task of Data Fusion, in object tracking and velocity estimation, in setting the sleep modes of the various nodes 

so that the battery life is prolonged, etc.. There are several synchronization schemes which have been put forward 

till date. In this paper, the schemes existing presently have been described. 

 

 

 

I. INTRODUCTION 
 

The advancement in the technology has enabled the development of tiny devices which are capable of sensing, 

processing, and communicating with each other. Wireless Sensor Networks are a special type of ad-hoc networks, where 

tiny wireless devices collaborate with other devices to send data to the destination in a multi-hop communication 

environment. These devices or nodes have their own characteristics such as energy constraints, inexpensive, small in 

size, unreliable, etc. These nodes collect the sensed data, process them, and transmit that data over the communication 

channel, which is broadcast by nature. Synchronization is an important issue for wireless sensor networks because 

temporal coordination is required for many of the collaborative tasks they perform. E.g. For the task of Data Fusion, in 

object tracking and velocity estimation, in setting the sleep modes of the various nodes so that the battery life is 

prolonged, etc..   

 

There are several requirements that determine what kind of synchronization technique to use. Some of them are: 

 

 Energy efficiency: The synchronization technique should take into consideration the limited energy resources 

available. Energy is the most important factor because the sensors work on batteries and the replacement of the 

batteries is difficult, or even impossible in many situations. 

 Scalability: Synchronization scheme should also scale well with the network size. As the sensor nodes 

increases/decreases the synchronization scheme should be able to sustain the change in topology. 

 Precision: Some applications might need microsecond accuracy while others may just require the ordering of the 

events. So, according to the requirement, the appropriate scheme can be used.  

 Robustness: Synchronization scheme should be robust against the link and node failures. For this purpose, several 

sensor nodes are deployed in a relatively smaller area as compared to other networks. 

 Lifetime: Lifetime decides whether the synchronization is needed for an instant, or for the entire lifetime of the 

network. Synchronization for the longer period of time might require regular synchronization. 

 Scope: The scope decides whether the scheme provides the network wide External Synchronization or only local 

synchronization among the nodes which are spatially close.  

 Cost: How much cost is incurred while deploying the scheme. The cost should not exceed too much because of the 

reason that the sensors may be deployed in harsh conditions, and thus may be prone to failures. Since the sensor 

networks are often deployed in remote areas, it is better not to rely on the sophisticated hardware infrastructures like 

GPS receivers. Rather, an internal synchronization is enough if implemented appropriately. 

 

But, there are some challenges to the wireless synchronization such as nondeterministic delays. When a node sends a 

timestamp value to another node, the packet may face a variable amount of delay before it reaches the receiver. This 

delay might prevent the two nodes to be synchronized accurately. Some of the sources of errors are: 

 

 Send Time: It consists of the time spent in constructing the message and transferring to the network interface. Also 

includes the kernel processing, operating system overheads like context switch, etc. 

 Access Time: It is the time taken to access the transmit channel. The reasons for the delay could be waiting for the 

channel to be idle, waiting for its slot to transmit, etc. This depends on the type of MAC scheme used.  

 Transmission/Reception Time: Time taken to send/receive the message bit-by-bit at the physical layer. Depends on 
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the packet size and the baud rate of the transmission. 

 Propagation Time: Time taken to propagate the message from the sender to the receiver. This is small enough in 

most cases to be ignored from latency estimations. 

 Receive Time: Time taken to notify the host about the reception of the message by the network interface. 

 

 

II. SYNCHRONIZATION TYPES 

 

By time synchronization, we mean that each and every clock in the network shows the same time. There are two 

approaches to achieve this goal. One is the External Synchronization and the other is the Internal Synchronization. In the 

External Synchronization, the nodes get the time from some external source of the standard time. This type of 

synchronization is also known as Global Synchronization. But achieving such kind of synchronization can be expensive 

because it will require that some sophisticated devices, like GPS receivers, be attached to the sensor nodes. And this 

requirement can lead to a very expensive deployment of the network. So, another type of synchronization can be 

employed, which is the Internal Synchronization. In this, the nodes agree on a particular time for a network, although 

they may not agree to the global time. This method is much economical and doesn’t even require costly devices attached 

to the nodes. 

 

III. CLOCK MODEL 

 

Time Synchronization aims at providing a common time scale for the clocks of the nodes in the network. But the clocks 

are not perfect and so the keep on drifting away from each other over the time. Therefore the clocks that have even been 

synchronized once may show different time after some time.  

In software, a clock )(tC  is described as: 

  ttC )(  

where,   is the skew rate of the clock and determines how much time the clock will gain or lose over a given period 

and   is the offset, which determines the variation from the real time. For a perfect clock, the skew rate is 1. In reality, 

skew rate is not static over time. Therefore a synchronization scheme should equalize the clock rates as well as offsets, 

and then should repeatedly correct the offsets to keep the clocks synchronized over a time period. 

 

A tolerance value   in parts per million (PPM) is also specified by the manufacturers, which determines the maximum 

amount that the skew rate will deviate from 1. 

  11      

 

IV. EXISTING SCHEMES 

 

1. Reference Broadcast Synchronization 

 

This scheme was proposed by Elson, Girod and Estrin in the year 2002. In this scheme, the nodes transmit reference 

beacons to their neighbors via physical-layer broadcast. This broadcast doesn’t contain any timestamp explicitly. In fact 

the arrival time of the beacon is considered as the point of reference for comparing the clocks. Doing so removes the 

Send Time and the Access Time from the critical path. In RBS, the critical path length is the time from the injection of 

the packet into the channel to the last clock read. Thus, this scheme removes the sender’s nondeterminism from the 

critical path as shown in the fig 1. Any extant broadcast can be used to get the timing information. No dedicated 

timesync packet broadcast is needed. 
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Estimation of Phase Offset: The simplest form of RBS is the broadcast of a single pulse to two receivers, allowing 

them to estimate their relative phase offsets. That is: 

 

1. A transmitter broadcasts a reference packet to two receivers (i and j). 

2. Each receiver records the time that the reference was received, according to its local clock. 

3. The receivers exchange their observations. 

 

Advantages: 

 

1. The largest sources of nondeterministic latency can be removed from the critical path by using the broadcast channel 

to synchronize receivers with one another. This results in better precision. 

2. Multiple broadcasts allow tighter synchronization. 

3. RBS can work using local timestamps. Absolute time reference is not required. 

 

This scheme has some limitations too. This scheme works in a network which has a physical broadcast channel. But it 

cannot be used in the networks which employ point-to-point links. 

 

 

2. Timing-sync Protocol for Sensor Networks 

 

This scheme was proposed by Ganeriwal et.al. in the year 2003. This protocol aims at providing network-wide 

synchronization. The difference between RBS and Timing-sync Protocol for Sensor Networks (TPSN) is that TPSN uses 

the classical approach of sender-receiver synchronization whereas RBS uses the approach of receiver-receiver 

synchronization. In TPSN, initially a hierarchical topology is created. A level is assigned to each node in that hierarchical 

structure. The node assigned the level 0 is known as ‘root’ node. This establishing of the hierarchical structure is called 

“level discovery phase”. The root node then initiates the second stage of the scheme which is known as “synchronization 

phase”. In this phase, a level ‘i’ node will synchronize to a level ‘i-1’ node. Eventually all the nodes in the hierarchical 

structure will be synchronized. The root node can be chosen using some leader election algorithm. 

 

Level Discovery Phase: This is the first phase and starts when the network is deployed. The root node is assigned the 

level 0 and it then initiates this phase by broadcasting a level_discovery packet. This packet contains the identity and the 

level of the sender. The immediate neighbors receive this packet and assign themselves one level greater than the 

sender’s level. After assigning themselves a level, they too broadcast the level_discovery packet containing their own 

level. The process continues and each node is assigned a level. Once assigned a level, such packets are neglected to 

check the congestion. 

 

Synchronization Phase: A two-way message exchange is used in this phase. Here, T1, T4 represent the time measured 

by local clock of ‘A’. Similarly T2, T3 represent the time measured by local clock of ‘B’. At time T1, ‘A’ sends a 

synchronization pulse packet containing its level number and the value of T1 to ‘B’. Node ‘B’ receives the packet at time 

T2 where T2 is equal to T1 + ∆ + d. Here ∆ and d represents the clock drift between the two nodes and propagation delay 

respectively. At time T3, node ‘B’ sends an ‘acknowledgement’ packet containing the level of ‘B’ and the values of T1, 

T2, and T3 to node ‘A’. Node ‘A’ receives the packet at time T4. Now node ‘A’ can calculate the clock drift and 

propagation delay as follow: 

 

 ;
2

)34()12( TTTT 


 2

)34()12( TTTT
d


  

Calculating the drift, node A can correct its clock accordingly, and can get synchronized to node B. This approach is 

called sender-initiated approach because the sender synchronized itself to the receiver. 
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The message exchange handshake begins after the root node initiates the phase by broadcasting a synchronization 

packet. Nodes at level 1 on receiving the packet initiates the two-way message exchange. They may take some random 

time before initiating the two-way message exchange to avoid the contention in medium access. On receiving back an 

acknowledgement, these nodes adjust their clocks to the root node. On receiving the message exchange, the level 2 nodes 

back off for some random time and then initiate the message exchange with nodes in level 1. This process continues and 

eventually all the nodes get synchronized to the root node. 

If an elected root node dies, the level ‘1’ nodes won’t receive any acknowledgement packet and hence timeout will occur. 

A leader election is run and a new root is elected. And then the level discovery phase is restarted. 

 

3. Lightweight Tree-based Synchronization (LTS) 

 

This scheme was proposed by Greunen and Rabaey. The aim is not to maximize the accuracy, but to minimize the 

complexity of synchronization. The authors believe that the accuracy needed in sensor networks is relatively low. Two 

LTS algorithms have been proposed for multihop synchronization of the network. Both these algorithms require the 

nodes to synchronize to some reference points such as a sink node. 

 

 First algorithm: It is a centralized algorithm. A spanning tree is constructed first and then the nodes are 

synchronized along the (n-1) edges of the spanning tree. The root of the spanning tree is the reference node and is 

responsible for initiating the synchronization. The depth of the spanning tree affects the time to synchronize the whole 

network. Therefore, the depth is communicated back to the root node so that is can use this information in its 

resynchronization time decision. 

 

 Second algorithm: The second algorithm works in a distributed manner. Each node can decide the time for its own 

synchronization. Spanning tree structure is not used in this algorithm. When a node ‘A’ needs to be synchronized, it 

sends a synchronization request to the closest reference node. All the nodes along the path from the node ‘A’ to the 

reference node must be synchronized before the node ‘A’ is synchronized. The advantage of this scheme is that some 

nodes may not need frequent synchronization. And since in this scheme, the nodes decide of their own synchronization, 

unnecessary synchronization efforts are saved. Also it may boost the number of pairwise synchronizations, since for each 

request, all nodes along the path from reference node to the initiator of resynchronization need to be synchronized. The 

synchronization requests can be aggregated also to reduce the wastage of resources. 

 

4. Flooding Time Synchronization Protocol (FTSP) 

 

This scheme was proposed by Maroti et.al in the year 2004. This scheme provides multi-hop synchronization. The root 

node, which is dynamically elected node, maintains the global time and all other nodes synchronize their clocks to that of 

the root. An ad-hoc structure is formed by the node to transfer the global time from the root to all the nodes. Spanning 

tree is not formed in this scheme. This saves the initial phase of establishing the tree and is more robust against node and 

link failures and dynamic topology changes. 

 

 Multi-hop Synchronization: Every node in the network has a unique ID. A node broadcasts a synchronization 

message in order to synchronize other nodes. This synchronization message contains three fields: the timestamp, the 

rootID, and the seqNum. 

 

The timeStamp contains the global time estimate of the transmitter when the message was broadcasted. The rootID field 

contains the ID of the root, as known by the sender of the message. The seqNum is a sequence number set and 

incremented by the root when a new synchronization round is initiated. Each node maintains a highestSeqNum for the 

purpose of aiding message filtering. Each node has one more variable, known as myRootID. This variable contains the 

rootID as know by the node. The synchronization message which is then received can be used to create a reference point 

only if the rootID field of the message is less than or equal to myRootID, and the seqNum field is greater than the 

highestSeqNum in case the rootID=myRootID. 

 

5. Global Clock Synchronization in Sensor Networks  

 

This scheme was proposed by Q. Li et al. in the year 2006. This paper aims at the global synchronization in a sensor 

network. Four methods have been discussed: 

 

1. The all-node-based method 

2. The cluster-based method 

3. The fully localized diffusion-based method 

4. The fault-tolerant diffusion-based method. 
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The all-node-based method: This method is used on all the nodes in the system and it is most effective when the size of 

the sensor network is relatively small. The key idea is to send a message along a loop and record the initial time and the 

end time of the message. Then, by using the message traveling time, the time in different segments of the loop can be 

averaged which will smooth over the error of the clocks. In order to synchronize the entire network, paths need to be 

designed so that they contain all the nodes. The synchronization is divided into two phases. In the first phase, a 

synchronization packet is sent along a ring. The initiating node of the packet records its local starting time and the ending 

time of the packet. Each other node simply forwards the packet and records how many hops the packet had traveled thus 

far. In the second phase, a clock correction packet is sent along the same ring. This packet informs each node of the 

packet starting and ending time for the initiating node and the total hops in the cycle. Each node then computes its clock 

adjustment. 

 

The cluster-based synchronization: In this, same method is used to synchronize all the cluster heads by designing a 

message path that contains all the cluster heads. Then, in the second step, the nodes in each cluster can be synchronized 

with their head. 

 

The diffusion method: The main idea here is to average all the clock time readings and set each clock to the average 

time. A node with high clock time reading diffuses that time value to its neighbors and levels down its clock time. A node 

with low time reading absorbs some of the values from its neighbors and increases its value. After a certain number of 

rounds of the diffusion, the clock in the network will have the same value. 

 

The fault-tolerant method: In this some nodes are considered as tamper-proof (called N nodes), and other normal nodes 

are called M nodes. A tamper-proof node will destroy itself once it is compromised. This guarantees that an N node can 

always be trusted. Four basic operations are there: 

 

1. Neighbor discovery:  Neighbor discovery for an N node means finding all the neighbors that are shared with 

another N node. 

2. Beacon  broadcast: In beacon broadcast operation, an N node ‘A’ broadcasts a synchronization message to all its 

neighbors so that each of its neighbors will record the current clock reading. 

3. The collect operation: The collect operation is a composite process in which all the neighbors that receive the 

broadcast send ‘A’ their clock readings. 

4. Broadcast of the average value: In the last step, ‘A’ broadcasts the average value to all the neighboring nodes and 

all good neighboring nodes will have a new value after they authenticate the message. 

 

 

6. Fault-Tolerant FTSP Protocol for Wireless Sensor Networks 

 

This protocol, proposed by L. Gheorghe et al. in the year 2010 is a modification of the Flooding Time Synchronization 

Protocol so that it provides the synchronization even in the presence of malicious nodes. It includes three steps: Fault 

detection, asking for help, and receiving help and decision. 

 

 Fault Detection: In this process the node becomes aware that it has received an inconsistent clock value, which 

might be very different than the other previously received values. This value is represented by having a constant value 

called the TIME_ERROR_LIMIT that is the maximum difference between sequential received global times. 

 

 Asking for help: This is the second step of this protocol. When a sensor node receives a reference point that is not 

compatible with its previous time estimates, it stores the local time and sends a broadcast message that contains a request 

for the latest global time received from a synchronized node. The neighbors reply with the global time from the last 

stored reference point. 

 

 Receiving help and decision: This step decides whether the value was actually faulty or not. If the value was not 

faulty, the regression table is erased and the new value is stored. Otherwise, a new computed reference point will be 

inserted into the regression table. 

 

The synchronization message here includes the following fields: timestamp, rootID, seqNum, type and frontierID. The 

type for normal synchronization message is 0. The synchronization root sends synchronization messages with a 

frontierID of 1, meaning that it is transmitting to nodes in the first frontier. The nodes in the first frontier send 

synchronization messages with a frontierID of 2, and so on. The nodes on a certain frontier store the frontierID received 

in a variable called my FrontierID and they send synchronization messages with the value of (myFrontierID+1). 
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7. Consensus Clock Synchronization for Wireless Sensor Networks 

 

This paper was proposed by M. K. Maggs et al. in the year 2012. Instead of trying to synchronize to an external reference 

like absolute time t or UTC, the CCS protocol aims to achieve an internal consensus within the network on what time is, 

and how fast it travels. With each synchronization round the CCS algorithm updates the compensation parameters for 

each node and over time the network clocks converge to a consensus.  

)()(ˆlim tCtC ci
t




 

This consensus clock is not a physical clock. It is a virtual clock that is generated from the network of nodes running the 

CSS algorithm. This clock has its own skew rate and offset relative to the absolute time.  

By expanding the clock functions from both sides we get the compensation parameters that all nodes must obtain in 

order to synchronize to the consensus clock. 
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The CCS algorithm is repeated in synchronization rounds, which basically consists of two main tasks: offset 

compensation, and skew compensation. 

 

Offset compensation: In this phase, nodes exchange local clock readings which are used to synchronize nodes to a 

common time. The goal is to remove the offset error from all the clocks in the network. For this, each node tries to 

accurately estimate the instantaneous average time of all the clocks in the network, as given below, and set their clocks to 

this time. 

  )(
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  

Skew compensation: In this, the nodes iteratively compare the results from the current and previous synchronization 

round in order to improve their skew compensation parameter. The goal here is to ensure all compensated clocks in the 

network tick at the same rate. That means 

,
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For perfect offset compensation the skew rate of the consensus clock is given by: 



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N

i

ic
N 1

1
  

However in reality, packet losses & the random transmission order of the nodes affects the final consensus skew rate c
 

Table 1: A comparison chart of various schemes is shown above 

 
Schemes Energy efficiency Complexity Scalability Fault Tolerance 

RBS high high good no 

TPSN high low poor no 

LTS high low average no 

FTSP high high average no 

Global clock synchronization  

in sensor networks 

All-node-based low low very poor no 

Diffusion-based average high good yes 

Fault tolerant FTSP average high average yes 

Consensus clock synchronization for WSN high low good yes 
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CONCLUSION 

 

Synchronization in a distributed system such as Wireless Sensor Network is necessary for its effective functioning. The 

problem of synchronization is not new. Several schemes have been proposed till now. This paper presents some of the 

synchronization schemes which have been proposed till date. 
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