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Abstract: A composite beam consists of laminate consisting of more than one lamina bonded together through 

their thickness. Thicknesses of Lamina are of order 0.005 inch (0.125mm), implying that to take realistic loads 

several lamina will be required. For a typical unidirectional lamina the mechanical properties are severely 

limited in the transverse direction. Stacking several unidirectional layers, may lead to an optimum laminate for 

unidirectional loads. However, this would not be desirable for complex loading and stiffness requirements,. One 

can overcome this problem by making a laminate with layers stacked at different angles to withstand different 

loading and stiffness requirements. Usually more than one lamina is bonded together through their thickness to 

get real structure. Each layer can be identified, its material, its angle of orientation with respect to a reference 

axis and by location in the laminate. Reduced stiffness matrix was obtained by using properties of composite 

material. These properties are longitudinal elastic modulus, Transverse elastic modulus, Major poisons ratio and 

Shear modulus. Using these properties composite compliance matrix was obtained. Inverse of compliance matrix 

was taken and reduced stiffness matrix was obtained. Then reduced stiffness matrix for each and every layer 

was calculated. Reduced stiffness matrix for each and every layer was calculated taking in consideration angles 

of the fiber in lamina. Mid plane symmetry was taken and position of each layer was calculated with respect to 

mid plane .D11 matrix was determine by formula using relative position of layer from mid plane and reduced 

stiffness matrix of all lamina ( effect of angle of fiber was included ) . Density of composite material was obtained 

by using densities of each material and there volume composition. Value of natural frequency in rad/sec and per 

sec was obtained by using formulation for finding frequency of composite material. Frequency was obtained for 

all the supports i.e. simple –simple, clamped –clamped and clamped –free and for first five mode of vibration. 

Glass/epoxy, graphite /epoxy composites were used to obtain tabulation for natural frequency in hertz. 

Comparison of frequency for these composite, frequency of composite under different mode condition were done 

for these composites. Taking beam as Euler beam , equation of Euler beam was considered and was solved for 

simple –simple clamped –clamped and clamped –free case taking in consideration boundary condition of simple 

– simple support condition i.e. displacement at support and bending moment at support is equal to zero . 

 

Keywords: Composite Beam, Stiffness matrix, Ansys, Mid plane Symmetry, Fiber orientation, Modes of 

Vibration, Lamina.    

  

 

Hooke’s Law for composite laminates 

 

Figure 1 shows a schematic representation of a composite lamina. The direction along the fiber axis is designated 1 (x 

axis). The direction transverse to the fiber axis but in the plane of the lamina is designated 2 (y axis). The direction 

transverse to both the fiber axis and the plane of the lamina (out of page) is designated 3 (z axis). This direction is not 

shown in the figure as it only becomes necessary in three-dimensional cases. 

The 1-2 co-ordinate system can be considered to be local co-ordinates based on the fiber direction. However this system 

is inadequate as fibers can be placed at various angles with respect to each other and the structure. Therefore a new co-

ordinate system needs to be defined that takes into account the angle the fiber makes with its surroundings as shown in 

fig 3.1. This new system is referred to as global co-ordinates (x-y system) and is related to the local co-ordinates (1-2 

system) by the angle θ. 

 

Fig : 1 Global co-ordinate system in relation to local co-ordinate system. 

1-2 : Local Coordinates 

x-y : Global Coordinates 

A composite material is not isotropic and therefore its stresses and strains cannot be related by the simple Hooke‘s Law 

(ζ = εE). This law has to be extended to two-dimensions and redefined for the local and global co-ordinate systems 

[Fig: 4]. The result is Equations (1) and (2). 
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Where, 

ζ1,2 are the normal stresses in directions 1 and 2 . 

η12 is the shear stress in the 1-2 plane;  

ε1,2 are the normal strains in directions 1 and 2;  

γ12 is the shear strain in the 1-2 plane;  

[Q] is the reduced stiffness matrix;  
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….(2) 

Where, 

ζxy are the normal stresses in directions x and y;  

ηxy is the shear stress in the x-y plane;  

εx,y are the normal strains in directions x and y;  

γxy is the shear strain in the x-y plane;  

[Q‘ ] is the transformed reduced stiffness matrix. 

 

The elements of Q matrix in equation are dependent on material constants and may be calculated using equation (3). 
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where  

E1,2 are Young‘s modulus in directions 1 and 2;  

G12 is the shear modulus in the 1-2 plane;  

ν12, are Poisson‘s ratios in the 1-2 and 2-1 planes. 

 

Since normal stresses applied in the 1–2 direction do not result in any shearing strains in the 1–2 plane because Q16 = 

Q26 = 0 therefore unidirectional lamina is an especially orthotropic lamina. Also, the shearing stresses applied in the 1–

2 plane do not result in any normal strains in the 1 and 2 directions because Q16 = Q26 = 0.  

 

The [Q‘ ] matrix in Equation (2) may be determined by Equation (4). 

 

[Q‘]=[T]
-1

[Q][R][T][R]
-1

 

 

 

…..(34) 

 Where 

 [T] is the transformation matrix; 

[R] is the Reuter matrix.  

These matrices are given by: 
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Here  

c = cosθ and s=sinθ 

 

The local stresses and strains in Equation (1) are related to the global stresses and strains in Equation (2) by Eq. (6). 
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Equations (1) to (6) are used to determine the stresses and strains for a single composite layer. Since composites are 

multi-layered entities, equations for this case must also be set up. The result is equation (7). 
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where  

N is the vector of resultant forces;  

M is the vector of resultant moments;  

ϵθ is the vector of the mid-plane strains;  

κ is the vector of mid-plane curvatures.  

Vectors ε and κ are related to the global co-ordinates by Equation (7). 
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……(8) 

The [A], [B], and [D] matrices in Equation are known as the extensional, coupling, and bending stiffness matrices, 

respectively. The elements of these matrices may be determined from Equations (9) to (11). 

Aij =  Qij     
N

k=0 K

 hk − hk−1    i=1,2,6 & j=1,2,6 

 

…(9) 

Bij =
1

2
  Qij     

N

k=0 K

 hk
2 − hk−1

2     i=1,2,6 & j=1,2,6  

…..(10) 
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Dij =
1

3
  Qij     

N

k=0 K

 hk
3 − hk−1

3     i=1,2,6 & j=1,2,6 

 

……(11) 

 

Where, n is the number of layers; is the i-th, j-th element of the [Q ] matrix of the k-th layer; hkis the distance of the top 

or bottom of the k-th layer from the mid-plane of the composite. Figure 1 illustrates how to determine the distance hk 

from the mid-plane. 

 

 
Fig 1:  Locations of layers in a composite structure [21] 

 

 

Vibration of Composite Beam by Classical Beam theory 

 

On a structure dynamic loading can vary from recurring cyclic loading of the same repeated magnitude, such as a 

unbalanced motor which is turning at a specified number of revolutions per minute on a structure (for example), to the 

other extreme of a short time, intense, nonrecurring load, termed shock or impact loading, such as a bird striking an 

aircraft component during flight. A continuous infinity of dynamic loads exists between these extremes of harmonic 

oscillation and impact Associated mode shapes. Mathematically, there are infinity of natural frequencies and mode 

shapes in a continuous structure[26]. Dynamic loading can vary from intense, nonrecurring load known as shock load 

such as bird striking aero plane to recurring cyclic loading of magnitude which repeats itself such as unbalanced motors 

rotating at particular R.P.M. Any structures amplitude may rapidly grows with time if its frequency of oscillation 

matches its natural frequency. Structure can be overstressed which leads to its failure or due to large oscillations 

amplitude may be limited at large value which further leads to fatigue damages. Time dependent loading should be 

compared with natural frequency to ensure structural integrity of any structure. These two frequencies should be 

considerably different. While designing structure over deflecting and overstressing should be taken care of and 

resonances should be avoided. 

 

ωn   is the natural circular frequency in radians per unit time for the nth vibrational mode.  

Note that in this case there is one natural frequency for each natural mode shape, for n = 1, 2, 3,..., etc. 

ωn  can be expressed as 

ωn =
π2n2

L2
 
bD ij

ρm A
                    …..(12) 

Where b= Breadth of beam  

A= Area of cross section  

L= Length of beam  

ρ
m

= Density of composite material .  

Transverse-shear effect is not taken into consideration in this equation .   

For each n there would be different natural frequency .Frequency in hertz can be determined by  

fn =
ωn

2π
  in hertz. 

 

…..(13) 

The natural frequencies of a free-free supported beam are equal to natural frequency of clamped-clamped supported 

beam. Natural frequencies would be lower if transverse shear deformation effects were included. 

 

First Order Shear Deformation Theory (FOSDT) 

 

A generally laminated composite beam, is made of many piles of orthotropic materials, principal material axis of a ply 

may be oriented at an angle with respect to the x axis. Consider the origin of the beam is on mid-plane of the beam and 

x-axis coincident with the beam axis[27]. 
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Fig 2: Geometry of a laminated composite beam[27] 

 

Based on first- order shear deformation theory, assumed displacement field for the laminated composite beam can be 

written as 

  

0( , , ) ( , ) ( , )u x z t u x t z x t    

( , , ) ( , )yv x z t z x t  

0( , , ) ( , )w x z t w x t  

 

………(14) 

where, u =axial displacements of a point on the mid plane in the x-directions, 

w = axial displacements of a point on the mid plane in the z-directions 

θ= rotation of the normal to the mid-plane about the y axis, 

θy= rotation of the normal to the mid-plane about the y axis, 

t=  time. 

The strain-displacement relations are given by- (by theory of elasticity)—  

0 / /x u x z x        

0 /xz w x      

/xy x      

/xk x    

/xyk x    

 

……(15) 

By the classical lamination theory, the constitutive equations of the laminate can be obtained as- 
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Where,(i,j=1,2,6) 

Nx, Ny,and  Nxy  are in plane forces 

Mx ,My and Mxy  are the bending and twisting moments  

εx, εy and γxy are mid plane strain 

κx , κy and κxy are bending and twisting curvatures 

 

for the case of laminated composite beam, 
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Ny  and Nxy , the in plane forces and bending moment My   = 0 

εy, γxy and κy  the curvature assumed to be non-zero 

 

Then equation can be rewritten as  
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…….(17) 

Now considering the effect of transverse shear deformation then 

 

 55 55 0 /xz xzQ A A x        

 

……..(18) 

Where 

Qxz is the transverse shear force per unit length and 

 
The laminate stiffness coefficients Aij, Bij , Dij (i,j= 1,2,6)  which are functions of laminate ply orientation , material 

properties and stack sequences, are given as- 
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……..(19) 

The transformed reduced stiffness constants Qij ( i,j=1,2,6) are given as- 

                        ……(20) 

 

Where,- 

θ is the angle between the fiber direction and longitudinal axis of the beam. 

The reduced stiffness constants  Q11 ,  Q12 ,  Q22 and  Q66 can be obtained in terms of the engineering constants 
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…..(21) 

 

The total strain energy V of the laminated composite beam given as— 
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……(22) 

Substituting εx , κx , κxy and γxy values from equation (3.15) into equation (3.22) then 
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……(23) 

Total kinetic energy T of the laminated composite beam is given as – 
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Where,- 

ρ is the mass density per unit volume. 

Now substituting u, ν and ω from equation (14) into equation (23) and after integration with respect to z we get—  
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By the use of Hamilton‘s principle, the governing equations of motion of the laminated composite beam can be 

expressed in the form- 
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………(26) 



International Journal of Enhanced Research in Science Technology & Engineering, ISSN: 2319-7463 
Vol. 3 Issue 4, April-2014, pp: (389-399), Impact Factor: 1.252, Available online at: www.erpublications.com 

 

Page | 396  

At t= t1 and t2 

δ ψ= δθ=δuo  =δwo=0 

 

After substitution the variational operations yields the following governing equation of motion 

 
 

Model Development  

 

Problem Statement: Vibrational Analysis  

Vibration analysis of a beam can be done on Ansys by providing structural data and load conditions on different 

supports. Structural data which are required for simple vibration analysis of beam on Ansys are  

 Young‘s modulus  

 Poisson‘s ratio  

 Density  

 Length , Breadth and Height .  

 

For the sake of simplicity laminate is considered to be of unidirectional lamina  

 

Problem 1 

Vibrational analysis of graphite/ epoxy composite beam for different boundary conditions :  

E1= 221 GPa , E2= 6.9 GPa , E3= 8.59 GPa 

G12=4.8 GPa , G13= 4.14 GPa , 

G23=3.45 GPa , ν12= 0.3 , ρ= 1550.1 kg/m³, 

L= length of the composite laminated beam =0.381 m, 

b= width of the laminated composite beam= 25.4 mm, 

h= thickness of the each ply = 25.4 mm. 

 

Problem 2 

Vibrational analysis of Glass / epoxy composite beam for different boundary conditions :  

E1= 144.80 GPa , E2= 9.65 GPa , E3= 7.72 GPa 

G12=4.14 GPa , G13= 4.14 GPa , 

G23=3.45 GPa , ν12= 0.3 , ρ= 1389.2 kg/m³, 

L= length of the composite laminated beam =0.381 m, 

b= width of the laminated composite beam= 25.4 mm, 

h= thickness of the each ply = 25.4 mm. 

 

RESULTS 

 

Natural frequencies obtained from ANSYS are listed in tables and those results comparing with the available results of 

references for the composite laminated beam with different boundary conditions. 

Here different numerical example taken for the analysis of natural frequencies and mode shapes of the composite 

laminated beam, where the numerical example contained the following data- 

 

1. Material properties of the laminated composite beam. 

2. Length of the laminated composite beam. 

3. Width of the laminated composite beam. 

4. Thickness of the laminated composite beam. 

5. Lay-up of layers.(angles of fiber) 

6. Density of the material. 

7. Boundary conditions. 
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The results obtained for Ansys and Euler‘s Beam Theory and comparing with the results of First order shears 

deformation theory which is available in literature.  

 

5.1. Frequency Results from Numerical Analysis on Ansys 

Table5.1:  

Result for Graphite Epoxy Composite for Clamped-Clamped End Conditions 

 

*****  INDEX OF DATA SETS ON RESULTS FILE  ***** 

 

Set Time/Freq Load Step Substep Cumulative 

1 720 1 1 1 

2 1815 1 2 2 

3 4055 1 3 3 

 

Table5.2:  

Result for Graphite Epoxy Composite for Clamped-Free End Conditions 

 

*****  INDEX OF DATA SETS ON RESULTS FILE  ***** 

 

Set Time/Freq Load Step Substep Cumulative 

1 178 1 1 1 

2 854 1 2 2 

3 1982 1 3 3 

 

Table5.3:  

Result for Graphite Epoxy Composite for Simply Supported –Simply Supported End Conditions 

 

*****  INDEX OF DATA SETS ON RESULTS FILE  ***** 

 

Set Time/Freq Load Step Substep Cumulative 

1 387 1 1 1 

2 1243 1 2 2 

3 3108 1 3 3 

 

Table5.4:  

Result for Glass Epoxy Composite for Clamped-Clamped End Conditions 

*****  INDEX OF DATA SETS ON RESULTS FILE  ***** 

 

Set Time/Freq Load Step Substep Cumulative 

1 480 1 1 1 

2 1298 1 2 2 

3 3100 1 3 3 

  

Table5.5:  

Result for Glass Epoxy Composite for Clamped-Free End Conditions 

 

*****  INDEX OF DATA SETS ON RESULTS FILE  ***** 

Set Time/Freq Load Step Substep Cumulative 

1 230 1 1 1 

2 860 1 2 2 

3 1250 1 3 3 

 

Table5.6:  

Result for Glass Epoxy Composite for Simply Supported –Simply Supported End Conditions 

 

*****  INDEX OF DATA SETS ON RESULTS FILE  ***** 

 

Set Time/Freq Load Step Substep Cumulative 

1 512 1 1 1 

2 912 1 2 2 
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3 1680 1 3 3 

CONCLUSION 

 

The natural frequencies of different boundary conditions of laminated composite beam have been reported. The 

program result shows in general a good agreement with the existing literature. Natural frequencies and mode shapes are 

obtained using first order shear deformation theory for different types of laminated composites. It was found that natural 

frequency increases with increase in mode of vibration as shown in above diagrams. Different examples were taken in 

analysis and it is found that natural frequencies increase with the value of E1 increases. Mode shape was plotted for 

differently supported laminated beam with the help of ANSYS to get exact idea of mode shape. Vibration analysis of 

laminated composite beam was also done on ANSYS  to get natural frequency and same trend of natural frequency was 

found to be repeated. 

 

It is found that natural frequency is minimum for clamped –free supported beam and maximum for clamped-clamped 

supported beam .In between these two, natural frequencies of simple-simple supported beam lies. An analytical 

formulation can be derived for modeling the behavior of laminated composite beams with integrated piezoelectric 

sensor and actuator. Analytical solution for active vibration control and suppression of smart laminated composite 

beams can be found. The governing equation should be based on the first-order shear deformation theory An algorithm 

based on the finite element method (FEM) can be developed to study the dynamic response of composite laminated 

beams subjected to the moving oscillator. The first order shear deformation theory (FSDT) should be assumed for the 

beam model. 
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