
International Journal of Enhanced Research in Science Technology & Engineering, ISSN: 2319-7463
Vol. 3 Issue 5, May-2014, pp: (256-264), Impact Factor: 1.252, Available online at: www.erpublications.com

Page | 256

Techniques to increase Memory Level

Parallelism: A Survey
Jimcy Babu

1
, Kavitha V.

2

M Tech, CMRIT, Bangalore, Ph D Scholar, Jain University, Bangalore

Abstract: Recently proposed processor micro-architecture that generates high Memory Level Parallelism

promise substantial performance gains. The performance of memory bound commercial applications such as

databases is limited by increasing memory latencies. The ever increasing computational power of contemporary

microprocessors reduces the execution time spent on arithmetic computations significantly. This paper reviews

various techniques to leverage Memory Level Parallelism. Techniques reviewed in this paper are Code

Transformations, Dynamic Warp Subdivision and Recovery free Value prediction. The survey reveals that,

Code Transformation had an execution time reduction averaging of 20% in a multiprocessor and 30% in

uniprocessor; Dynamic Warp Subdivision had improved performance on average by 15% on bulk synchronous

cache organization with a maximum speed up of 1.6X and 17% on a coherent cache hierarchy with a maximum

speed up of 1.9X and Recovery free Value prediction enhances Memory Level Parallelism effectively and

achieves significant speed ups.

Keywords: Memory Level Parallelism (MLP); Code Transformation(CT); Out-of-order issue; Instruction Level

Parallelism(ILP); Pre-fetching; warp-split table (WST).

I. Introduction

As the imbalance between processor and memory speeds increases, the focus on improving system performance moves

to the memory system. Currently, processors are supported by large on-chip caches that try to provide faster access to

recently-accessed data. Unfortunately, when there is a miss at the largest on-chip cache, instruction processing stalls

after a few cycles, and the processing resources remain idle for hundreds of cycles. The inability to process instructions

in parallel with long-latency cache misses results in substantial performance loss. One way to reduce this performance

loss is to process the cache misses in parallel. Techniques such as non-blocking caches, out-of order execution with

large instruction windows, run-ahead execution and pre-fetching improve performance by parallelizing long-latency

memory operations. The notion of generating and servicing multiple outstanding cache misses in parallel is called

Memory Level Parallelism (MLP). Memory Level Parallelism (MLP) is a term in computer architecture referring to the

ability to have pending multiple memory operations, in particular cache misses or transition look-aside buffer misses, at

the same time. In single processor, Memory Level Parallelism (MLP) may be considered a form of Instruction Level

Parallelism (ILP). However, Instruction Level Parallelism is often mixed up with superscalar, the ability to execute

more than one instruction at the same time. Example: a processor such as the Intel Pentium Pro is five ways superscalar,

with the ability to start executing five different micro-instructions in a given cycle, but it can handle four different cache

misses for up to 20 different load micro-instructions at any time. It is possible to have a machine that is not superscalar

but which nevertheless has high Memory Level Parallelism. Arguably a machine that has no Instruction Level

Parallelism, which is not superscalar, which executes one instruction at a time in a non-pipelined manner, but which

performs hardware pre-fetching (not software instruction level pre-fetching) exhibits Memory Level Parallelism (due to

multiple pre-fetches outstanding) but not Instruction Level Parallelism. This is because there are multiple operations

outstanding, but not instructions. Instructions are often mixed up with operations.

II. Techniques to increase Memory Level Parallelism

A. Code Transformations (CT)

Current commodity microprocessors improve performance through aggressive techniques like multiple instruction

issue, out-of order (dynamic) issue, non-blocking reads, and speculative execution to exploit high levels of instruction-

level parallelism (ILP). Although ILP techniques successfully and consistently reduced the CPU component of

execution time, their impact on the memory (read) stall component was lower and more application-dependent, making

read stall time a larger bottleneck in ILP-based multiprocessors than in previous-generation systems. In particular,

current and future read miss latencies are too long to overlap with other instruction types. Thus, an ILP processor needs

International Journal of Enhanced Research in Science Technology & Engineering, ISSN: 2319-7463
Vol. 3 Issue 5, May-2014, pp: (256-264), Impact Factor: 1.252, Available online at: www.erpublications.com

Page | 257

to overlap multiple read misses with each other to hide a significant portion of their latencies. An out-of-order processor

can only overlap those reads held together within its instruction window. Independent read misses must therefore be

clustered together within a single instruction window to effectively hide their latencies (read miss clustering or

clustering). Most of the applications typically did not exhibit much read miss clustering, leading to poor parallelism in

the memory system. Code transformation can increase parallelism in memory systems with out-of-order processors, by

overlapping multiple read misses within the same instruction window, while preserving cache locality.

i) Read miss clustering

To understand the sources of poor read miss clustering in typical code, we consider a loop nest traversing a 2-D matrix.

Figure 1 graphically represents three different matrix traversals. The matrix is shown in row major order, with crosses

for data elements and shaded blocks for cache lines. Figure 2 relates these matrix traversals to code generation, with

pseudo-code shown in row-major notation.

Figure 1: Impact of matrix traversal order on miss clustering. Crosses represent matrix elements (row-major order), and

shaded blocks represent cache lines. (Ref 1)

Figure 2: Pseudo-code for Figure 1 matrix traversals (row-major notation). [Ref 1]

Unroll-and-jam is preferred instead of strip-mine and interchange for two reasons.

 First, unroll-and- jam allows us to exploit additional benefits from scalar replacement.

 Second, unroll-and-jam does not change the inner-loop iteration count.

The shorter inner loops of strip-mining can negatively impact techniques that target inner loops, such as dynamic

branch prediction. By increasing inner-loop computation without changing the iteration count, unroll-and-jam can also

help software pre-fetching [4].

ii) Dependences that limit memory level parallelism

Three kinds of limitations to read miss parallelism are identified as

 cache-line dependences,

 address dependences, and

 Window constraints.

iii) Performance Analysis

Clustering transformation is evaluated using a latency-detection micro-benchmark and five scientific applications.

Table 1 summarizes the evaluation workload for the simulated and real systems. Lat-bench is based on the lat mem rd

International Journal of Enhanced Research in Science Technology & Engineering, ISSN: 2319-7463
Vol. 3 Issue 5, May-2014, pp: (256-264), Impact Factor: 1.252, Available online at: www.erpublications.com

Page | 258

kernel of lm-bench [5]. Lat-bench is clustered with unroll-and-jam. The base Lat-bench indicates an average read miss

stall time of 171 ns on the simulated system. Clustering drops the average stall time caused by each read miss to 32 ns,

a speedup of 5.34X. On the Convex Exemplar, clustering reduces the average stall time for each miss from 502 ns to 87

ns, providing a speedup of 5.77X.

Table 1: Data set sizes and number of processors for experiments on simulated and real systems [Ref 1].

Figure 3 shows the impact of the clustering transformations on application execution time for the base simulated

system. Figure 3(a) shows multiprocessor experiments, while Figure 3(b) shows uniprocessor experiments. The

execution time of each application is shown both before and after clustering (Base/Clust), normalized to the given

application and system size without clustering.

Figure 3: Impact of clustering transformations on application execution time.[Ref 1]

Overall, the clustering transformations studied provide from 5–39% reduction in multiprocessor execution time for

these applications, averaging 20%.

Table 2 : Impact of clustering transformation on Convex Exemplar execution time.[Ref 1]

International Journal of Enhanced Research in Science Technology & Engineering, ISSN: 2319-7463
Vol. 3 Issue 5, May-2014, pp: (256-264), Impact Factor: 1.252, Available online at: www.erpublications.com

Page | 259

There are numerous differences between the simulated system and the real machine. Table 2 shows that clustering also

provides significant benefits in the real system. The multiprocessor and uniprocessor execution time reductions from

clustering range from 9–38% for all but the multiprocessor version of Ocean, which sees 3% degradation.

B. Dynamic Wrap Subdivision

To mitigate the penalty of long latency memory accesses with limited number of warps, dynamic warp subdivision

allows threads that hit during divergent cache accesses to continue and exploit more MLP. This technique is named as

MLP-aware warp subdivision (MAWS). The split warps after the subdivisions are referred to as warp-splits. Threads

that continue after they hit the cache are named as run-ahead threads and they form a run-ahead warp-split. Threads that

stall due to cache misses are called fall-behind threads and they form a fall-behind warp-split. The original warp is

regarded as the root warp-split and it can be subdivided recursively.

i) Exploiting MLP

Figure 4 compares conventional SIMT execution with MAWS upon divergent cache-accesses. Consider a warp that has

two memory access instructions which would both incur diverged cache misses in the conventional execution model.

Assuming all other warps have been suspended already, MAWS can avoid stalling (Figure 4(b)(i)) or reduce the stalling

cycles (Figure 4(b)(ii)) in two scenarios:

 With conventional SIMT execution, the fall-behind threads would hit the cache upon the latter instruction

anyway, and it is the run-ahead threads that now miss the cache. In this case, MAWS allows run-ahead threads to issue

their memory requests earlier.

 With conventional SIMT execution, the fall-behind threads would miss the cache upon the latter instruction,

and they request the same cache block as some of the run-ahead threads. In this case, the run-ahead warp-split plays the

role of pre-fetch threads for the fall-behind warp-slit. Different from speculative precomputation or run-ahead

simultaneous threads [6] in the context of SMT, the run-ahead warp-split always perform useful computation and

threads’ states are saved right away, requiring no ROB or dependency analysis that would otherwise complicate the

design of the simple, in-order Warp Processing Unit (WPU).

Figure 4: Comparing (a) conventional SIMT execution with (b) MAWS using a simplified WPU model with all its warps

stalled due to cache misses except for one.[Ref 2]

In both cases, the long latency memory request which would otherwise stall the pipeline is issued earlier than they

would in the conventional execution model. In consequence, the pipeline stalls for fewer cycles and performance can be

improved.

International Journal of Enhanced Research in Science Technology & Engineering, ISSN: 2319-7463
Vol. 3 Issue 5, May-2014, pp: (256-264), Impact Factor: 1.252, Available online at: www.erpublications.com

Page | 260

ii) Implementing Warp-splits

Figure 5: Warp splitting upon diverged cache accesses and its merging process. [Ref 2]

Hardware implementation uses a warp-split table (WST) for each warp to keep track of all its existing warp-splits. A

WST entry records a warp-split’s current PC, its instruction count, executing status, the priority, and the active mask

with set bits denoting the belonging threads. Both the PC and the instruction count are used for the purpose of merging

the warp-splits. The executing status and the priority are used for scheduling, and the active mask is used for selecting

the threads in the corresponding warp-split to run in SIMT. The post-dominator based re-convergence scheme is used to

handle conditional branches [7]. Figure 5: shows the Warp splitting upon diverged cache accesses and its merging

process.

iii) Performance Improvement

Lat-Spec with Loop-Bypassing and Shallowest-Warp-First (SWF) scheduling works consistently well across all

applications without any degradation. Comparison of speedups resulted from all combinations of the optimization

techniques involved in MAWS is shown in figure 6.

Figure 6: Speedup of various MLP optimizations on (a) a bulk synchronous, one-level cache organization; and

 (b) a two-level coherent cache hierarchy (Ref 2).

International Journal of Enhanced Research in Science Technology & Engineering, ISSN: 2319-7463
Vol. 3 Issue 5, May-2014, pp: (256-264), Impact Factor: 1.252, Available online at: www.erpublications.com

Page | 261

The combination includes subdivision strategies (Aggress, Lazy-Split, and Lat-Spec), loop bypassing, and scheduling

policies (RR, SWF). The typical combinations are listed in Figure 6. For the bulk-synchronous cache organization, Lat

Spec (Loop-Bypass + SWF) outperforms Lazy-Split (Loop-Bypass + RR) significantly with LU and it leads to an

average performance improvement of 15%, compared to Lazy-Split’s performance gains of 12%. On the two-level

cache hierarchy, Lat-Spec (Loop-Bypass + SWF) and Lazy-Split (Loop-Bypass + RR) achieve a performance

improvement of 17% and 7%, respectively; no performance degradation is observed for both systems. On the other

hand, although Aggress is able to achieve speedups for several applications, it leads to performance degradation up to

13% in the bulk-synchronous cache organization and 8% in the two-level cache hierarchy, which is caused by pipeline

under-utilization due to narrow warp-splits that are not merged in time.

C. Recovery Free Value Prediction

Recovery Free Prediction is a novel technique to parallelize sequential cache misses speculatively. The target workload

is memory intensive workloads with heavy pointer chasing. The idea is developed upon value prediction, which was

originally proposed as an instruction level parallelism (ILP) optimization to break true data dependencies in

computations. Since the data dependence between pointer chasing loads enforces the sequential execution, value

prediction has the capability to parallelize these loads, thereby increasing the memory level parallelism (MLP). So, for

memory intensive applications the largest performance potential of value prediction lies in its capability to enhance

MLP instead of ILP.

i) Value Prediction

Since the focus is on using value prediction to increase MLP, the hardware overhead to support value prediction and

value speculative execution can be significantly reduced. In this, authors [3] propose to use value prediction only for

pre-fetching so that the complex value prediction validation and misprediction recovery mechanisms are avoided and

only minor changes in the hardware are necessary.

Values produced by individual instructions exhibit localities and different value prediction schemes are proposed to

exploit such localities to break true data dependencies. In a typical value prediction/speculation scheme proposed for a

superscalar processor, the prediction of an instruction enables its dependent instructions to be executed speculatively. If

the prediction is wrong, however, a recovery scheme is necessary to squash the speculative results and to re-execute

these affected instructions with correct data. For memory intensive workloads with heavy pointer chasing, sequential

cache-misses resulting from pointer chasing code structures dominate the overall execution time. These cache misses

form a memory dependence chain since one missing load’s address is dependent on the previous missing load’s value.

Figure 7: Predicting the value of Node 5’ enables overlapping of cache misses in different iterations [Ref 3].

The example in Figure 7 illustrates that the effectiveness of value prediction in breaking the true memory dependence

chain so that sequential cache misses can be processed in parallel and MLP can be enhanced. Such effectiveness is

affected by several characteristics of the memory dependence chain.

 The first is the length of the memory dependence chain.

 The second is which missing load along the dependence chain is predicted.

 The third is the predictability of these missing loads’ values since more accurate prediction will result in more useful

speculative executions.

It is found that value prediction can be more effective than traditional address prediction based pre-fetching techniques

for the same predictability model. The main reason is that while pre-fetching techniques only bring the data close to the

processor (e.g., the L1 D-cache), value prediction takes one step further by using the fetched data to drive other

dependent load instructions to be executed early.

International Journal of Enhanced Research in Science Technology & Engineering, ISSN: 2319-7463
Vol. 3 Issue 5, May-2014, pp: (256-264), Impact Factor: 1.252, Available online at: www.erpublications.com

Page | 262

ii) Recovery Free value Prediction

Value prediction has great potentials to enhance MLP by overlapping otherwise sequential cache misses. To implement

such a technique, however, complex hardware support is necessary to validate the prediction and to perform recovery

from value mis-predictions. To support recover-free value prediction, only minor hardware changes are necessary. The

proposed design is based on a MIPS R10000 style micro-architecture [8], which has a 7-stage pipeline as shown in

Figure8.

Figure 8: The execution pipeline. [Ref 3]

There are four key changes to the hardware, presented as follows:

 First, a value predictor is included in the front-end of the processor and is indexed with pc.

 Secondly, two flag bits are added to control value speculative execution. One flag bit, called value prediction

speculative (vp), is added to every entry of issue window or RUU. The other flag bit, called value prediction ready

(vp_ready) , is added for each register in the physical register file.

 Thirdly, the instruction selection logic is modified so that it prioritizes the issue of un-speculative instructions and

prohibits the speculative execution of store and branch instructions.

 Fourthly, to break the alias (i.e., load-after-store) dependencies, the vp flag is set for the load instructions that are stalled

due to prior unresolved store addresses.

iii) Performance Evaluation

With recover-free value prediction, the overall execution time is significantly reduced and MLP is much improved.

Figure 9 shows the speedups of the proposed recovery-free value prediction and it shows that the proposed technique

achieves significant speedups for memory intensive benchmarks, from 3.2% for the benchmark health to 24% for the

benchmark mst. For the well-known pointer-chasing benchmark mcf, the speedup is 19.6%. For computation intensive

benchmarks, smaller speedups (average of 0.5%) result, which is expected since the reduction in the D-cache miss rate

for these benchmarks is small. The only benchmark that shows a negative speedup (-0.7%) is gcc.

Figure 9: The speedups of using recovery-free value prediction [Ref 3].

Comparing proposed recovery-free scheme to the traditional value prediction, it the traditional value prediction

achieves higher speedups for computation intensive benchmarks. For memory-intensive benchmarks, recovery-free

prediction scheme has much higher speedups since it avoids the misprediction penalties and benefits from speculative

memory disambiguation.

International Journal of Enhanced Research in Science Technology & Engineering, ISSN: 2319-7463
Vol. 3 Issue 5, May-2014, pp: (256-264), Impact Factor: 1.252, Available online at: www.erpublications.com

Page | 263

Figure 10: The speedups resulting from breaking different dependencies and traditional value speculation [Ref 3].

In recovery-free value prediction, the value predictor is updated with un-speculative execution results (i.e., the

computation results not involving direct/indirect predicted values), thereby being able to achieve higher prediction

accuracies than the traditional value speculation scheme. The results in Figure 10 also suggest another interesting

optimization: we can apply recovery-free value prediction selectively by monitoring the dynamic behaviour of a

workload. Only if the workload is memory intensive (e.g., the L1 D-cache miss rate is larger than 10%), the recovery-

free value prediction is turned on. Otherwise, recovery-free value prediction is turned off or only the aggressive

memory disambiguation is used for pre-fetching.

Acknowledgment

I would like to express my sincere thanks to my guide Mrs. Kavitha. V, Associate Professor, Electronics and

communication, CMRIT Bangalore, for the timely guidance and encouragement to make this review, a success.

Conclusion

Three Techniques to leverage Memory Level Parallelism has been analyzed in this paper. Each one has its own

advantages as well as disadvantages. Code Transformations can improve Memory Level Parallelism in systems with

out-of order processors. Compiler transformation known for other purposes has been adapted to the new goal of

memory parallelism. The experimental results show substantial improvements in memory parallelism, thus hiding more

memory stall time and reducing execution time significantly.

MLP-Aware Warp Subdivision (MAWS) is used to mitigate the penalty of divergent cache-accesses, which leverages

MLP by subdividing warps upon divergent cache-accesses and allow threads that hit the cache to run ahead and issue

more memory requests. Lazy Split subdivides warps only when no more warps can proceed and exploit more MLP, and

Latency-speculating Split reduces the number of unnecessary subdivisions when run-ahead warp-splits are not likely to

be beneficial. Furthermore, loop bypassing improves the ability of run-ahead warp-splits to proceed across loop

boundaries. On average, this technique improves the performance by 17% on the coherent cache hierarchy and 15% on

the bulk-synchronous cache organization.

Value prediction can enhance MLP for memory intensive benchmarks with heavy pointer chasing. Value prediction is

proposed for microprocessors with long memory latency operations for data pre-fetching so that complex prediction

validation and misprediction recovery mechanisms are avoided and only minor hardware changes are needed. The same

hardware changes enable aggressive memory disambiguation for pre-fetching. Recovery-Free Value prediction

technique enhances Memory Level Parallelism effectively for a wide range of benchmarks and achieves significant

speedups.

References

[1]. Vijay S.Pai and Sarita Adve, “Code Transformations to improve Memory Level Parallelism,”Copyright IEEE 1999.

[2]. Jiayuan Meng, David Tarjan and Kevin Skadron,”Leveraging Memory Level Parallelism using Dynamic Warp

Subdivision,”University of Virginia Department of computer science Tech Report CS-2009-02,April 2009.

[3]. Huiyang Zhou and Thomas M. Conte, “Enhancing Memory Level Parallelism via Recovery Free Value

Prediction,”Department of Electrical and computer Engineering, North Caroline State University,1-919-513-2014.

[4]. V. S. Pai and S. Adve, “Improving Software Prefetching with Transformations to IncreaseMemory Parallelism,”Tech. Rep.

9910, Department of Electrical and Computer Engineering, Rice University, November 1999.

International Journal of Enhanced Research in Science Technology & Engineering, ISSN: 2319-7463
Vol. 3 Issue 5, May-2014, pp: (256-264), Impact Factor: 1.252, Available online at: www.erpublications.com

Page | 264

[5]. L. McVoy and C. Staelin, “lmbench: Portable Tools for Performance Analysis,” in Proceedings of the 1996 USENIX

Technical Conference, pp. 279–295, January 1996.

[6]. T. Ramirez, A. Pajuelo, O.J. Santana, and M. Valero. Runahead threads to improve smt performance. HPCA ’08, pages 149–

158, Feb. 2008.

[7]. W. W. L. Fung, I. Sham, G. Yuan, and T. M. Aamodt. Dynamic warp formation and scheduling for efficient GPU control

flow. In MICRO ’07, pages 407–420, Washington, DC, USA, 2007.

[8]. K. C. Yeager, “The MIPS R10000 superscalar microprocessor”, IEEE Micro, 1996.

[9]. www.wikipedia.org

http://www.wikipedia.org/

