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Abstract: Recently proposed processor micro-architecture that generates high Memory Level Parallelism 

promise substantial performance gains. The performance of memory bound commercial applications such as 

databases is limited by increasing memory latencies.  The ever increasing computational power of contemporary 

microprocessors reduces the execution time spent on arithmetic computations significantly. This paper reviews 

various techniques to leverage Memory Level Parallelism. Techniques reviewed in this paper are Code 

Transformations, Dynamic Warp Subdivision and Recovery free Value prediction. The survey reveals that, 

Code Transformation had an execution time reduction averaging of 20% in a multiprocessor and 30% in 

uniprocessor; Dynamic Warp Subdivision had improved performance on average by 15% on bulk synchronous 

cache organization with a maximum speed up of 1.6X and 17% on a coherent cache hierarchy with a maximum 

speed up of 1.9X and Recovery free Value prediction enhances Memory Level Parallelism effectively and 

achieves significant speed ups. 
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I. Introduction 

 

As the imbalance between processor and memory speeds increases, the focus on improving system performance moves 

to the memory system. Currently, processors are supported by large on-chip caches that try to provide faster access to 

recently-accessed data. Unfortunately, when there is a miss at the largest on-chip cache, instruction processing stalls 

after a few cycles, and the processing resources remain idle for hundreds of cycles. The inability to process instructions 

in parallel with long-latency cache misses results in substantial performance loss. One way to reduce this performance 

loss is to process the cache misses in parallel. Techniques such as non-blocking caches, out-of order execution with 

large instruction windows, run-ahead execution and pre-fetching improve performance by parallelizing long-latency 

memory operations. The notion of generating and servicing multiple outstanding cache misses in parallel is called 

Memory Level Parallelism (MLP). Memory Level Parallelism (MLP) is a term in computer architecture referring to the 

ability to have pending multiple memory operations, in particular cache misses or transition look-aside buffer misses, at 

the same time. In single processor, Memory Level Parallelism (MLP) may be considered a form of Instruction Level 

Parallelism (ILP). However, Instruction Level Parallelism is often mixed up with superscalar, the ability to execute 

more than one instruction at the same time. Example: a processor such as the Intel Pentium Pro is five ways superscalar, 

with the ability to start executing five different micro-instructions in a given cycle, but it can handle four different cache 

misses for up to 20 different load micro-instructions at any time. It is possible to have a machine that is not superscalar 

but which nevertheless has high Memory Level Parallelism. Arguably a machine that has no Instruction Level 

Parallelism, which is not superscalar, which executes one instruction at a time in a non-pipelined manner, but which 

performs hardware pre-fetching (not software instruction level pre-fetching) exhibits Memory Level Parallelism (due to 

multiple pre-fetches outstanding) but not Instruction Level Parallelism. This is because there are multiple operations 

outstanding, but not instructions. Instructions are often mixed up with operations. 

 

II. Techniques to increase Memory Level Parallelism 

 

A. Code Transformations (CT) 

 

Current commodity microprocessors improve performance through aggressive techniques like multiple instruction 

issue, out-of order (dynamic) issue, non-blocking reads, and speculative execution to exploit high levels of instruction-

level parallelism (ILP). Although ILP techniques successfully and consistently reduced the CPU component of 

execution time, their impact on the memory (read) stall component was lower and more application-dependent, making 

read stall time a larger bottleneck in ILP-based multiprocessors than in previous-generation systems. In particular, 

current and future read miss latencies are too long to overlap with other instruction types. Thus, an ILP processor needs 
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to overlap multiple read misses with each other to hide a significant portion of their latencies. An out-of-order processor 

can only overlap those reads held together within its instruction window. Independent read misses must therefore be 

clustered together within a single instruction window to effectively hide their latencies (read miss clustering or 

clustering). Most of the applications typically did not exhibit much read miss clustering, leading to poor parallelism in 

the memory system. Code transformation can increase parallelism in memory systems with out-of-order processors, by 

overlapping multiple read misses within the same instruction window, while preserving cache locality. 

 

i) Read miss clustering 

 

To understand the sources of poor read miss clustering in typical code, we consider a loop nest traversing a 2-D matrix. 

Figure 1 graphically represents three different matrix traversals. The matrix is shown in row major order, with crosses 

for data elements and shaded blocks for cache lines. Figure 2 relates these matrix traversals to code generation, with 

pseudo-code shown in row-major notation. 
 

 
 

Figure 1: Impact of matrix traversal order on miss clustering. Crosses represent matrix elements (row-major order), and 

shaded blocks represent cache lines. (Ref 1) 
 

 
                                 

Figure 2: Pseudo-code for Figure 1 matrix traversals (row-major notation). [Ref 1] 

 

Unroll-and-jam is preferred instead of strip-mine and interchange for two reasons.  

 

 First, unroll-and- jam allows us to exploit additional benefits from scalar replacement. 

  Second, unroll-and-jam does not change the inner-loop iteration count.  

 

The shorter inner loops of strip-mining can negatively impact techniques that target inner loops, such as dynamic 

branch prediction. By increasing inner-loop computation without changing the iteration count, unroll-and-jam can also 

help software pre-fetching [4]. 

 

ii)    Dependences that limit memory level parallelism 

 

Three kinds of limitations to read miss parallelism are identified as  

 

 cache-line dependences,  

 address dependences, and 

  Window constraints. 

 

iii )  Performance Analysis 

 

Clustering transformation is evaluated using a latency-detection micro-benchmark and five scientific      applications. 

Table 1 summarizes the evaluation workload for the simulated and real systems. Lat-bench is based on the lat mem rd 
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kernel of lm-bench [5]. Lat-bench is clustered with unroll-and-jam. The base Lat-bench indicates an average read miss 

stall time of 171 ns on the simulated system. Clustering drops the average stall time caused by each read miss to 32 ns, 

a speedup of 5.34X. On the Convex Exemplar, clustering reduces the average stall time for each miss from 502 ns to 87 

ns, providing a speedup of 5.77X. 

 

 
                         

Table 1:  Data set sizes and number of processors for experiments on simulated and real systems  [Ref 1]. 
 

Figure 3 shows the impact of the clustering transformations on application execution time for the base simulated 

system. Figure 3(a) shows multiprocessor experiments, while Figure 3(b) shows uniprocessor experiments. The 

execution time of each application is shown both before and after clustering (Base/Clust), normalized to the given 

application and system size without clustering. 

 

 
                                         

Figure 3: Impact of clustering transformations on application execution time.[Ref 1] 

 

Overall, the clustering transformations studied provide from 5–39% reduction in multiprocessor execution time for 

these applications, averaging 20%. 

 

 
                                  

Table 2 : Impact of clustering transformation on Convex Exemplar execution time.[Ref 1] 
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There are numerous differences between the simulated system and the real machine. Table 2 shows that clustering also 

provides significant benefits in the real system. The multiprocessor and uniprocessor execution time reductions from 

clustering range from 9–38% for all but the multiprocessor version of Ocean, which sees 3% degradation. 

B.  Dynamic Wrap Subdivision 

 

To mitigate the penalty of long latency memory accesses with limited number of warps, dynamic warp subdivision 

allows threads that hit during divergent cache accesses to continue and exploit more MLP. This technique is named as 

MLP-aware warp subdivision (MAWS). The split warps after the subdivisions are referred to as warp-splits. Threads 

that continue after they hit the cache are named as run-ahead threads and they form a run-ahead warp-split. Threads that 

stall due to cache misses are called fall-behind threads and they form a fall-behind warp-split. The original warp is 

regarded as the root warp-split and it can be subdivided recursively. 

 

i) Exploiting MLP 

 

Figure 4 compares conventional SIMT execution with MAWS upon divergent cache-accesses. Consider a warp that has 

two memory access instructions which would both incur diverged cache misses in the conventional execution model. 

Assuming all other warps have been suspended already, MAWS can avoid stalling (Figure 4(b)(i)) or reduce the stalling 

cycles (Figure 4(b)(ii)) in two scenarios: 

 

 With conventional SIMT execution, the fall-behind threads would hit the cache upon the latter instruction 

anyway, and it is the run-ahead threads that now miss the cache. In this case, MAWS allows run-ahead threads to issue 

their memory requests earlier. 

 

 With conventional SIMT execution, the fall-behind threads would miss the cache upon the latter instruction, 

and they request the same cache block as some of the run-ahead threads. In this case, the run-ahead warp-split plays the 

role of pre-fetch threads for the fall-behind warp-slit. Different from speculative precomputation or run-ahead 

simultaneous threads [6] in the context of SMT, the run-ahead warp-split always perform useful computation and 

threads’ states are saved right away, requiring no ROB or dependency analysis that would otherwise complicate the 

design of the simple, in-order Warp Processing Unit (WPU). 

 

 
 

Figure 4: Comparing (a) conventional SIMT execution with (b) MAWS using a simplified WPU model with all its warps 

stalled due to cache misses except for one.[Ref 2] 

 

 

In both cases, the long latency memory request which would otherwise stall the pipeline is issued earlier than they 

would in the conventional execution model. In consequence, the pipeline stalls for fewer cycles and performance can be 

improved. 
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ii) Implementing Warp-splits 

 

 
 

Figure 5: Warp splitting upon diverged cache accesses and its merging process. [Ref 2] 

 

Hardware implementation uses a warp-split table (WST) for each warp to keep track of all its existing warp-splits. A 

WST entry records a warp-split’s current PC, its instruction count, executing status, the priority, and the active mask 

with set bits denoting the belonging threads. Both the PC and the instruction count are used for the purpose of merging 

the warp-splits. The executing status and the priority are used for scheduling, and the active mask is used for selecting 

the threads in the corresponding warp-split to run in SIMT. The post-dominator based re-convergence scheme is used to 

handle conditional branches [7]. Figure 5: shows the Warp splitting upon diverged cache accesses and its merging 

process. 

 

iii) Performance Improvement 

 

Lat-Spec with Loop-Bypassing and Shallowest-Warp-First (SWF) scheduling works consistently well across all 

applications without any degradation. Comparison of speedups resulted from all combinations of the optimization 

techniques involved in MAWS is shown in figure 6.  

 

 

 
Figure 6: Speedup of various MLP optimizations on (a) a bulk synchronous, one-level cache organization; and 

 (b) a two-level coherent cache hierarchy (Ref 2). 
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The combination includes subdivision strategies (Aggress, Lazy-Split, and Lat-Spec), loop bypassing, and scheduling 

policies (RR, SWF). The typical combinations are listed in Figure 6. For the bulk-synchronous cache organization, Lat 

Spec (Loop-Bypass + SWF) outperforms Lazy-Split (Loop-Bypass + RR) significantly with LU and it leads to an 

average performance improvement of 15%, compared to Lazy-Split’s performance gains of 12%. On the two-level 

cache hierarchy, Lat-Spec (Loop-Bypass + SWF) and Lazy-Split (Loop-Bypass + RR) achieve a performance 

improvement of 17% and 7%, respectively; no performance degradation is observed for both systems. On the other 

hand, although Aggress is able to achieve speedups for several applications, it leads to performance degradation up to 

13% in the bulk-synchronous cache organization and 8% in the two-level cache hierarchy, which is caused by pipeline 

under-utilization due to narrow warp-splits that are not merged in time. 

 

C. Recovery Free Value Prediction 

 

Recovery Free Prediction is a novel technique to parallelize sequential cache misses speculatively. The target workload 

is memory intensive workloads with heavy pointer chasing. The idea is developed upon value prediction, which was 

originally proposed as an instruction level parallelism (ILP) optimization to break true data dependencies in 

computations. Since the data dependence between pointer chasing loads enforces the sequential execution, value 

prediction has the capability to parallelize these loads, thereby increasing the memory level parallelism (MLP). So, for 

memory intensive applications the largest performance potential of value prediction lies in its capability to enhance 

MLP instead of ILP. 

 

i) Value Prediction 

 

Since the focus is on using value prediction to increase MLP, the hardware overhead to support value prediction and 

value speculative execution can be significantly reduced. In this, authors [3] propose to use value prediction only for 

pre-fetching so that the complex value prediction validation and misprediction recovery mechanisms are avoided and 

only minor changes in the hardware are necessary. 

Values produced by individual instructions exhibit localities and different value prediction schemes are proposed to 

exploit such localities to break true data dependencies. In a typical value prediction/speculation scheme proposed for a 

superscalar processor, the prediction of an instruction enables its dependent instructions to be executed speculatively. If 

the prediction is wrong, however, a recovery scheme is necessary to squash the speculative results and to re-execute 

these affected instructions with correct data. For memory intensive workloads with heavy pointer chasing, sequential 

cache-misses resulting from pointer chasing code structures dominate the overall execution time. These cache misses 

form a memory dependence chain since one missing load’s address is dependent on the previous missing load’s value. 

 

 
 

Figure 7: Predicting the value of Node 5’ enables overlapping of cache misses in different iterations [Ref 3]. 

 

The example in Figure 7 illustrates that the effectiveness of value prediction in breaking the true memory dependence 

chain so that sequential cache misses can be processed in parallel and MLP can be enhanced. Such effectiveness is 

affected by several characteristics of the memory dependence chain. 

 

 The first is the length of the memory dependence chain. 

 The second is which missing load along the dependence chain is predicted. 

 The third is the predictability of these missing loads’ values since more accurate prediction will result in more useful 

speculative executions. 

 

It is found that value prediction can be more effective than traditional address prediction based pre-fetching techniques 

for the same predictability model. The main reason is that while pre-fetching techniques only bring the data close to the 

processor (e.g., the L1 D-cache), value prediction takes one step further by using the fetched data to drive other 

dependent load instructions to be executed early. 
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ii) Recovery Free value Prediction 

 

Value prediction has great potentials to enhance MLP by overlapping otherwise sequential cache misses. To implement 

such a technique, however, complex hardware support is necessary to validate the prediction and to perform recovery 

from value mis-predictions. To support recover-free value prediction, only minor hardware changes are necessary. The 

proposed design is based on a MIPS R10000 style micro-architecture [8], which has a 7-stage pipeline as shown in 

Figure8.  

 

 
 

Figure 8:  The execution pipeline. [Ref 3] 

 

There are four key changes to the hardware, presented as follows: 

 First, a value predictor is included in the front-end of the processor and is indexed with pc. 

 Secondly, two flag bits are added to control value speculative execution. One flag bit, called value prediction 

speculative (vp), is added to every entry of issue window or RUU. The other flag bit, called value prediction ready 

(vp_ready) , is added for each register in the physical register file. 

 Thirdly, the instruction selection logic is modified so that it prioritizes the issue of un-speculative instructions and 

prohibits the speculative execution of store and branch instructions. 

 Fourthly, to break the alias (i.e., load-after-store) dependencies, the vp flag is set for the load instructions that are stalled 

due to prior unresolved store addresses. 
 

iii) Performance Evaluation 

 

With recover-free value prediction, the overall execution time is significantly reduced and MLP is much improved. 

Figure 9 shows the speedups of the proposed recovery-free value prediction and it shows that the proposed technique 

achieves significant speedups for memory intensive benchmarks, from 3.2% for the benchmark health to 24% for the 

benchmark mst. For the well-known pointer-chasing benchmark mcf, the speedup is 19.6%. For computation intensive 

benchmarks, smaller speedups (average of 0.5%) result, which is expected since the reduction in the D-cache miss rate 

for these benchmarks is small. The only benchmark that shows a negative speedup (-0.7%) is gcc. 

 

 
      

Figure 9: The speedups of using recovery-free value prediction [Ref 3]. 

 

Comparing proposed recovery-free scheme to the traditional value prediction, it the traditional value prediction 

achieves higher speedups for computation intensive benchmarks. For memory-intensive benchmarks, recovery-free 

prediction scheme has much higher speedups since it avoids the misprediction penalties and benefits from speculative 

memory disambiguation. 
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Figure 10: The speedups resulting from breaking different dependencies and traditional value speculation [Ref 3]. 

 

In recovery-free value prediction, the value predictor is updated with un-speculative execution results (i.e., the 

computation results not involving direct/indirect predicted values), thereby being able to achieve higher prediction 

accuracies than the traditional value speculation scheme. The results in Figure 10 also suggest another interesting 

optimization: we can apply recovery-free value prediction selectively by monitoring the dynamic behaviour of a 

workload. Only if the workload is memory intensive (e.g., the L1 D-cache miss rate is larger than 10%), the recovery-

free value prediction is turned on. Otherwise, recovery-free value prediction is turned off or only the aggressive 

memory disambiguation is used for pre-fetching. 
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Conclusion 

 

Three Techniques to leverage Memory Level Parallelism has been analyzed in this paper. Each one has its own 

advantages as well as disadvantages. Code Transformations can improve Memory Level Parallelism in systems with 

out-of order processors.  Compiler transformation known for other purposes has been adapted to the new goal of 

memory parallelism. The experimental results show substantial improvements in memory parallelism, thus hiding more 

memory stall time and reducing execution time significantly.  

 

MLP-Aware Warp Subdivision (MAWS) is used to mitigate the penalty of divergent cache-accesses, which leverages 

MLP by subdividing warps upon divergent cache-accesses and allow threads that hit the cache to run ahead and issue 

more memory requests. Lazy Split subdivides warps only when no more warps can proceed and exploit more MLP, and 

Latency-speculating Split reduces the number of unnecessary subdivisions when run-ahead warp-splits are not likely to 

be beneficial. Furthermore, loop bypassing improves the ability of run-ahead warp-splits to proceed across loop 

boundaries. On average, this technique improves the performance by 17% on the coherent cache hierarchy and 15% on 

the bulk-synchronous cache organization. 

 

Value prediction can enhance MLP for memory intensive benchmarks with heavy pointer chasing. Value prediction is 

proposed for microprocessors with long memory latency operations for data pre-fetching so that complex prediction 

validation and misprediction recovery mechanisms are avoided and only minor hardware changes are needed. The same 

hardware changes enable aggressive memory disambiguation for pre-fetching. Recovery-Free Value prediction 

technique enhances Memory Level Parallelism effectively for a wide range of benchmarks and achieves significant 

speedups. 
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