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Abstract: A Composite material can be defined as a combination of two or more materials that results in better 

properties than those of the individual components used alone. In contrast to metallic alloys, each material 

retains its separate chemical, physical, and mechanical properties. The two constituents of composites are 

reinforcement and matrix. Stiffness and strength is the basic concept for underlying the mechanics of fiber-

reinforced advanced composite materials. This aspect of composite materials technology is sometimes terms 

micromechanics, because it deals with the relations between macroscopic engineering properties and the 

microscopic distribution of the material's constituents, namely the volume fraction of fiber. I analyze in this 

report laminate composite materials by numerical methods. I write a MATLAB program that assists the user to 

find out the stiffness matrix of a laminate composite. The main objective of the report is to show the advantages 

and use of MATLAB software in composite laminates analysis. The Input parameters are four elastic constants, 

E1, E2, ν12, &G12. By using input parameters I find out the global strain, global stress, local strain & local stress. 

Finally with use of MATLAB program I find the different value of strength ratio for composite laminates. For 

different orientations the FOS must lies from 1.0 to 1.2. In last I obtained the optimum value of angular 

orientation of composite laminates by using MATLAB program. 

 

Keywords: MATLAB, Laminates, Fiber Reinforced Composites, Matrix, Lamina Orientation, Optimization, 

strength ratio. 

 

 

1. Introduction 

 
Laminated Composite materials have characteristics of high modulus/weight and strength/weight ratios, excellent 

fatigue properties, and non-corroding behaviour. These advantages encourage the extensive application of composite 

materials, for example, in sports and aerospace. The understanding of the mechanical behaviour of composite materials 

is essential for their design and application. Although composite materials are often heterogeneous, they are presumed 

homogeneous from the viewpoint of macro mechanics and only the averaged apparent mechanical properties are 

considered[15].For a transversely isotropic composite material, five elastic constants are necessary to describe the linear 

stress-strain relationship. If the geometry of the material could be considered as two-dimensional, four independent 

constants are necessary due to the assumption about the out-of-plane shear modulus or Poisson’s ratio. The most 

common method to determine these constants is static testing. For composite materials, three types of specimens with 

different stacking sequences, i.e., [0], [90], and [±45] are generally fabricated. 

 

1.1. Laminates 

 

When there is a single ply or a lay-up in which all of the layers or plies are stacked in the same orientation, the lay-up is 

called a lamina. When the plies are stacked at various angles, the lay-up is called a laminate. Continuous-fiber 

composites are normally laminated materials  in which the individual layers, plies, or laminae are oriented in directions 

that will enhance the strength in the primary load direction. Unidirectional (0°) laminae are extremely strong and stiff in 

the 0° direction. However, they are very weak in the 90° direction because the load must be carried by the much weaker 

polymeric matrix. While a high-strength fiber can have a tensile strength of 500 ksi (3500 MPa) or more, a typical 

polymeric matrix normally has a tensile strength of only 5 to 10 ksi (35 to 70 MPa). The longitudinal tension and 

compression loads are carried by the fibers, while the matrix distributes the loads between the fibers in tension and 

stabilizes the fibers and prevents them from buckling in compression. The matrix is also the primary load carrier for 

interlaminar shear (i.e., shear between the layers) and transverse (90°) tension.  

 

There can be no doubt that fibers allow us to obtain the maximum tensile strength and stiffness of a material, but there 

are obvious disadvantages of using a material in fiber form. Fibers alone cannot support longitudinal compressive loads 

and their transverse mechanical properties are generally not as good as the corresponding longitudinal properties. So 

they are combined with matrix materials to improve these disadvantages [15 ]. The matrix also serves to protect the 
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fibers from external damage and environmental attack. Transverse reinforcement is generally provided by orienting 

fibers at various angles according to the stress field in the component of interest. Filler particles are also commonly 

used in composites for a variety of reasons, such as weight reduction, cost reduction, flame and smoke suppression, and 

prevention of ultraviolet degradation due to exposure to sunlight. 

 

1.2. Constituent materials for composites: 

 

Composites incorporating glass or other relatively low modulus fibers (less than about 12 X 10
6
 psi) are used in many 

high-volume applications such as automotive vehicles because of their low cost, and are sometimes referred to as 

"basic" composites[ 16]. The so-called "advanced" composites made from graphite, silicon carbide, aramid polymer, 

boron, or other higher modulus fibers are used mainly in more exotic applications such as aerospace structures where 

their higher cost can be justified based on improved performance. 

 

2. Theory Formulation 

 

The basic building block of a composite structure is the lamina. For the purposes of mechanics analysis, however, the 

"unidirection-ally reinforced," or "unidirectional" lamina with an arrangement of parallel, continuous fibers is generally 

used. A composite material is heterogeneous at the constituent material level, with properties changing from point to 

point. For example, the stress-strain relationships at a point are different for a point in the fiber material from how they 

are for a point in the matrix material. The properties of a composite associated with an axis passing through a point in 

the material generally depend on the orientation of the axis.So they are anistropic in behaviour. Each type of composite 

has characteristic material property symmetries that make it possible to simplify the general anisotropic stress-strain 

relationships. In particular, the symmetry possessed by the unidirectional lamina makes it a so-called orthotropic 

material. In the analysis of fiber-reinforced composite materials, the assumption of plane stress is usually used for each 

layer (lamina). This is mainly because fiber reinforced materials are utilized in beams, plates, cylinders, and other 

structural shapes which have at least one characteristic geometric dimension in an order of magnitude less than the other 

two dimensions. 

 

Assumptions[18]:  

 

 The layers are perfectly bonded  

 The material of each layer is linearly elastic and has two planes of material symmetry  

 The strains and displacements are small  

 Deflection is wholly due to bending strains only  

 Plane sections originally perpendicular to the longitudinal plane of the plate remain plane, but not necessarily 

perpendicular to longitudinal plane  

 The transverse shearing strains (stresses) are assumed to be constant along the plate thickness  

 

 
Fig 1: Schematic representation of a composite lamina. 

 

2.1. Hooke’s Law for composite laminates 

 

Figure 1 shows a schematic representation of a composite lamina. The direction along the fiber axis is designated 1 (x 

axis). The direction transverse to the fiber axis but in the plane of the lamina is designated 2 (y axis). The direction 

transverse to both the fiber axis and the plane of the lamina  is designated 3 (z axis). This direction is not shown in the 

figure as it only becomes necessary in three-dimensional cases. 

The 1-2 co-ordinate system can be considered to be local co-ordinates based on the fiber direction. However this system 

is inadequate as fibers can be placed at various angles with respect to each other and the structure. Therefore a new co-

ordinate system needs to be defined that takes into account the angle the fiber makes with its surroundings as shown in 

fig 2. This new system is referred to as global co-ordinates (x-y system) and is related to the local co-ordinates (1-2 

system) by the angle θ. 
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Fig 2: Global co-ordinate system in relation to local co-ordinate system. 

 

A composite material is not isotropic and therefore its stresses and strains cannot be related by the simple Hooke’s Law 

(σ = εE). This law has to be extended to two-dimensions and redefined for the local and global co-ordinate systems 

[Fig: 3.4]. The result is Equations (1) and (2).       

 

 
σ1
σ2
τ12

 = 
Q11 Q12 0
Q21 Q22 0

0 0 Q33
  

∈ 1
∈ 2
γ12

                                      ….(1) 

Where, 

σ1,2 are the normal stresses in directions 1 and 2 . 

τ12 is the shear stress in the 1-2 plane;  

ε1,2 are the normal strains in directions 1 and 2;  

γ12 is the shear strain in the 1-2 plane;  

[Q] is the reduced stiffness matrix;  

 

 

σx
σy
τxy

 = 
Q′11 Q′12 Q′16
Q′21 Q′22 Q′26
Q′16 Q′26 Q′66

  

∈ x
∈ y
γxy

    ….(2) 

Where, 

σx,y are the normal stresses in directions x and y;  

τxy is the shear stress in the x-y plane;  

εx,y are the normal strains in directions x and y;  

γxy is the shear strain in the x-y plane;  

[Q ] is the transformed reduced stiffness matrix. 

 

The elements of Q matrix in equation are dependent on material constants and may be calculated using equation (3). 

 

Q11=
E1

1−ν12ν21
 , Q12=

ν12E2

1−ν12ν21
, Q11=

E2

1−ν12ν21
  ,Q66=G12  …..(3) 

 

where  

E1,2 are Young’s modulus in directions 1 and 2;  

G12 is the shear modulus in the 1-2 plane;  

ν12, are Poisson’s ratios in the 1-2 and 2-1 planes. 

 

The [Q’ ] matrix in Equation (2) may be determined by Equation (4). 

 

[Q’]=[T]
-1

[Q][R][T][R]
-1

     …..(4) 

  

Where 

 [T] is the transformation matrix; 

[R] is the Reuter matrix.  

 

These matrices are given by: 

 

T= 
c2 s2 2sc
s2 c2 −2sc
−sc sc c2 − s2

    R= 
1 0 0
0 1 0
0 0 2

    ….(5) 

 

Here  

c = cosθ and s=sinθ 
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The local stresses and strains in Equation (1) are related to the global stresses and strains in Equation (2) by Equation 

(6). 

 

 

σx
σy
τxy

 = [T]
-1 

σ1
σ2
τ12

 and 
ϵ1
ϵ2

γ12
 =[R][T][R]

-1 

ϵx
ϵy

γxy
              ..…(6) 

 

Equations (1) to (6) are used to determine the stresses and strains for a single composite layer. Since composites are 

multi-layered entities, equations for this case must also be set up. The result is equation (7). 

 

 
N
M

 = 
A B
B D

  ϵ
θ

κ
        …..(7)

 

 

where  

N is the vector of resultant forces;  

M is the vector of resultant moments;  

ϵθ is the vector of the mid-plane strains;  

κ is the vector of mid-plane curvatures.  

 

Vectors ε and κ are related to the global co-ordinates by Equation 7. 

 

εx

εy

γ
xy

=  

εx
0

εy
0

γ
xy
0

 + z  

κx

κy

κxy

      ….(8) 

here z is an arbitrary distance from the mid-plane. 

 

The [A], [B], and [D] matrices in Equation (7) are known as the extensional, coupling, and bending stiffness matrices, 

respectively. The elements of these matrices may be determined from Equations (9) to (11). 

 

Aij =  Qij
     

N

k=0 K

 hk − hk−1    i=1,2,3 & j=1,2,3  ..…(9) 

Bij =
1

2
  Qij

     
N

k=0 K

 hk
2 − hk−1

2     i=1,2,3 & j=1,2,3  ....(10) 

Dij =
1

3
  Qij

     
N

k=0 K

 hk
3 − hk−1

3     i=1,2,3 & j=1,2,3  …(11) 

where n is the number of layers; is the i-th, j-th element of the [Q ] matrix of the k-th layer; hkis the distance of the top 

or bottom of the k-th layer from the mid-plane of the composite. Figure 3 illustrates how to determine the distance hk 

from the mid-plane. 

 

 
 

Fig: 3: Locations of layers in a composite structure[21] 

 

2.2. Tsai-Wu Failure Theory 

 

The Tsai-Wu failure theory is based on a total strain energy failure theory.  The final aspect involved in the design of a 

composite structure is the failure analysis. There are various failure theories; however, the Tsai-Wu failure criterion is 

only one that closely correlates with experimental data. This failure theory is given by Equation (12). In this theory, 

failure is assumed to occur in the lamina if the following condition is satisfied: 
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(F11σ
2
1 + F22σ

2
2 + F66τ12

2
 + F1σ1 + F2σ2 + 2F12σ1σ2)≤ 1       …..(12) 

Where the coefficients F11, F22, F66, F1, F2, and F12 are given by 

 

The parameters for the Tsai-Wu failure criterion are given by Equation (13). 

 

F1=
1

 σ1
T 

ult

−
1

 σ1
C  

ult

 

F2=
1

 σ2
T 

ult

−
1

 σ2
C  

ult

 

F11=
1

 σ1
C  

ult
∗ σ1

T 
ult

        …..(13) 

F22=
1

 σ2
C  

ult
∗ σ2

T 
ult

 

F66=
1

 τ12 ult
2  

F12= −  
1

2  
1

 σ1
C  

ult
∗ σ1

T  
ult

∗ σ2
C  

ult
∗ σ2

T 
ult

 

σ1.2
T are the ultimate tensile stresses in direction 

σ1.2
   C are the ultimate compressive stresses in direction 1 and 2;  

τ12 is the ultimate shear stress in the 1-2 plane. 

 

In order to better facilitate the use of this failure theory, each stress component of Equation (3.14) was multiplied by a 

variable FOS[22]. This variable is referred to as the strength ratio (SR) and combining this in Equation (12) resulted in 

Equation (14). 

 

(F11σ
2
1 + F22σ

2
2 + F66τ12

2
 + F1σ1 + F2σ2 + 2F12σ1σ2)FOS

2
  + (F1σ1 + F2σ2 + F6τ12) FOS ≤ 1.   …….(14) 

 

The purpose of FOS is to directly determine by what ratio the local stresses must be increased or decreased to avoid 

failure. This also directly relates to the applied forces. The criterion for FOS is that it can only be positive. If FOS is 

less than 1, then failure occurs because it means that the loading needs to decrease to avoid failure. A FOS value of 1 

implies that the composite structure is perfectly suited for the applied loading conditions. A value of greater than 1 

means that the structure is more than capable of carrying the applied loading and that the loading may also be increased. 

For example, a FOS value of 1.5 means that the loading may be increased up to 50% without failure occurring.The 

advantage of this theory is that there is interaction between the stress components and the theory does distinguish 

between the tensile and compressive strengths. A major disadvantage of this theory is that it is not simple to use. 

 

3. Modeling 

 

A real structure will consists of multiple laminas bonded through their thickness. Since the thickness of each lamina is 

of order of units in mm and it will take several laminas to resist the loads. The mechanical properties of laminates are 

orthotropic so they can sustain unidirectional load with effectiveness but are weaker in transverse directions .So to 

overcome these problems it is necessary to find out optimum orientation and no of ply, for complex loading and 

stiffness 

 

3.1. Structure of Program: 

 

Initially it was decided that this program should take the applied loading conditions, material properties and material 

limits as inputs. The program was to assume that the number of layers equals the number of input forces, and that the 

fiber angle of each layer equals the direction of each force. It would then perform all the necessary matrix calculations 

as in the Conventional Approach. The global and local stresses and strains would be determined as before and failure 

analysis with the Tsai-Wu criterion may be performed. 

However, the assumptions made above cannot be used in a real situation as it may result in an overdesign of a 

composite structure as in the case of the conventional approach. Hence a program was written that does not make any 

assumptions but rather builds the laminate up one layer at a time. Basically this program varies the fiber angles to 

achieve a composite structure that is perfectly suited to carry the applied loading conditions. The outputs of the program 

are the number of layers and the fiber angle of each layer.  

The program asks the user to input the following: 

 

 material properties 

 material limits 

 loading conditions 
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Fig 4:  Input Parameters of material Properties for Program 

 

 

 
 

Fig 5: Lamina parameter input 

 

The [Q] matrix and the Tsai-Wu parameters can be calculated immediately as these do not vary with fiber angle but 

rather with material properties and limits. The program begins with one layer at an angle of 0° and computes hk, as well 

as the [T], [Q], [A], [B] and [D] matrices. Thereafter the mid-plane strains and curvatures, and, the global and local 

stresses and strains are calculated. The Tsai-Wu failure theory is applied and a value for SR is obtained for each layer. 

 

 
Fig 6: load parameters input for lamina 
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The program then analyzes the FOS values and confirms whether it is in a certain range. The lower limit of this range is 

1 as any value below this would mean failure. The upper limit in this range is 1.2 and this is to avoid overdesigning. If 

the FOS value for each layer is between 1 and 1.2, then the design of the composite structure is complete. On the other 

hand, if the SR value for any of the layers is out of this range, the program varies that particular fiber angle to obtain a 

FOS value between 1 and 1.2. However, due to the angle change all the matrix calculations have to be redone. A new 

FOS value is obtained for each layer and this is compared to the old values. If the new FOS value for a particular layer 

is higher than the old FOS value, then the angle of that layer is changed to the new one. For example, after the initial 

calculation a layer with fiber angle of 30° has a FOS value of 0.8. This is not acceptable and the program changes the 

angle to obtain a better FOS value. Say at 35° the FOS value is 0.9, the program will then change the angle of the 30° 

layer to 35°. If at 35° the FOS value was 0.7, then the program will retain the 30° angle. The program continues to 

change angles and compare old and new FOS values until the FOS value of each layer is between 1 and 1.2, in which 

case the design is completed. However, if this range cannot be achieved, a new layer is added on. The program starts 

from the beginning and recalculates the various matrices. FOS values are obtained and the comparison between new 

and old values resumes. New layers will be added on until the FOS value for each layer is between 1 and 1.2. The 

program then outputs the number of layers and the fiber angle of each layer. The results, namely the number of layers 

and the fiber angles, needed to be verified. Therefore these were used as inputs in the Conventional Approach program. 

The Tsai-Wu failure theory was used and in each case there was no failure. As an example, consider the graphite/epoxy 

composite laminate examined earlier.  

 

 

 

 

 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                 
Figure 7: Flowchart describing the program 

 

4. Results 

 

The program was subjected to several runs. The results, namely the number of layers and the fiber angles, needed to be 

verified. Therefore these were used as inputs in the program. The Tsai-Wu failure theory was used and in each case 

there was no failure.  

 

As an example, consider the Boron Epoxy composite laminate.  

 

Problem: 

 

Consider a 15-mm cube made of Boron-reinforced polymer composite material that is subjected to a tensile force of 

100 kN perpendicular to the fiber direction, directed along the 2-direction. The cube is free to expand or contract. The 

cube is made of 3 laminas of equal thickness and ply angles for each lamina is given as,(0,30,-45). 

The material properties, material limits and loading conditions for this laminate were given in Table 1. 

 

 Select Properties Calculate [Q] and [S] 

Enter Forces Values 

Parameters for Tsai-Wu 

Resultant Values 

Change Orientation 
Add new layer  

Calculate Parameters  

 T, Q,h,z,A,B,D 

 Mid plane strains and curvature  

 Global and local stresses and strains  

Will FOS be 

upgraded 

Use Tsai-Wu Crit. And 

Find FOS 

Use T sai – Wu Failure 

Criterion and Find FOS 

Output Angles 

Is FOS is within 

Acceptable  Range 
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Material Properties Material Limits Forces Moments 

E1 

(GPa) 

E2 

(GPa) 

G12 

(GPa) 
ν12 

(σ1
T
)ult 

(MPa) 

(σ1
C
)ult 

(MPa) 

(σ2
T
)ult 

(MPa) 

(σ2
C
)ult 

(MPa) 

(τ12)ult 

(MPa) 
N M 

181 10.3 7.17 0.28 1500 1500 40 246 68 

1000 

1000 

0 

0 

0 

0 

 

Table 1. Material properties, limits and loading conditions for Boron Epoxy Composite 

 

The values in Table 1 were input into the program. The output of the program is shown in Figure 8. the FOS values are 

all between 1 and 1.2 indicating no failure or overdesign. The fiber angles (   0, 30  ,-45 ) along with the material 

properties, material limits and loading conditions in Table 1 were then input into the program. 

 

 
Fig 8: initial solution for given angles of FOS 

 

 

 
Fig 9: initial solution of stress and strains for lamina 

 

 
Fig 10: Improved values of angles and FOS 
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Fig 11: Final stress and strains 

 

5. Conclusion 

 

A MATLAB script file was generated that uses the conventional approach in the design of composite laminates. The 

inputs are the material properties, material limits, and thickness of each layer as well as the loading conditions. These 

values are then used in the governing equations, based on Hooke’s law for two-dimensional unidirectional laminates, to 

determine the global and local stresses and strains. The local stresses are compared to allowable limits via the Tsai-Wu 

failure theory. The results from this program were compared to manually calculated examples in the various texts and it 

was found that they were comparable. the results shows that the overall stress reduced in the layers  

 

The use of these programs will greatly reduce the design time of composite structures as the numerous computations are 

completed in a fraction of the time that it would take if done manually. The designer merely has to run the program, and 

view the number of layers required and the fiber angle for each layer. The program will also aid in reducing material 

costs. Presently the program is limited to flat unidirectional structures but work is underway to extend it to three 

dimensions. There is no limit on the type of composite material as far as the matrix and fiber reinforcement is 

concerned. 
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