International Journal of Enhanced Research in Science Technology & Engineering, 1ISSN: 2319-7463
Vol. 2 Issue 4, April-2013, pp: (91-99), Available online at: www.erpublications.com

Real-Time Service Composition and Deployment
for Secure Computing in Cloud Environment

R. Ushadevi', V. Rajamani?

'Research Scholar, Department of Computer Applications, St. Peter’s University, Chennai Tamilnadu, India
Department of Electronics and Communication Engg., IndraGanesan College of Engg., Tiruchirappalli, India

Abstract: Mitigation attack in cloud environment questions secure computing in cloud environment. We propose a real time
service composition and deployment method, in order to access the cloud resources safely in the cloud environment. The
identity management, security management, data management services are generated, composed and deployed at runtime.
The dynamic nature of the service composition and deployment provides a high security to the service providers and cloud
servers. The services composed are selectively deployed in cloud servers; the selection of server is based on randomization
technique. The cloud user can access only through the deployed services to access, update, and delete their data, which are
out sourced by them. Whatever the private or public data, could be accessed only by the deployed services. This phenomenon
makes no difference between the service providers or consumers. The proposed method reduces the internal attack and also
reduces the degree of guessing attack.

Index Terms: Cloud Computing, Cloud Security, Mitigation Attack, Service Composition, Data Integrity.

1. Introduction

With the growing internet development and computing technology promise the cloud computing, by providing huge network
bandwidth. The high price processors, with set of software services transform data centers to the processing pools forms the
cloud environment. The enterprises which have huge volume of data to be processed may not be ready to offer high power
processors and computing resources. The service providers outsource their resources to the external world. The services
described can be accessed by public or private manner according to the service integrity.

Basically cloud environment is four tier architecture; each tier provides a specific set of services. The first tier provide the
software s services, second tier provides the platform for the computing, third provides software infrastructure for the service,
finally fourth tier provides hardware as a service for computation.

Software as Google app,
Service) & mail

.
Platform as i Force com, Tibco
Service Silwer
< B
Software Infrastructure = | Data, identity mgnt,
3 Service security service providers
-

System hosting providers

Hardware Infrastructure as
Service

Figure 1: Four Tier cloud computing architecture

Page | 91

International Journal of Enhanced Research in Science Technology & Engineering, 1ISSN: 2319-7463
Vol. 2 Issue 4, April-2013, pp: (91-99), Available online at: www.erpublications.com

From figure 1, itcan be seen that each tier in the architecture has set of responsibility and each provides set of services. In
our view there must be at least three tiers in the architecture. The security in the cloud environment is enforced in many ways,
but according to the protocol the Third Party Auditor (TPA) maintains the security protocol and whatever the protocol is
specified for the security is followed by TPA to provide service to the cloud users. The cloud servers and the service
providers define set of security protocols, those protocols to be followed by both the cloud users and the TPA.

The public and private key based security protocol is commonly followed in the cloud environment. Still there are
known attacks from the outsiders and insiders of the network. Even genuine registered users generate mitigation attacks to
reduce the performance of the cloud environment. To overcome the difficulty in security enforcement, the researchers
proposed many techniques, mostly using public and private key mechanism.

The genuine users become attackers at some stage, which could be difficult to identify. The genuine users can predict the
service location and the service parameters. They can easily guess the other service parameters which are denied for them.
The services in the cloud may be public or private, the public service could be access by any one registered in the cloud
environment. But the private services could be accessed only by few users like owner of the data, or service provider.
Reading a data in the cloud may be a public service, but deleting is allowed only for the owner of the data.

Data integrity is the way of safeguarding the data from unauthorized access. The integrity constraints should be specified
clearly in cloud environment to provide secure access. Data integrity services to be enforced in efficient manner to provide
integrity to the data exposed in the cloud environment.

Service composition makes a service complicated in design, and also reduces the probability of guessing the logic of the
service implementation. There is always a chance to guess the service implementation or logic, so that the attackers could
guess the logic of service and try to generate guessing attack. We implement service composition, which combine two or
three services in a bundle and they all selected and bundled at runtime. The bundled services are deployed to provide services
to the users.

2. Background

Gossip [1], a protocol specified for the resource allocation in cloud environment. It handles the resource allocation
according to dynamically changing resource demand. It works dynamically using local input. The protocol does not require
the global synchronization.

A flexible distributed storage integrity auditing mechanism [2] is proposed. It uses homomorphic token and distributed
erasure-coded data. The users can audit the cloud storage with very lightweight communication and with reduced
computation cost. The auditing ensures strong cloud storage correctness guarantee and fast data error localization. It supports
secure and efficient dynamic operations on outsourced data, including block modification, deletion, and append.

Hierarchical attribute based access control in cloud computing [3], specifies the access control protocol, which is based on
the attribute and in hierarchical manner. In this the attributes are encrypted in a hierarchical manner according to the structure
of the users. It provides multiple value assignments to access expiration time for user revocation. It is based on cipher text
policy with attribute based encryption technique.

Attribute-based encryption for fine-grained access control of encrypted data [4] defines, each cipher text has set of attributes
and it has a user’s decryption key. The decryption key is in form of monotonic tree access structure. The user can decrypt the
cipher text only if the user’s decryption key and its attributes satisfy the tree access structure.

In ciphertext policy attribute based encryption scheme [5], the encrypt or chooses a tree access policy to encrypt the cipher
text. Using set of attributes the decryption key is created. If the attributes associated with decryption key satisfies the access
policy the user can decrypt the cipher text using the decryption key. The data dynamics is also important consideration in
cloud computing, Q Wang and C Wang [6] has discussed dynamic data storage in cloud computing with public verifiability.
They combined BLS based homomorphic authenticator which uses Merkel Hash Tree to profile complete support for data
dynamics. Whereas Erway [7] defined a skip list based technique for dynamic data support and Bellare [8] introduced set of
cryptographic mechanism like hash, signature functions to maintain storage integrity in dynamic data support. Maintaining

Page | 92

International Journal of Enhanced Research in Science Technology & Engineering, 1ISSN: 2319-7463
Vol. 2 Issue 4, April-2013, pp: (91-99), Available online at: www.erpublications.com

multiple copies or replicas of data in a distributed environment is proposed by Curtmola [9]. They used PDP scheme in
extended manner, without encoding each replica separately and also each replicas are maintained separately.

Reed-Solomon codes [10] for erasure correction in redundant data storage systems, which are typically described
mathematically by coding theorists, in a way accessible to the programmers who need to implement them. For example, an
information dispersal matrix A, which does not have the properties claimed -- that the deletion of any m rows results in an
invertible n*n matrix. The purpose of this note is to present a correct information dispersal matrix that has the desired
properties, and to put the work in current context.

Privacy preserving public auditing for secure cloud storage is discussed in [11], which propose a secure cloud storage system
supporting privacy-preserving public auditing. Further, it enables the TPA to perform audits for multiple users
simultaneously and efficiently. Towards publicly auditable cloud data storage [12], proposes public audit ability, a trusted
entity with expertise and capabilities data owners do not possess can be delegated as an external audit party to assess the risk
of outsourced data when needed. Such an auditing service not only helps save data owners computation resources but also
provides a transparent yet cost-effective method for data owners to gain trust in the cloud.

Protocols for Public Key Cryptosystems [13], introduced a protocol for public key crypto system. In this a centralized key
distribution system with de centralized key verification system persists the protocol efficiency. In a novel dependable and
secure data storage scheme with dynamic integrity assurance [14] a hybrid share generation and distribution scheme to
achieve reliable and fault-tolerant initial data storage by providing redundancy for original data components is proposed.

To further dynamically ensure the integrity of the distributed data shares, an efficient data integrity verification scheme
exploiting the technique of algebraic signatures is adopted. The proposed scheme enables individual sensors to verify in one
protocol execution all the pertaining data shares simultaneously in the absence of the original data. Extensive security and
performance analysis shows that the proposed schemes have strong resistance against various attacks and are practical for
WSNSs.

Keying Hash Functions for Message Authentication [15], use the hash function (or its compression function) as a black box,
so that widely available library code or hardware can be used to implement them in a simple way, and replace ability of the
underlying hash function. Incremental Cryptography: The Case of Hashing and Signing [16] , initiate the investigation of a
new kind of efficiency for cryptographic transformations. The idea is that having once applied the transformation to some
document M, the time to update the result upon modification of M should be proportional” to the amount of modification"
done to M. Thereby one obtains much faster cryptographic primitives for environments where closely related documents are
undergoing the same cryptographic transformations.

Demonstrating data possession and uncheatable data transfer [17], describe a protocol based on this hash function which
prevents ‘cheating’ in a data transfer transaction, while placing little burden on the trusted third party that oversees the
protocol. We also describe a cryptographic protocol based on similar principles, through which a prover can demonstrate
possession of an arbitrary set of data known to the verifier. The verifier isn’t required to have this data at hand during the
protocol execution, but rather only a small hash of it. The protocol is also provably as secure as integer factoring.

All the methodologies we discussed in this chapter are mainly discussed about data integrity, encryption standards and
maintaining multiple replicas of data. We consider about the replication of service in multiple locations and how they can be
composed, deployed and maintained in runtime. We propose a new technique to compose, deploy and maintain multiple
copies of services at runtime.

3. Proposed System

The proposed system consists of four different components or users, named cloud users, Third Party Auditor (TPA), Cloud
Servers and Service Providers (SP) and is depicted in Figure 2. The service providers are the data owners; the cloud servers
are the resource owners where the resource may be processors, storage medium or anything which is highly valuable. The

Page | 93

International Journal of Enhanced Research in Science Technology & Engineering, 1ISSN: 2319-7463
Vol. 2 Issue 4, April-2013, pp: (91-99), Available online at: www.erpublications.com

TPA maintains the identity management of the cloud users, the user may be cloud user or service providers. The TPA has the
responsibility to maintain the identity of each user in the cloud environment.

|/‘_ _“.
- Service
Service Request ;
Provider
Request -
service details
Users g'
Auditing Third Party 3
R, . Public 5
% * * | Auditor . o
auditing a
.
A
~ Y
Service Level Agreement (/ -
- E.—* Cloud _
-~ /
C Servers)
Data Flow — A
e —'\m___//h___
=y

Figure 2: Real Time Service Composition and Deployment Architecture
3.1 Third Party Auditing TPA

Identity of users are maintained using public and private key mechanism, the keys are computed using RICS Hash
function. TPA holds the responsibility of identity management. Every single user in the cloud environment have unique
public and private key assigned to them at the time of their registration. He will be identified using the public key assigned to
him and the private key is to access the data or service allowed to him. At the time of registration the cloud user request the
service provider for access and the service provider generates both the public and private key for the user and advertise to the
TPA and the user. TPA stores all the keys related to every user, who have registered to the cloud environment.

3.2 RICSH

The public and private keys related to every user in the cloud environment are computed using Random Integer
Character Selection Hash function. It generates public and private key, which are unique for every user and updates to TPA.
It generates a Group Key at the time of initialization; it maintains. Unlike RSA and Diffie-Helman techniques RICSH
methodology have better hacking proof. Due to the nature of randomization, the hackers or attackers cannot compute exact
key at any situation. We use two different set of characters using which the key is computed, and we use set of integers using
which the randomization performed. At first a group key Gy is selected by the algorithm then a random number R is generated
and generated random number is identified prime or not, based on the prime value of the random number a character from
one of character set is selected. We use vowels Vs character Cs as two set using which we compute the Private key Pr, and
Public Key P,. We store all Gy, R, C in a linear array M. To compute the public key we randomly select a number within the
size of array M for three times and we will extract the character at that index and append to the key Py .. In order to compute
the private key Pr, , we randomly select an integer within the size of array M, we select the inverse location of the index from
the array M and the character at that location will be append to the private key Pr,. We do not restrict that the size of the
public and private key to the size three. We can extend the size of key up to twenty. The group key and the characters in the
both the sets are periodically interchanged. The flexible nature of our key computation process makes the system more secure
than other algorithms.

The Random Integer and Character Selection (RICS) Hash function generates the keys as follows:
RICS Function:
Stepl: select group key Gy.

Step2: select randomize integer R.
Step3: compute N=Prime factor®.

Page | 94

International Journal of Enhanced Research in Science Technology & Engineering, 1ISSN: 2319-7463
Vol. 2 Issue 4, April-2013, pp: (91-99), Available online at: www.erpublications.com

Step4: if N€EP, then
C=RQV..
Else
C=RQC..
End
Step5:store Gy, R, and C in array M.
Step6: compute Public key Py as
P=P\+ (lx (RnQM))
I- Size of array M.
Rn- randomly selected index in array M.
Step7: compute Private Key Prias
Pri=Pri+ (Ix (U (RnQM))).
I- Size of array M.
Rn- randomly selected index in array M.
U- Inverse location of selected index Rn in array M.
Step8: End.
The computed public and private keys are used for both identification and data encryption and decryption process.
Whenever a user request a service to access the data stored in the cloud, the identification process will be done and only if the
verification process succeed, he will be allowed to access the service.

3.3 Service Composition and Deployment

Any cloud environments have many services, but the way how they are arranged makes the difference. Normally all the
services in the cloud environment are composed at the time of development or installation.

The cloud environments have many different functions which are combined in formal way to provide service to the cloud
user. For example if the user want to access a service from the cloud , he has to register and access using whatever the token
the service provider gives. We propose a different technique to compose the services. The services in our environment are
composed at runtime. Whenever a user requests a service, he will be provided an interface to access that service, which is
composed on time. Initially the user request the service through the service provider, the service provider performs checking
the work load and number of service available based on the metric analyzed, the service provider combines many services
and randomly selects a server in the cloud environment and deploys the service for the use of the cloud user. The information
about the newly deployed service will be updated to TPA. This process generates many replicas to the same service and user
request will be services in earliest time.

The dynamic nature of the proposed system, reduces the degree of attack comes to the cloud environment. The attacker
could not predict where the service is running and the flow of request and response. At the end of each session the services
deployed will be undeployed, so that the prediction about the service and attacks which are comes to the service is avoided.

Algorithm:

Stepl: Identify user requested service SR;.
Step2: Identify the service locations L.
L=¢x (C (s1, s2... sn))
@- Set of all locations where the service available from set of serversS in the cloud C.
(- Set of servers in the cloud.
Step3: Identify set of services ISR; included in SR;.
$=[(SR).
$= Ox(px (C (s1, s2... sn))).
Step4: extract service locations SL from L.
SL = $xL.
Step4: for each service in $
SL; = Rand($xL)
SList = SList+ $(SR;) +SL;.
End.

Page | 95

International Journal of Enhanced Research in Science Technology & Engineering, 1ISSN: 2319-7463
Vol. 2 Issue 4, April-2013, pp: (91-99), Available online at: www.erpublications.com

Step5: Attach service in the order and location from SList.
Step6: Combine Services SR from Slist.
Cs = $(SR;)+SList.
Step7: Deploy composite service Cs.
Step8: start Cs.
Step9: Update Cs reference to TPA.
Csf = R ($(SR;) +SList.).
Step10: End.

3.4 Identity Management

The cloud user generates a request to the service provider with his public and private keys and waits for the response.
The service provider SP makes auditing with the TPA about the user’s public Py and private key Pr, when the users keys are
genuine the service provider composes various services whatever necessary to resolve the request and randomly select a
server in cloud server, and deploys the service in particular server. An interface to the newly deployed service is shared with
the TPA.

4. Results and Discussion

The proposed algorithm produces good results compare to others. Due to the dynamic nature of our algorithm the
attackers could not predict where the service is running. The service composition and deployment is performed at each
session so that it increases the security level in the system.

Figure 3 shows the time taken by our algorithm to deploy number of services. Whenever a service request arises, the
TPA computes the identity of the user who generated the request. Once the identity of the user is validated then the proposed
algorithm selects various locations for each services whichever necessary to complete the service request. Services are
deployed and started in selected locations. The references to access the service are composed to form a combined service.
The combined service is given to the cloud server’s and the response to the user is redirected to the cloud server. From this
point the user will interact with the cloud server only. The time taken to complete this whole process is the service
composition and deployment time. The figure shows that the time taken will increase slightly with the number of services.
Still you can deploy hundreds of services in short time.

Time taken to Deploy Services

40

c
£ 30
©
= 20
£

0

50 100 200 500

No of Services

Figure 3: Variation of time taken with number of services of the proposed algorithm

Page | 96

International Journal of Enhanced Research in Science Technology & Engineering, 1ISSN: 2319-7463

Vol. 2 Issue 4, April-2013, pp: (91-99), Available online at: www.erpublications.com

Table 1 Set of deployed service in TPA.

RUNTIME SERVICE COMPOSITION MIDDLEWARE INTERFACE

[Machine Details |

CloudID Machine IP Module Ma..| Moduleld |Execution . |[Memory R...| Software |d |[Memory Av..
1 192.168.1.2|Addition 1 3 3 123 7
1 192 168.1.2|Update 2 4 3 12 7
1 192.168.1.2|Delete 3 4 3 124 7

Table 1 shows the graphical interface of TPA. It shows the details of services deployed, module id , time required for
execution, memory required, software id and cloud id and memory availability.

Table 2 Service details in cloud Server

CLOUD MACHINE INTERFACE

l/ Machine Details rConﬂguration r Process Execution Details |

CloudlD Machine IP Module Ma...| Moduleld [Execution T...|Software ldMemoryR...
1 user-PCH92 168.1.2 |Addition 1 3 123 3
1 user-PCHM92 168.1.2 |Update 2 4 12 3
1 user-PCHM92 168.1.2 |Delete 3 4 124 3

Table 2 shows the graphical interface of Cloud service provider interface. It shows the details of services deployed, module
id , time required for execution, memory required, software id and cloud id.

Table 30utput of processed request in cloud server

CLOUD MACHINE INTERFACE

f Machine Details rConﬂguration |/ Process Execution Details |

CloudID

Machine IP

Module Name

Submission Time

Status

8000

Addition

127.0.0.1

1363059215073

Processed

Page | 97

International Journal of Enhanced Research in Science Technology & Engineering, 1ISSN: 2319-7463
Vol. 2 Issue 4, April-2013, pp: (91-99), Available online at: www.erpublications.com

Table 3 shows the job submission details in cloud service provider interface. It shows the service port, module name,
submission time, status of the process submitted.

Table 4 Service details in client side

CLIENT FRAME

r Submit Jobs r Process Status |

Processld ProcessMame Scheduled Machine Time sub
1 Addition 192 168.1.2 9005

Table 4 shows the result of service submission from client side of cloud environment. It shows that the process id is
scheduled in a machine with ip 192.168.1.2 at port number 9005 and its process name is Addition.

Table 5 Service details in TPA

RUNTIME SERVICE COMPOSITION MIDDLEWARE INTERFACE

Machine Details
CloudlD | Machine IP |Module Ma..) Moduleld |Execution .. Memory R..| Software Id [Memory Av..
1 192.168.1.2|Addition 1 3 3 123 7
1 192 168.1.2|Update 2 4 3 12 7
1 192 168.1.2|Delete 3 4 3 124 7
1 192.168.1.2|Addition 1 3 3 123 7
1 192 168.1.2|Update 2 4 3 12 7
1 192 168.1.2|Delete 3 4 3 124 7

The details of machines in the cloud and services deployed and its module name and module id, execution time and memory
required and machine where it is scheduled etc is provided in Table 5.

Time taken to Process Request

g
3

£

E 200

- 0 — —_— L
5 50 100 200 500
ig No of Service Request

Figure 4: Average time taken to process service request

Page | 98

International Journal of Enhanced Research in Science Technology & Engineering, 1ISSN: 2319-7463
Vol. 2 Issue 4, April-2013, pp: (91-99), Available online at: www.erpublications.com

Figure 4 shows the average time value required for set of service request to be processed. The process time of a request is
combination of service composition and deployment , execution time of the service. The processing time of the service is
related to the service composition and deployment time, because for every service request the process of identifying the
location and deployment and composition of the services has to be done. Only after service composition, the services can be
executed to fulfill the user request. The service composition time varies depend on how many services are going to be
composed. If we need to compose many services then the time required for service composition also increases. The
processing time is also proportional to the number of services. If number of services increases then overall processing time
also will increase. The figure shows that average processing time increases with number of service request , because for each
service request the service location, composition , deployment and processing has to be done.

Conclusion

The proposed methodology uses public and private key mechanism for identity management. The identity management is
done by a third party auditor. The keys generated using RICHS method has very good security in nature; the attackers
couldn’t identify and compute duplicate keys easily, because randomization of characters used is changed periodically. The
runtime composition of services makes the difference with other protocols proposed in this scenario. The proposed
methodology groups and combines the necessary services at runtime and changes it at regular interval. The attackers could
not identify or guess where the service is running in order to generate guessing attack or flooding attack.

References

[1]. Fetahi Wuhib, A Gossip Protocol for Dynamic Resource Management in Large Cloud Environments, IEEE Transaction on Network
and service management, volume 9, No 2,Page(s): 213 - 225 ,2012.

[2]. Cong Wang, Toward Secure and Dependable Storage Services in Cloud Computing, IEEE Transaction on service computing, vol. 5
no. 2, pp. 220-232, 2012

[3]. Zhiguo Wan, Hierarchical attribute based access control in cloud computing, IEEE Transactions, Information Forensics and Security,
7(2) , pp. 743 - 754.2012.

[4]. Goyal V., Fine-grained access control of encrypted data, ACM, Computer and Communication Security, ACM, pp. 89-98, 2006.

[5]. J. Bethencourt, “Ciphertext-policy attribute based encryption,” in Proc. IEEE Symp. Security and Privacy, vol 7, no 2, pages 321-
334, 2007.

[6]. Q. Wang, C. Wang “Enabling Public Verifiability and Data Dynamics for Storage Security in Cloud Computing,” volume 22,issue
5,pages 847-859, 2009

[7]. C. Erway, Dynamic Provable Data Possession, ACM Conf. Computer and Comm. Security, vol 8, issue 7,pages 213-222,20009.

[8]. M. Bellare, Incremental Cryptography: The Case of Hashing and Signing Advances in Cryptology, vol 8, pages 216-233 1994.

[9]. R. Curtmola, Multiple-Replica Provable Data Possession, IEEE, Conf. Distributed Computing Systems, vol 22, pages 410-420,2008.

[10]. L. Carter, Universal Hash Functions, Computer and System Sciences, Vol 18, pp. 143-154, 1979.

[11]. J. Hendricks, “Verifying Distributed Erasure-Coded Data,” ACM Symp. Principles of Distributed Computing, vol 10, pp 163-168,
2007.

[12]. J.S. Plank and Y. Ding, “Note: Correction to the 1997 Tutorial onReed-Solomon Coding,” Technical Report CS-03-504, Univ. of
Tennessee, Apr. 2003.

[13]. C. Wang, Q. Wang, “Privacy-Preserving Public Auditing for Storage Security in Cloud Computing,” IEEE INFOCOM,pp.355-
370,Mar. 2010.

[14]. C. Wang, “Towards Publicly Auditable Secure Cloud Data Storage Services,” IEEE Network Magazine, vol 24, pp. 220-232, 2010.

[15]. R.C. Merkle, “Protocols for Public Key Cryptosystems,” IEEE Security and Privacy, vol 11,pp.122-134, 1980

[16]. Q. Wang, K. Ren, W. Lou, and Y. Zhang, “Dependable and Secure Sensor Data Storage with Dynamic Integrity Assurance,” Proc.
IEEE INFOCOM, Apr. pp. vol 11, 954-962, 2009.

[17]. M. Bellare, R. Canetti, and H. Krawczyk, “Keying Hash Functions for Message Authentication,” Proc. 16th Ann. Int’l Cryptology
Conf. Advances in Cryptology (Crypto *96), pp. 1-15, 1996.

[18]. M. Bellare, O. Goldreich, and S. Goldwasser, “Incremental Cryptography: The Case of Hashing and Signing,” Proc. 14™Ann. Int’l
Cryptology Conf. Advances in Cryptology (CRYPTO ’94), pp. 216-233, 1994.

[19]. D.L.G. Filho and P.S.L.M. Barreto, “Demonstrating Data Possession and Uncheatable Data Transfer,” Cryptology ePrint Archive,
Report 2006/150, http://eprint.iacr.org, 2006.

Page | 99

