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Abstract: Obtaining an optimal design for micro electro-mechanical systems (MEMS) structures is a 

computationally-intensive and time-consuming task as it usually involves numerous non-linear finite-element 

method (FEM) simulations. This work presents an analytical method to achieve a near-optimal design for 

circular diaphragm touch mode capacitive pressure sensors and thus find an optimal design without relying on 

multiple FEM iterations. The resulting design is optimal in the sense of attaining maximum sensitivity for a 

given sensor radius or minimum radius for a given target sensitivity. The method presented here depends on a 

lower bound on sensor area derived from an analytical model. We show that this method can achieve significant 

improvement in terms of area or sensitivity compared to conventional designs. 
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 Introduction 

 
Capacitive pressure sensors rely on the deflection of a movable diaphragm under the action of pressure. When the 
deflection changes due to a change in pressure, the sensor capacitance varies and this variation is used to measure the 
change in pressure. Such sensors have two principal modes of operation: normal mode, where the diaphragms don’t 
come into contact and touch mode, where the diaphragms come into contact with a thin layer of dielectric in between. 
Fig. 1 shows the structure of a capacitive pressure sensor with a circular diaphragm and its two operating modes. Of the 
two modes, touch mode is preferred due to its higher sensitivity, better linearity and large pressure over-load 
protection[1-3]. 

The main challenge in the design of touch mode capacitive pressure sensors (TMCPS) lies in the difficulty to accurately 
model the sensor’s deflection as the underlying mechanical contact problem has no exact, closed form solution [4, 5]. 
This intractability means that the design of TMCPS relies on non-linear finite-element method (FEM) simulations. 
Obtaining an optimized TMCPS design via FEM simulations is a computationally-intensive and time- consuming task. 
An optimized design is crucial, however, for systems where sensor area is quite limited such as pressure sensors 
operating in a harsh environment. Harsh environment applications usually rely on silicon carbide (SiC) transistors for 
interface electronics; such transistors are usually very large in size due to their inherently low mobility [6-8], which 
tends to make the sensor area very limited. A design with minimum sensor area, therefore, makes such systems feasible. 

The analytical design flow proposed here makes use of existing approximate models from the literature [2,5,9] and a 
lower bound on total sensor area derived from the models. 

 

 

 

Figure 1.  Circular diaphragm capacitive pressure sensor structure 
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Analytical Model 

 
 Fig. 1 defines the sensor parameters that will be used in the equations: h is the diaphragm thickness, g is the gap height 
at zero diaphragm deflection, a0 is the diaphragm radius and td is the dielectric layer thickness. To obtain an 
approximate analytical model for the sensor characteristics, we make use of the well established virtual radius approach 
[2, 5] whereby the diaphragm radius is divided into two radii: the touching radius (ab) and the non-touching radius (av) 
as shown in Fig. 1. The non-touching radius av at a specific pressure P is calculated by finding the radius of a virtual 
membrane whose center would just be touching the dielectric layer at P. The center point displacement w0 at pressure P 
for a diaphragm of radius a is given by [9]: 

𝑤0(𝑃)  =
𝑃𝑎4

64𝐷
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where D is the diaphragm’s flexural rigidity, given by  𝐷 =  
𝐸ℎ3

12(1−𝜈2)
  where E is the diaphragm material’s Young’s 

modulus and ν is its Poisson’s ratio. The factor α, a function only of ν, accounts for non-linear elastic behavior and has 
been calculated in [2]. The factor σi represents the diaphragm’s residual stress due to fabrication. We can thus find the 
virtual radius (av ): 
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and the diaphragm’s deflection profile in touch mode: 

𝑤 𝑟, 𝑃 =  
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, 𝑎𝑏(𝑃) < 𝑟 < 𝑎0

   (3) 

Given the deflection profile, we can thus calculate the capacitance by dividing the gap into infinitesimal parallel plate 
capacitors. Following this approach, we find the total capacitance in touch mode to be [5] 

𝐶 = 𝐶𝑑   1 + 2 𝑘1 − 𝑘2  1 − 𝛾  
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and εd is the dielectric layer’s relative permittivity. 

 

Lower Bound on Area 

 
Given the bounds of a required operating pressure range (P1 and P2 ), sensitivity is reported as the slope of the linear 
least squares fit to the sensor’s C – P characteristics [9]. For a first iteration, we’ll ignore the terms α and σi in (2) and 
obtain an approximate expression for av : 

𝑎𝑣(𝑃) =  
64𝐷𝑔

𝑃

4
    (5) 

If we define the touch point pressure (PT ) as the pressure at which the membrane’s center just touches the dielectric, we 
can write av (PT ) = a0 and use this relation in conjunction with (4) and (5) to rewrite the sensor’s capacitance as 

𝐶(𝑃) = 𝑎 
𝑃𝑇

𝑃
+ 𝑏 

𝑃𝑇

𝑃

4
+ 𝑐   (6) 

where 

𝑎 =  𝐶𝑑 1 + 2 𝑘1 − 𝑘2  1 − 𝛾   
𝑏 = 2𝐶𝑑 𝑘2 1 − 𝛾 − 1  
𝑐 = 𝐶𝑑  
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Let the linear least squares fit have the form  𝐶 (𝑃)  =  𝑎1  𝑃 + 𝑎2   . 

 By definition, a1 and a2 should be chosen to minimize the integral of squared deviation: 

𝐼(𝑎1 , 𝑎2) =   𝑎 
𝑃𝑇
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We thus require that 

𝜕𝐼
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=
𝜕𝐼

𝜕𝑎2

= 0 

These conditions translate into a system of linear equations that can be solved for a1 and a2. Equating the calculated a1 
to the target sensitivity (S) results in a necessary condition for PT : 

𝜆(𝐶𝑑) 𝑃𝑇 + 𝜇(𝐶𝑑) 𝑃𝑇
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 and we solve (8) to obtain 
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We now proceed to show that 𝜆 < 0. First we note from (9c) that Δ < 0 and 

 1 + 2 𝑘1 − 𝑘2  1 − 𝛾  > 0    ∀𝛾 > 0 
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We have thus proven that 𝜆 < 0 independent of sensor dimensions and operating pressure range. This means that the 
square root term in (10) can be imaginary, which would lead to an unfeasible design. From this consideration, we reach 
a lower bound on area: 

𝜋𝑎0
2 ≥

4𝑡𝑑𝑆(−𝜆)

𝜀0𝜀𝑑𝜇
2         𝑎0 ≥ 𝑎0  =  
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𝜋𝜀0𝜀𝑑𝜇
2    (11) 

A more accurate expression for the lower bound can be derived by taking α and σi into consideration. This is further 
explained in the appendix in order to keep the focus on the design flow. 

 

Proposed Design Flow 

 
Based on the discussion in the previous section, we propose the following design flows for obtaining a near-optimal 
design.  

A. Minimum Area Design: 

 
1. The dielectric thickness is set to the minimum value allowed by the fabrication technology. As can be seen 
from (11), the lower td , the lower the required sensor area. 

2. The gap height g is set to a suitable value by selecting a value for γ. Fig. 2 plots the γ-dependent factor of 𝑎0
2  

given by 
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Figure 2.  Choosing a value for g to maximize sensitivity per unit area. 

𝐾 =
1 + 2 𝑘1 − 𝑘2  1 − 𝛾 

4 𝑘2 1 − 𝛾 − 1 2
 

As can be seen, the higher g (the higher γ), the better. The choice of how high γ can go depends on td and εd. 

3. Using the given sensitivity and operating pressure range, 𝑎0  found from (11). 

4. Using (8), the required value for PT (and hence h) is found. 

5. The initial estimate for h is iteratively refined by using the more accurate expressions in (12) and (13). 

B. Maximum Sensitivity Design: 

 
1. The dielectric thickness is set to the minimum value allowed by the fabrication technology. 

2. The gap height g is set to a suitable value by selecting a value for γ. 

3. Using the given sensor area and operating pressure range, S is found from (11). 

4. Steps 4-5 from the minimum area design flow are followed. 

 

Results and Discussion 

 
In order to validate the above analysis, the sensor designed in [9] is used as reference. The procedure used in [9] to 
design the sensor begins by selecting PT such that the operating pressure range is within 1.2 − 2.5 PT . For fixed g, h and 
td , one can thus find a0 and the sensor design is complete. Using the same operating pressure range, we applied the 
design flows outlined in the previous section to obtain the minimum area for the same sensitivity and the maximum 
sensitivity for the same area. In both cases, γ was fixed at 0.97 in order to have the same g as the reported sensor design 
for a more valid comparison. Table 1 compares both designs to the published results. It is seen that following the 
proposed design flows can lead to a 25% reduction in area for the same sensitivity or a 30% increase in sensitivity for 
the same area. 

To further validate the results, FEM simulation was carried out for both designs using COMSOL. To reduce the 
computational complexity of the model, the symmetry of the structure is exploited and a 2-dimensional axi-symmetric 
model is used. To further exploit the regularity of the structure, a mapped mesh is used to solve the model. Fig. 3 shows 
a schematic of the model structure along with the boundary conditions and load applied. The pressure load is ramped 
and the mechanical problem of finding the diaphragm’s deflection is solved. To ensure that the diaphragm doesn’t 
penetrate the lower electrode, a contact pair is defined between the two electrodes. Solving for the diaphragm deflection 
in the contact regime is what makes the problem highly non-linear and computationally expensive. Sensor capacitance is 
obtained via post-processing by integrating over the lower edge of the diaphragm. Fig. 4 shows the sensor 
characteristics for both designs. It can be seen that the models agree well in the normal operation mode but diverge in 
the touch mode. This is to be expected since the virtual radius approach is only approximate. A more accurate model of 
sensor characteristics may be obtained by similar considerations to the seventh  

TABLE I.  Comparison of published results and design results. g= 1.5 μm, td=350 nm and εd=7.5 (Si3N4) 

 
 

Published work [9] 
Designed Sensors 

 Minimum Area Maximum Sensitivity 

𝑎0 (μm) 97 85 97 

S (fF/kPa) 0.23 0.23 0.3 

h (μm) 3 1.9 2.1 
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Figure 3.  Schematic representation of the COMSOL model used 

case in the seminal work by Timoshenko [10], which derives the characteristics of a uniformly-loaded circular 
membrane with a concentric circular hole. This approach was rejected here, however, because it does not lead to a 
closed form model and therefore does not lend itself to analytical methods. 

Fig. 5 shows the sensor sensitivity as a function of h for both designs. It can be seen clearly that sensitivity is a concave 
function of h which means that the estimate for h can be further refined by running a simple single-variable convex 
optimization algorithm. Since the analytical model produced a value for h that is quite close to the optimum value, the 
optimizer can find the optimum in only a few iterations. This was carried out and the final values of h are reported in 
table 1. To demonstrate the speedup made possible by the analytical method, non-linear constrained optimization was 
performed for the values of a0 , g and h with the values used by the work in [9] as an initial estimate and a non-linear 
constraint fixing the value of PT to that chosen by [9]. Making use of MATLAB’s optimization toolbox, multi-variable 
non-linear optimization was carried out (with a0 , g and h as parameters). The results of the full optimization were 
compared to the results from the nonlinear single variable optimization (with only h as parameter). The comparison is 
reported in table 2. Note that only relative times are reported in order to make the results independent of the particular 
hardware and software used. The table shows a speedup of nearly 5 times made possible by the analytical method. 

Conclusion 

 
An analytical method for achieving a near-optimal design for circular diaphragm TMCPS was presented based on a 
lower bound on sensor radius. The analysis made use of the approximate virtual radius approach and quickly made 
accessible a near-optimal design in terms of sensitivity or area. It was further demonstrated that the analysis reduces the 
design space to a single parameter (h), which means that the design can be improved using a simple, single variable 
convex optimization algorithm instead of the computationally expensive multivariate optimization algorithm that would 
have been necessary with a multi-parameter design space. Comparing optimization methods in both cases showed that 
optimization based on the analytical method provided a 5 times speedup compared to optimization without analysis. 
Moreover, the reduction in area that can be achieved with this method enables the use of sensors in applications where 
the sensor area is severely limited such as harsh environment applications. 

TABLE II.  Comparison between single-variable optimization made possible by analysis and multi-variable optimization 
required otherwise. 

 

 MATLAB Optimization 

Algorithm 

Iterations Objective Function 

Evaluations 

Relative Time 

Proposed Method fminbnd 5 5 1X 

Without Analysis fmincon 5 24 4.9X 

 

 

Figure 4.  Characteristics of the designed sensors Figure 5.  Sensitivity vs. h for the designed sensors. 
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Appendix 

 
A more accurate expression for 𝑎0  can be derived by taking 𝛼 and 𝜎𝑖  into consideration and using (2) to substitute for 
𝑎𝑣  in (4). This procedure results in 
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