
International Journal of Enhanced Research in Science Technology & Engineering, ISSN: 2319-7463
Vol. 3 Issue 1, January-2014, pp: (186-193), Impact Factor: 1.252, Available online at: www.erpublications.com

Page | 186

Query Progress Indicator for

Open Source Database

Urmila Mane
1
, Prof. L. V. Patil

2
, Dr. S. D. Joshi

3

Department of Information Technology, SKN College of Engineering, Pune, India

Abstract: Nowadays mostly database applications are based on long-running and complex queries. So it will be

helpful for users to have information about progress of query execution. Recently development of percent done

progress indicators has been increased. For this purpose in this paper we propose such progress indicator for

multiple concurrently running queries. The main focus is on providing progress indicator for Postgres database.

Keywords: ACID, BI, DW, GUI, PostgreSQL, RDBMSs, SQL, UNIX.

 Introduction

Any query processing mechanism consists of range of activities while extracting data from database [1]. These

activities include translation of queries in high-level database languages into expressions that can be used at the

physical level of any file system and a variety of query-optimizing transformations along with actual evaluation of

queries. The steps involved in this processing of any query are parsing and translation, optimization, and evaluation [1].

The cost of query evaluation can be measured in terms of a number of different resources such as disk accesses, CPU

time for query execution and in distributed or parallel database system the cost of communication. Out of these the

response time required for query evaluation plan that means the clock time required to execute plan would account for

all these costs and also could be used as a good measure of cost of plan [1].

Figure 1. Query Processing Steps [1]

Progress indicators have been studied in various contexts (typical example is file transfer or file download) but there

exists very limited work on this topic in case of data management context. In day to day life a typical progress indicator

is used to estimate how much of the task has been completed and when the task will finish. In recent years, there has

been increasing interest regarding development of progress indicators for SQL queries. A progress indicator in case of

database queries is used to estimate precisely the value of a function that is related to the progress towards completion

of a running query. For this purpose availability of such indicators can be of great help both to database administrators

and end users [5]. Given the complexity of any query in decision support or data warehousing applications, it is

common for queries to take hours or days to terminate. During such cases, these indicators can greatly aid a user’s

understanding of the progress of a query towards completion and allow the user to plan accordingly for example [5],

terminate the query and/or change the query parameters. Also from the point of view of administrators, unsatisfactory

progress of queries may point to bad plans, poor tuning or inadequate access paths.

Many modern software systems nowadays provide progress indicators for long-running tasks. These progress indicators

aim to make systems more user-friendly by helping the user quickly estimate how much of the task has been completed

International Journal of Enhanced Research in Science Technology & Engineering, ISSN: 2319-7463
Vol. 3 Issue 1, January-2014, pp: (186-193), Impact Factor: 1.252, Available online at: www.erpublications.com

Page | 187

and when the task will finish. But already existing commercial RDBMSs provide progress indicator for long running

queries which were not easy to prove.

Percent-done progress indicators basically used as a technique that graphically shows query execution time that means

total and remaining or degree of completion [5]. Also the progress indicator in proposed technique is based on

PostgerSQL database engine. Currently PostgreSQL doesn’t have SQL query progress indicator for long-running

queries. With the help of user-system interaction (interface) the progress indicator show the progress of SQL queries

through various phases like parsing, analyzing, rewrite, execution. The graphical user interface show all the queries

running on system and their estimated time completion. The execution phase of query is critical phase and also the cost

of query varies depending disk read time, type of join used, distribution or broadcast of table, order in which tables are

joined, statistics information available.

Why use Postgre SQL?

PostgreSQL database is an object-relational open source database system. It is having strong reputation for data

integrity, correctness and reliability. It also has more than 15 years of active development. It is fully ACID compliant

that means it assures all database characteristics such as Atomicity, Consistency, Integrity and Durability. It is

including most SQL: 2008 data types. It has full support for triggers, joins, views, foreign keys, and also for stored

procedures in multiple languages. It also supports storage of sounds, video, pictures, or binary objects. It is having

programming interfaces for Java, .Net, C/C++, Ruby, ODBC, Python, Perl, Tcl.

Though the standard distribution of postgreSQL contains command-line tools for administrating database but it does

not contain any graphical tools. In open-source and commercial alternatives there exist graphical tools for the purpose

of administration and also tools for database design as well as commercial forms design and report generation tools.

But there is no any graphical user interface tool indicating the progress of currently executing query through all its

phases of execution.

The rest of the paper is organized as follows: Section II describes related work regarding the topic. Section III discusses

proposed optimizer-based query progress indicator. Section IV gives experimental evaluation. Section V concludes the

paper. Finally section VI describes future enhancement regarding this topic.

II. Related Work

Following table gives comparative existing work regarding this area of topic.

Table1. Advantages and Disadvantages of Existing Work

Tool Purpose Implementation

Technique

Advantages Disadvantages/Limitations

Toward a

Progress

Indicator

For

Database

Queries

(referred as

WiscPI)

For

implementing

simple but

useful progress

indicator for

large subset of

RDBMSs

queries.

-Collect statistics at

selected points of

query plan.

-Monitor continuously

query execution speed.

-Unit of Work is one

byte processed.

-Gives continuous accurate

estimated query execution

time.

-Monitors progress of

rollback operation.

-From time to time, it

presents latest estimates to

user.

-For long-running aggregate

queries, online aggregation

provides no estimate of the

remaining query execution time.

- Also, no estimate of the

remaining query execution time or

the percentage completed is

provided in dynamic query

optimization, as the refining the

query cost is not continues.

Estimating

Progress of

Execution

For SQL

queries

(referred as

MSRPI)

Estimating

percentage

remaining (or

equivalently

completed) of

query at any

point during its

execution.

-Reporting a

“Progress bar”

for query

execution.

-The GetNext() model

of work (MSRPI

calculates % of

GetNext() calls

finished as an

estimation of current

query progress).

-Progress estimation

based on GetNext

model.

-Unit of Work is one

GetNext() call.

-Such an estimator is

simpler than estimating time

remaining since it is

independent of other queries

(i.e., MSRPI is simpler than

WiscPI in case of

implementation.).

This estimator does not deal with

remaining time while dealing with

percentage remaining or

completed.

Increasing

The

Accuracy

And

Consider

problem of

supporting non-

trivial progress

-Technique to improve

accuracy of estimates.

-Technique to provide

new functionality.

-Progress indicator can

profit from defining

segments at a finer

granularity.

-It is a non-trivial task to make

hybrid method for handling

correlated sub-queries work at a

reasonable overhead.

International Journal of Enhanced Research in Science Technology & Engineering, ISSN: 2319-7463
Vol. 3 Issue 1, January-2014, pp: (186-193), Impact Factor: 1.252, Available online at: www.erpublications.com

Page | 188

Coverage

Of SQL

Progress

Indicators

indicator for a

wider class of

SQL queries

with precise

estimates.

-Simple approach of using

the optimizer’s estimate of

whether segment is CPU or

I/O bound can substantially

increase the accuracy of

progress indicator.

-This approach doesn’t deal with

supporting progress indicator for

SQL queries in ORDBMSs.

-This approach doesn’t investigate

how to support progress indicator

for SQL queries in parallel

DBMSs.

-Fails to prove handling of skew on

different data server nodes.

Multi-

query SQL

Progress

Indicator.

Consider

concurrently

running queries

and even

queries

predicted to

arrive in future

when producing

its estimates.

-The RDBMSs

processes work units

at constant rate C

(work units per

second) that is

independent of

number of running

queries.

-The progress

indicator has perfect

knowledge about

remaining cost Ci of

each running query Qi.

-Queries execute at

speed proportional to

weights associated

with their priorities.

-Extends use of progress

indicator beyond being a

GUI tool.

-Shows how to apply multi-

query progress indicator to

workload management.

-Provides more accurate

estimates than single-query

progress indicator.

-Considers impact queries

have on each other’s

progress and eventual

termination.

In workload management

environment one does not want to

sacrifice resource utilization ratio

in any RDBMS. Queries may incur

substantial I/Os and run for long

time.

GSLPI: a

Cost-based

Query

Progress

Indicator.

Implement

MSRPI and

WiscPI both

progress

indicator in

same RDBMS

and propose

new progress

indicator

without uniform

speed

assumption.

-Decomposition of

execution plan into set

of speed-independent

pipelines.

-Utilization of wall-

clock pipeline cost to

represent cost of

pipeline.

-Estimation of speed

of each future pipeline

based on its wall-clock

pipeline cost.

-They present deeper insight

into query’s execution.

-Due to this it directly

affects prediction accuracy.

-Lays down foundation for

further development of

progress estimation.

-GSLPI doesn’t deal with parallel

database systems regarding some

additional challenges like data

skew, new operators.

-GSLPI doesn’t focus on multiple

concurrently running queries and

also regarding utilization of

information provided by progress

indicator for better workload and

resource management.

 III. Proposed System

A. General Features of Progress Indicators

The proposed system is having the following features To provide enhanced feedback to the user/DBA on how much of

a SQL query execution has been completed i.e. phase of the query and how long it will take for query execution.

 Multiple Query Progress Graph Display: The system is designed to handle and display multiple queries

progress in form of graphs. The graphs can be disguised by the distinct transaction-id and XY-Line color. The

transaction-id is unique local transaction-id given by postgresql for every query.

 Estimated Time for Query Completion: The system gives the estimated time for query completion. The

estimated time is dynamic i.e. it varies depending on the system load, resource etc.

 History of Committed Queries: The system is also featured with query history. It shows both last committed

query and the list of committed queries.

 Dynamic Variation of Y-Axis: The Y axis is the time axis and is dynamic in nature as query completion time for

different queries is different i.e. one query may commit early and other may long time to complete.

 Client-Server Implementation: The system is implemented in 2 tier architecture i.e. client-server .From client

side user can fire the query and GUI of query progress will be at client side. At server side query execution is

done by the database.

B. Model and Implementation

The architecture shown below, describes how the different components of the system interact and there working

collaboratively to achieve the desired functionality of the system. The system mainly consists of user/dba, postgresql

database, and the GUI which shows the progress of the query and all these components interact with each other.

International Journal of Enhanced Research in Science Technology & Engineering, ISSN: 2319-7463
Vol. 3 Issue 1, January-2014, pp: (186-193), Impact Factor: 1.252, Available online at: www.erpublications.com

Page | 189

Figure 2. General Architechture of Proposed system.

.

When user/DBA fires a query then it passes through different phases i.e. parsing, analyze, rewrite, planning, execution

of postgresql and at every phase it gives the feedback to the user/dba through the GUI .The feedback is about how

much percent of query is completed , how long it will take for query to run to its execution. Also the user/DBA can

interact with the GUI during execution by aborting the query in between and the DBA can see at what percentage of the

query it is aborted. Aborting the query in between will not harm the data as the kill signal is sent which cause the

shutdown of query execution i.e. data integrity is maintained. Effect is only reflected into the database when the

execution of the query is complete. GUI also handles the history of committed queries.

1) SQL Query Execution Plan-background

SQL divides a given query plan for each query it receives [1]. The right plan is chosen so as to match the query

structure and the properties of the data. It is absolutely critical for good performance of any system. For this purpose

the system includes a complex planner. This complex planner tries to choose good plans.

The query plan consists of tree of plan nodes. In this tree of plan nodes, the bottom level nodes are table scan nodes.

They return raw rows from a table. There exist different types of scan nodes required for different table access methods

such as sequential scans, index scans, and bitmap index scans. If the given query is requiring aggregation, joining, or

sorting or other operations on the raw rows, then there will be some additional nodes “atop” the scan nodes which are

used to perform these operations. Also there will be usually more than one possible way to do these types of operations,

so different node types can also appear here.

The obtained costs will be measured in arbitrary units. These arbitrary units will be determined by the planner’s cost

parameters. Traditionally, cost is measured in units of disk page fetches that means sequential page cost is always set to

1.0 and then the other cost parameters are set relative to that.

It is necessary to take one thing into account that the cost of an upper-level node always includes the cost of all its child

nodes. It is important to note that the cost only reflects things that the planner is caring about. The cost does not

consider the time which is spent transmitting result rows to the client because this could be an important factor in the

true elapsed time; but the planner ignores it because it cannot change it by altering the query plan. It is assumed that

every correct plan will output the same row set.

Rows output is usually less because it sometimes reflects the estimated selectivity of any WHERE-clause conditions

that are being applied at the node. But rows output is somewhat tricky because it is not the number of rows processed or

scanned by the plan node. Ideally the top-level rows estimate will approximate the number of rows actually updated,

deleted, or returned by the query.

The planner cost and rows output will be used to estimate the query completion time. The cost estimates are expressed

in arbitrary units, but thing to pay attention to is ratios of actual time taken by query and estimated planner cost is

somewhat consistent.

1.1 Feedback Mechanism

As explained in the previous section, the query plan is divided into number of nodes (for large query) and each node

has cost/”rows output”. We will extrapolate planner cost and rows output (and some heuristic, which will be based on

testing of large TPCH queries) of all the nodes in plan to come with rough query completion estimates, when query

start execution.

International Journal of Enhanced Research in Science Technology & Engineering, ISSN: 2319-7463
Vol. 3 Issue 1, January-2014, pp: (186-193), Impact Factor: 1.252, Available online at: www.erpublications.com

Page | 190

As query progresses we will go on refining estimates based on actual time taken by each node (sometimes also called

as snippet). The current execution node estimates will be then taken based on above feedback and planner cost/”rows

output”. Please note we are considering that query is going to take maximum (around 90%) time in execution phase and

very less time in parsing, analyze, rewrite, planning, optimization phase.

1.2 Plan Tree Walker

The structure of a query plan is a tree of plan nodes. We will walk the entire plan tree to come up with rough query

estimates at start and then go on refining the estimates based on above mathematical model. The planner has different

types of nodes based on kind of operation node is going to perform. For example, there are different types of scan

nodes for different table access methods: sequential scans, index scans, and bitmap index scans. If the query requires

joining, aggregation, sorting, or other operations on the raw rows, then there will be additional nodes “atop” the scan

nodes to perform these operations. We will walk the entire query plan tree to get rough total query completion estimate

at start. During query execution, execution engine walks through all the plan nodes sequentially. At each plan node we

will use our feedback model to refine the particular node’s estimate and also total query completion estimates.

2) Algorithm

1. Input: SQL Query

2. Calculate query estimate

2.1 Calculate cost based on plan tree.

 // calculating the total cost of the plan tree by recursively traversing the plan tree

// p = plan tree structure of query

// x = plans rows of node

// y = deciding factor, where to take plan rows input or not

// result is updated in global “final_cost” variable

 if (y==1)

 p->conti = p->plan_rows;

 else

 p->conti = 2;

 final_cost = final_cost + (p->total_cost * p->conti);

 estimate_cost(p->lefttree,x,1);

estimate_cost(p->righttree,x,1);

 2.2 Calculate percentage with respect to cost of tree.

 // Calculate the percentage or contribution with respect to total cost of tree.

 // percentage_so_far: stores the accumulated percentage

 // final_cost: total cost of plan tree. Calculated prior at the end of planning phase.

 // value: cost of the current executing node.

 // Used “90” based on heuristic – considering the fact that execution phase going to eat most of // the time

 percentage_so_far = percentage_so_far + (value * 90) / final_cost;

 return percentage_so_far;

 2.3 Estimate updation based on feedback

 Below calculation will be done by execution engine during each plan node execution.

 // Take feedback into account.

 // final_cost is global variable and its updation will reflect in all the alogorithms

 final_cost = final_cost * actual_time_so_far / total_cost_so_far

 current_cost = current_node_cost * actual_time_so_far / total_cost_so_far

 total_cost_so_far = total_cost_so_far + current_cost

 // call percentage completion function

 percentage_completion (total_cost_so_far);

3. Output: GUI indicating progress of query execution.

International Journal of Enhanced Research in Science Technology & Engineering, ISSN: 2319-7463
Vol. 3 Issue 1, January-2014, pp: (186-193), Impact Factor: 1.252, Available online at: www.erpublications.com

Page | 191

IV. Experimental Evaluation

This section presents experimental results which in turn show the effectiveness of the proposed techniques. We first

describe the experimental setup and then evaluate the performance of progress indicator.

Experimental Setup

We implemented progress indicator in postgreSQL database server 9.0.4. The experiments were run on the machine

with Core 2 Duo(64 bit processor) with memory requirement as minimum 2GB RAM 150 GB of Hard-Disk. The

operating system used in this experimental setup is open Solaris 10 operating system. Also Dtrace tracing tool is used

for dynamically tracing database server. Also J2EE and Java language is used for GUI of system and C language is

used for database coding.

A. Performance of Progress Indicator

1) GUI Design PostgreSQL Query Progress Indicator

Figure 3. GUI Design For Query Progress Indicator

2) XY chart

Figure 4. XY chart

3) Bar chart

Figure 5. Bar chart

International Journal of Enhanced Research in Science Technology & Engineering, ISSN: 2319-7463
Vol. 3 Issue 1, January-2014, pp: (186-193), Impact Factor: 1.252, Available online at: www.erpublications.com

Page | 192

 4) Aborting query

Figure 6. Aborting Query

5) Query history

Figure 7. Query History

V. Conclusion

The SQL progress indicators for long-running queries are nowadays becoming a desirable user-interface tool to monitor

progress of executing query in RDBMSs. But all the previously proposed techniques for supporting the construction of

progress indicators for SQL queries are having very limited functionality and accuracy. In this paper, we have

implemented a technique based on query optimizer’s cost which can be used for the development of query progress

indicator.

VI. Future Enhancement

As we know that today’s world is completely dependent on the internet and online tools. We can enhance our idea and

can make our tool as web portal, so that anyone can use it at any time. We can also send the progress status of the query

through email or the sms to the DBA. So that he can know the progress of the query without running the GUI and

sitting in front of the machine. So like this possibilities are endless.

References

[1]. Avi Silberschatz, Henry F. Korth, S. Sudarshan. (2005). Database System Concept. (5th Edition). [online] Available:

http://www.cse.iitb.ac.in/~sudarsha/db-book/slide-dir/ch1.pdf

[2]. Basit Raza, Abdul Mateen, M M Awais and Muhammad Sher; “Survey on Autonomic Workload Management:

Algorithms,Techniques and Models”; Journal of computing, volume 3,Issue 7,July 2011, ISSN 2151-9617.

[3]. Kristi Morton, Abram Friesen, Magdalena Balazinska, Dan Grossman; “Estimating the Progress of Map Reduce

Pipelines”;ICDE Conference 2010.

http://www.cs.yale.edu/homes/avi
http://www.lehigh.edu/~hfk2/hfk2.html
http://www.cse.iitb.ac.in/~sudarsha
http://www.cse.iitb.ac.in/~sudarsha/db-book/slide-dir/ch1.pdf

International Journal of Enhanced Research in Science Technology & Engineering, ISSN: 2319-7463
Vol. 3 Issue 1, January-2014, pp: (186-193), Impact Factor: 1.252, Available online at: www.erpublications.com

Page | 193

[4]. Elnaz Zafarani, Mohammad_Reza Feizi_Derakhshi, Hasan Asil, Amir Asil; “Presenting a New Method for Optimizing Join

Queries Processing in Heterogeneous Distributed Databases”; 2010 Third International Conference on Knowledge Discovery

and Data Mining.

[5]. Mario Milicevic, Krunoslav Zubrinic, Ivona Zakarija; “Dynamic Approach to the Construction of Progress Indicator for a

Long Running SQL Queries”; international journal of computers issue 4, volume 2, 2008.

[6]. Mario Milicevic, Krunosla V Zubrinic, Ivona Zakarija; “Adaptive Progress Indicator for Long Running SQL Queries”;

Proceedings of the 8th WSEAS International Conference on Applied Computer Science(ACS’08).

[7]. Chaitanya Mishra, Nick Koudas; “A Lightweight Online Framework For Query Progress Indicators”; 2007 IEEE.

[8]. Gang Luo , Jeffrey F. Naughton , and Philip S. Yu;” Multi-query SQL Progress Indicators”; Y. Ioannidis et al. (Eds.): EDBT

2006, LNCS 3896, pp. 921 – 941, 2006, Springer-Verlag Berlin Heidelberg 2006.

[9]. Christian M. Garcia-Arellano, Sam S. Lightstone, Guy M. Lohman, Volker Markl, and Adam J. Storm; “Autonomic Features

of the IBM DB2 Universal Database for Linux, Unix, and Windows”; IEEE Transactions on systems, MAN, And

Cybernetics Part C:Applications And Reviews, Vol.36,No.3, May 2006.

[10]. Gang Luo, Jeffrey F, Naughton, Curt J. Ellmann, Michael W. Watzke; “Increasing the Accuracy and Coverage of SQL

Progress Indicators”; Proceedings of the 21st International Conference on Data Engineering (ICDE 2005).

[11]. S. Chaudhuri, R. Kaushik, and R. Ramamurthy, “When can we trust progress estimators for SQL queries?” in SIGMOD,

2005.

[12]. Suraji Chaudhuri, Vivek Narasayya, Ravishankar Ramamurthy; “Estimating Progress of Execution for SQL Queries”;

SIGMOD 2004, June 13–18, 2004, Paris, France, 2004 ACM.

[13]. Gang Luo , Jeffrey F. Naughton , Curt J. Ellmann , Michael W. Watzke; “Toward a Progress Indicator for Database

Queries”; ACM SIGMOD 2004, June 13–18, 2004, Paris, France,2004 ACM.

[14]. Chaitanya Mishra, Nick Koudas; “A Lightweight Online Framework For Query Progress Indicators”; 2002 ACM.

[15]. Jiexing Li, Rimma V. Nehme , Jeffrey Naughton; “GSLPI: a Cost-based Query Progress Indicator”; 2012 IEEE 28th

International Conference on Data Engineering.

