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Abstract: In this paper, Reduced differential transform method (RDTM) is employed to obtain the solution of the
generalized Ito system. The efficiency of the proposed method is illustrated by three test examples. The results
obtained by employing RDTM are compared with exact solutions to reveal that the RDTM is very accurate,
effective, and convenient to handle a wide range of nonlinear equations.
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Introduction

Nonlinear partial differential equations (NPDES) play an important role in such various fields as physics, chemistry,
biology, mathematics and engineering. There are many interesting and useful features of physical systems hidden in their
nonlinear behavior. The investigation of exact solutions of NPDEs is becoming an important aspect since it can help us
well to understand the mechanism of the complicated physical phenomena modeled by NPDEs.

The investigation of exact solutions of NPDEs plays an important role in the study of nonlinear physical phenomena.
Many methods, exact, approximate and purely numerical are available in literature [1-9] for the solution of NPDEs.

In this paper, we apply the reduced differential transform method for solving the generalized Ito system [10]

u, =V

V. =—,, —6(uv), +aww, +bpw, +cwp, +dpp, +fw, +gp,, O
W, =w,,, +3uw,,

Py = Py +3UP,.

wherea,b,c,d,f and g are arbitrary constants.

In recent years, different cases of the generalized Ito system has been studied analytically and numerically by many
authors [11-16].The RDTM, which first proposed by the Turkish mathematician YildirayKeskin [17-20] in 2009, has
received much attention due to its applications to solve a wide variety of problems [21-28].

This paper has been organized as follows: Section 2 deals with the analysis of the method. In Section 3, we apply the
RDTM to solve three special cases of the generalized Ito system, Conclusions are given in Section 4.

Analysis of the Method

Consider a function of two variables u(x,t)and suppose that it can be represented as a product of two single-variable
functions, i.e.,u(x,t)=f (x)g (). Based on the properties of one-dimensional differential transform, the function
u(x,t)can be represented as

u(x,t)=(iF(i)x‘j[ie(j)ti}iuk(x)tk @

whereU, (x) is called t -dimensional spectrum function of u(x,t).

The basic definitions of reduced differential transform method are introduced as follows [17-20]:

Definition 2.1 If function u(x,t) is analytic and differentiated continuously with respect to time t and space x in the
domain of interest, then let
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k

Uk(x,t):%{%u(x,t)} ©))

where the t -dimensional spectrum function U, (x) is the transformed function. In this paper, the lowercase u(x,t)
represent the original function while the uppercase U, (x) stand for the transformed function.

Definition 2.2The differential inverse transform of U, (x) is defined as follows:

u(x,t)=>U, (" 4)
k=0
Then combining equation (3) and (4) we write
» 1 ak .
ux,t)= > —| —u(x,t t 5
(x.t) ;)k![atk ( )L (®)

From the above definitions, it can be found that the concept of the reduced differential transform is derived from the
power series expansion.

To illustrate the basic concepts of the RDM, consider the following nonlinear partial differential equation written in an
operator form

Lu(x,t)+Ru(x,t)+Nu(x,t) =g (x,t), (6)
with initial condition
u(x,0)=f (x), (7

where L :g, R is a linear operator which are partial derivatives, Nu(x,t) is a nonlinear operator and g (x,t) is an

inhomogeneous term.

According to the RDTM, we can construct the following iteration formula:

(k +DU, ,,(x,t)=G, x)—RU, (x)—NU , (x), (8)
whereU, (x),RU, (x),NU, (x) and G, (x) are the transformations of the functions Lu(x,t),Ru(x,t),Nu(x,t) and
g (x,t) respectively.

From initial condition (7), we write

U,(x)=f (x), ©)
Substituting (9) into (8) and by straightforward iterative calculation, we get the following U, (x) values. Then the

inverse transformation of the set of values {U L (X )}E:0 gives the n-terms approximate solution as

Gn(x,t):iuk(x)tk, (10)

Therefore the exact solution of the problem is given by
u(x,t) = lima, (x,t). (11)

The fundamental mathematical operations performed by RDTM can be readily obtained and are listed in Table 1.

Table 1: The fundamental operations of RDTM

Functional Form Transformed Form

1| o
u(x,t) U, (x ,t):m{ax—ku(x ,t)l_0
w(X,t)=u(x,t) v (x,t) W, (x)=U, (x)xV, (x)
w(X,t)=au(x,t) W, (x)=aJ, (x) (« isconstant)
w(x,t)=x"t" W, (x)=x"6(k —n)
w(x,t)=x"t"u(x,t) W, x)=x"U,_, (x)
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W (x,t) =u(x,tyv (x,t) W, (X)=ZVr(X)Uk_r(X) =ZUr(XM_r(X)
wo=Teut W=k ko, =8, 0
0 0
W(x,t):a—xu(x,t) Wk(X):&Uk(X)
Applications

In this section, we employ the RDTM to solve some special cases of system (1), the results of test examples are compared
with exact solutions to prove the efficiency of the proposed method. These results are shown in Figs. 1-3 and detailed in
Tables 2-4. We use MAPLE software to obtain the solutions from the RDTM.

Example 1
Consider the system (1) for a=-37,b=2,¢c=1/2,d =-1,f =2,and g =2, which yields [13]
u, =v,,

Ve =-2,, —6(uv )X -3Mww, +2pw, +%pr -pp, +2W, +2p,, (12)

W, =w,,, +3uw,,

t
pt = pXXX +3“Ipx N
Subject to initial conditions

u(x,0):1—2tanh2(x),v(x,0) _ L iann? (x),
12 48 2
36 37 (13)
w(x,0)=——+= tanh X x,0 4+—tanh X
(x,0) TRE (x), p(x,0) = i (%)
According to the RDTM and Table 1, the differential transform of Egs. (13)read

(K +1U, ,(x) =§vk ),

(k +1)‘/k+1(x) . _

V, (x)— GZU (x) vV, (x)- 6ZV (x) kfr(x)—372\/v,(x)§w“(x)
+22Pr(x)—Wk_r(x)+—ZWr(x)a—Pk_r(x)—ZPr(x)aiPk_r(x)+2Nk(x)+2Pk(x),
X r=0 X
(k +1W, (x)_ w (x)+32u (x)ai o 0, (14)

(k +)P, (x) :%Pk (x)+3§Ur(x)§Pk_r ().

where the t -dimensional spectrum functions U, (x),V, (X),W, (x) and P, (x) are the transformed functions.
From initial conditions (13), we have

Uo(x):é—Ztanhz(x),Vo(x)=—%+%tanh2(x),

(15)
W, (x)= —2—$+%tanh(x ), Py(x) = 4+%tanh(x ).

Substituting Egs.(15)intoEqs. (14)and by straightforward iterative steps, we can obtain

Ul(x):m,vl(x): 1M Wl(x):_;z’ pl(x):_3—72,

cosh(x ) 4 cosh(x ) 24cosh(x ) 48cosh(x )
UZ(x)=§M Vo) - L2 22y ey LI gy ST ()
cosh(x) 32 cosh(x ) 96 cosh(x ) 192 cosh (x )
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inh h(x)" -3 inh h(x) -3 2
U3(x)=ism (x)(cos (j) ),Vs(x)=_ism (X)(COS (:‘) ),Wg(x)z— 1 ZCosh(x)4 3,
24 cosh(x ) 96 cosh(x ) 1152 cosh(x)
P,(x) = 37 2cosh(x) -3

2304 cosh(x )*

and so on, in the same manner, the rest of components can be easily obtained.

Taking the inverse transformation of the set of values {U, (x)},_,, V, ()} _, . W, (x)},_, and {P, (x)},_, gives n-
terms approximate solutions as

ot"\12

t=0

n inh 2cosh(x )’ -3 n

0, (x.0) = YU, ()t = —2tanh?(x) + (X)3t+1 cosh(x) t2+---+i{a (1—2tanh2(x —t—)ﬂ e
koo 12 cosh(x) 8 cosh(x) nt 4

i n 7 1 1 sinh(x) . 1 2cosh(x)" -3

Vo(x,t)= Xt =——+=tanh?(x)-= t—— t?

(1) é\/k( ) 48 2 &) 4cosh(x)” 82 cosh(x)’

s (—l+1tanh2(x —t—)j s
nilat"\ 48 2 4')

: sinh(x n
Wn(x,t)=ZWk(x)t"=—§+1tanh(x)— L 2t—i ( )3t2+---+i[6n[—§+ltanh(x —t—)ﬂ t",
k=0 37 6 24cosh(x)” 96 cosh(x ) n!l ot 37 6 4

inh n
37 2t __§z_ Sl (letZ_+.”_+:E{}QTT(44_§ZIanh(X _HE))} tn.
48cosh(x )" 192 cosh(x) nll ot 12 47)]

it=0

P, (1) =D P (x )t =4+£tanh(x)—
e 12

Therefore, the exact solution of problem is readily obtained as

7 t . t
u(x,t)=lima, (x,t) =——2tanh?(x —=),v (X,t) = limv_(x,t) = ——+=tanh’(x —-),
(x,t) lim . (X,t) o ( 4) (x,t) lim . (1) 5.4 ( 4)

: 36 1 t o 37 t
w (x,t) = limw (x,t) =——+—tanh(x —=), p(Xx,t) =lim g, (x ,t) =4+—tanh(x —-).
(,) = i (x 1) = =2+ Stanh(x —2), pX.t) = lim B, (x t) = 4+ tanh(x —=)

(16)

Fig.1 shows the 15-terms approximate solutions of problem (12) obtained by RDTM. The absolute errors of these
solutions for different values of t at x =20 are detailed in Table 2.
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Fig.1 The approximate solution (a) U5 (x.t) (b) Vi (x,t) (c) W,5(x,t) (d) p,5(x.t) obtained by RDTM

Table 2: The absolute error of U (X ,t),V,5(X,t)W,(x,t) and p,;(x,t) for different values of t at x =20

t

u(x,t) —s (x b))

t‘/ (X ,t) _V~15 (X ,t)|

'W (X :t) _WIS (X ,t)|

[P(x,t) = Pus (x 1))

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

1.63400x10~*
1.07723x10™*
7.11797x10°%
7.14460x10°
2.55361x10°*
4.74990x10°*
5.62959x107*
4.79741x10%*
3.17775x10™*
1.72555%x10 %

4.08500x10~"
2.69307 x10*
1.77949x107%*
1.78615x10°%
6.38402x10°*°
1.18747x10°*
1.40740%x107*
1.19935x10*
7.94438x10°*
4.31387x10™

6.80834 107
4.48845x10"
2.96582x107%
2.97692x10°
1.06400x107*
1.97912x10®
2.34566x10~*
1.99892x10°*
1.32406x10*
7.18978x10*

1.25954 %107
8.30363x10*
5.48676x10°*
5.50729x10™*
1.96841x10™*
3.66138x10°*
4.33948x10°%
3.69800x107*
2.44952 x10™*
1.33011x10°®

Example 2

Consider the system (1) when a=6,b =7,c=1,d =1, f =1, and g =1, which yields [15]

u, =v,,

V, ==, —6(uv )X +OVW  +7pW, +Wp, +pp, +W, +p,,
W, =W, +3uw
pt = pXXX +3‘ij :

with initial conditions

u(x,0) :f—zl—4tanh2(x),v(x,0) :—j—;ﬂanhz(x),

w (x,0) = 4+ 2tanh?(x), p(x,0) =%—12tanh2(x).

Taking the differential transform of Eqgs.(17), we have

(K +2U, () =2V, (x),
OX

(17

(18)
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(k +1)/M(X)—— Vv, (x)- GZU (X) Vi () - GZV (X)—Uk r(X)+62W (X) W, ., (x)
+7ZP(X) W, r(><)+ZW x)— Pk,,(x)+ZP,(X)&Pk,,(X)+Wk(X)+Pk(><),

(k +1W, (x)_ w (x)+32u (x) W, (x), (19)

3

0
(k+DP (0 =—=R, (x)+3§ur(x)a—xpk,r (x).

where the t -dimensional spectrum functions U, (x),V, (x),W, (x) and P, (x) are the transformed functions.

From initial conditions(18), we write

U,(x) =f—;—4tanh2(x),vo(x) =—%+tanh2(x),

(20)
W, (x) =4+ 2tanh?(x), Po(x)z%f—lztanhz(x).
Substituting Egs.(20)intoEgs. (19)and by straightforward iterative steps, we can obtain
Ul(x):zsmh(xs),vl(x):—i Sinh(x)3,Wl(x):— sinh(x )3' I:’I(X)ZGSinh(xg,
cosh(x) 2 cosh(x ) cosh(x) cosh(x)
Uz(x):EZCOSh(X )24_3,V2(X):_i2C05h(X )24_3,W2(x):—12008h(x )24—3, P, (x) = 3ZCosh(x) —3,
4 cosh(x) 16 cosh(x) 8 cosh(x) 4 cosh(x)
sinh(x )(cosh (x )* =3 sinh(x )(cosh(x )* -3 sinh(x ){cosh(x
0020 ogOdR®) | o sty 3 s ) (oot ) )
cosh(x ) 48 cosh(x) 24 cosh(x)
sinh(x )(cosh(x ) -3
o255
cosh(x )

and so on, in the same manner, the rest of components can be easily computed.

Taking the inverse transformation of the set of values {U, (x)}, .V, (x)},_,. W, ()}, , and {P (x)},_, gives n-
terms approximate solutions as

2sinh(x) EZcosh(x)z—S2 1o (3 __j n
a, (x,t)= ZU (x)t* —4tanh®(x) + COSh()()3t+4 cosn(x t?+ +n![at (12 4tanh’(x —-) t70t,

n h ; h
V(6,0 =DV, (Ot = 31 2 (x )_1 sinh(x )3t 1 2cosh(x )’ - tz
k=0 48 2 cosh(x) 16 cosh (x )°

S (—Eﬂanhz(x—t—)j t",
ntat" (| 48 4’ ),

sinh(x)t 1 2cosh(x ) [ t ﬂ o
cosh(x )3 8 cosh(x) 4))
6sinh(x 2cosh(x ) -3
g, (x,t)= ZP (x)t" :—9 12tanh?(x ) + ( 3)t+§ ( )4 t2+m+i{8 (%—Htanh (x ——)ﬂ t".
cosh(x)” 4 cosh(x) nliat"\ 8 o
Therefore, the exact solution of problem is readily obtained as

W, (x,t) :i\Nk (x)t* =4+2tanh*(x) -

U0 = MG (X8) = o2 atanh?(x =), v (x,t) = MV, (1) = - = 4+ tanh?(x — 1),
o 12 4 o 48 4 )
W (X,t) = limw, (X ,t) = 4+ 2tanh?(x —tz), p(x 1) = lim B, (x ) =%—12tanh2(x —tz).
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In Fig. 2, the 15-terms approximate solutions of problem (17) obtained by RDTM are shown graphically. The absolute

errors of these solutions for different values of t at x =20 are detailed in Table 3.
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Fig.2 The approximate solution (a) U5 (x,t) (b) Vi5(x,t) (€) W,5(x,t) (d) p,s(x,t) obtained by RDTM
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Table 3: The absolute error of U, (X ,t),Vs(X,t)W, (x,t) and p,;(x,t) for different values of t at x =20

t‘/ (X :t) _V~15 (X -t)|

M (X ’t) _Wls(x ,t)|

[P(x,t) = Pis (X 1)

t u(x,t) - (x t)]
0.1 4.97187x10"
0.2 3.26800x107*
0.3 2.15292x10°*°
0.4 2.15445x10™*
0.5 7.67697 x107%
0.6 1.42359x10°%*
0.7 1.68203x10™
0.8 1.42892x10°%*
0.9 9.43527x10°*
1.0 5.10721x10°*

1.24297 %10
8.17001x10°"
5.38231x10°*
5.38614 %10
1.91924x107%
3.55898x10°*
4.20508x10°*
3.57230x10°"
2.35882x10°*
1.27680x10°*

2.48594 %107
1.63400x107*
1.07646x10°*
1.07723x10°*
3.83849x107%
7.11797x10°%
8.41015x10°*®
7.14460x10™
4.71764x107*
2.55361x10™%®

1.49156x10™°
9.80401x10°*
6.45877x107%
6.46336 <10
2.30309x10°*
4.27078x107%#
5.04609 x10~*
4.28676x107*°
2.83058x10°*°
1.53216x10™*
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Example 3
Consider the system (1) for a=0,b =-6,c =-6,d =0,f =0,and g =0, which yields [11]

u, =v,,
v, ==/ —6(uv) —6pw,k —6wp,,
t XXX ( )x p X pX (22)
Wt :Wxxx +&JWX’
p[ = p)()()( +a'lpx '
with initial conditions
_ 4 _h?2 2 _ 4
u(x,O):szr—?ﬂ—Zy2 tanh? (ux ), v (x,0) = b, +4f1t1‘: 8,4 +b, tanh® (x ),
8u
‘1 (23)
w (x,0) = —%+f1tanh(,ux ), P(x,0) =t, +t, tanh(ux ).
1
where g, b,, t,, t, and f, are arbitrary constants.
Applying the RDTM to Egs.(22), we obtain
(k +1)Uk+1(x):ivk(x),
oX
(k +1Vv (x)——Za—av (x)—GiU (x)ﬁv (x)—6iv (x)iu (x)—6iP(x)iW x)
k+1 6)(3 k e | (3X k-r _—rs r 6)( k-r o= A 6X k-r
Kk
EYW, ()P, (x), (24)
r=0 ax
(kK +1W, () = asW (x)+3iu (x)iW (x)
k axg k & r 6X k-r ’
(k +)P (x)—a—3P (x)+3iU (x)iP (x)
k a)(3 k = r 6X k-r .
where the t -dimensional spectrum functions U, (x),V, (x),W, (x) and P, (x) are the transformed functions.
From initial conditions (23), we write
— & = 2 2 _ 4
UO(X)ZL?'U—Z/Jztanhz(,uX),Vo(x): bz +4f1t1/': 8b2/J +b2tanh2(ﬂx),
a (25)
fit
Wo(x):—tl—°+f1tanh(yx), Py (x) =t, +t, tanh (zx ).
1
Substituting Egs.(25)intoEgs. (24)and by straightforward iterative steps, we can obtain
2b, sinh ( zx sinh (ux )b,? ! f.b 1 tb
Ul(X):2—(3),V1(X)=—(—)32.W1(X)=——%, P(x)=->—T2-—,
cosh(ux ) cosh(ux )" u 2 cosh(px ) p 2 cosh(px )
1b22<2003h(;¢x )2—3) 1b23<2005h(,ux )2—3) 1 10,7 sinh (%)
U,(x)=> V() =T —— W, (x) = -
2 cosh(zx ) 4 pPcosh(ux) 4 cosh(ux ) u
1, sinh (1 ) 1b,° sinh (ux )(cosh (ux )’ —3) 1 sinh(zx )b,* (cosh(yx ) —3)
P(x) =~ Uy (x) = ; Va(x)=-2 : 5 ,
4 cosh(ux ) p 3 pcosh(ux) 6 4 cosh (px)
W60 1 flb23(2cosh(yx )2—3> . (0) 1 tlb23(2005h(,ux )2—3)
X)=—— , P(x)=—— .
: 24 cosh(ux)’ i ? 24 cosh(ux)' i

and so on, in the same manner, the rest of components can be easily computed.

Taking the inverse transformation of the set of values {U, (x)}, ., V. ()}, . W, (x)},_, and {P, (x)},_, gives n-
terms approximate solutions as
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y _ ) 2b, psinh ( ux
an(x,t)=2uk(x)tk=bz+_;4ﬂ_2ﬂztanhz(ﬂx)+zﬂ—(yg)t
e cosh(ux )
n 4
por) O _bZ;zAfﬂ—zﬂzta“hz p(x - bztz) t",
ntl ot 6u 2u t=0
n b’ ‘- ) sinh (ux )b,?
V00 = 3V, (ot = IR () ST
e Bu cosh(ux )" p
n (|2 2 4
bt an( & +4f1t1/f 80,4 +b2tanh2(,u(x— bztz)j] £
nl ot 8u 2 y

2 H =0

! 2 cosh(ux )’ u ntfat"| ot
. 1 93] 1|0 b,t
B, (x,t)=> P, (xt* =t, +t, tanh (ux )= = ——2——t +...+ — n(t +t tanh(y(x— 2 )B t".
kZ::o ‘ o +1, tanh (4ax) 2 cosh (ux )’ u ntfjat"| ° * 21”7 ))|

Therefore, the exact solution of problem is readily obtained as

. b+ 44"
u(x,t)= |ImJn(X,t)=L2'u_2ﬂ2 tanhz(y(x B bztz)}
n—ow 6/1 Zy
—b22 +4f1t1,u2 —8b2lu4

V(X,t)=!|£?ovn(x,t)= 8/14

+b, tanh? (,u(x —;42)],
A (26)

w(x,t)= Iimvvn(x,t)z_fﬁ”ltanh(ﬂ(x 2 bZtg)J,
n—o tl Zﬂ

POCE) = lim B, (X 1) =t, +1, tanh(y(x - ;’22)].
n—w lLl

Fig.3 shows the 15-terms approximate solutions of problem (22) obtained by RDTM. In Table 4, we summarize the
absolute errors of these solutions for various values of x and t with ¢£=0.5, b, =0.03, t, =-0.4, t, =-0.1and f, =0.6
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Fig.3: The approximate solution (&) w5 (x,t) (b) Vi5(X,t) (c) Ws(X,t) (d) p,s(x,t) obtained by RDTM with
#=05Db,=0031t,=-04,t,=-0.1 and f, =0.6

Table 4: The absolute error of U, (x,t),V,5(X,t)W,(x,t) and p,;(x,t) for various values of x and t with
#=05b,=0031t,=-04,t, =-0.1 and f, =0.6

t X |U(th)_J15(th)| |\/(X,t)—V~15(X ,'[)| 'W(X ,t)—V\715(X,'[)| |p(X,t)—ﬁ15(X,'[)|
0.1 1.80034x107* 1.08020x107* 1.21829x10™* 2.03048x107™*

0.1 0.3 2.79404x107* 1.67643x107® 2.21409x107* 3.69015x107
0.5 1.64588x10* 9.87526x107® 8.59977 x107™® 1.43329x107*
0.1 7.77078x10° 4.66246x107% 5.21138x107 8.68563x107®

0.3 0.3 1.16915x10°% 7.01488x10°® 9.53584 x10™’ 1.58931x10%
0.5 7.08051x107% 4.24830x10° 3.73190x10° 6.21983x10°®
0.1 2.76184x10 1.65710x107 1.83554x10°% 3.05924 x10°*

0.5 0.3 4.02489x10°% 2.41493x10~ 3.38181x10°% 5.63636 <107
0.5 2.50817 x10~ 1.50490x10°% 1.33346x10* 2.22244 %107

Conclusion

In this work, we implement the reduced form of differential transform method (DTM), so-called reduced differential
transform method (RDTM), to solve the generalized Ito system. The proposed technique, which does not require
linearization, discretization or perturbation, gives the solution in the form of convergent power series with elegantly
computed components, essentially, the accuracy of the solution increases as the number of terms increased. Three test
examples are presented to demonstrate the efficiency of the present method. The results of test examples showed that the
RDTM is very accurate, consistent and powerful technique to solve nonlinear problems.
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