
 

 

 

 

ENHANCED RESEARCH PUBLICATIONS 

2014           

INTERNATIONAL JOURNAL OF 
ENHANCED RESEARCH IN 

SCIENCE TECHNOLOGY AND 
ENGINEERING (IJERSTE) 

 

Construction of Hexagonal-8-QAM  

Constellation and Code for OFDM 
 

By: Zafar Q. Taha 

V O L .  3 ,  I S S U E  3 ,  M A R C H - 2 0 1 4 ,  I S S N :  2 3 1 9 - 7 4 6 3 ,  I M P A C T  F A C T O R :  1 . 2 5 2 



1

Construction of Hexagonal-8-QAM constellation
and Code for OFDM

Zafar Q. Taha
Department of Electrical Engineering

College of Engineering
Al Imam Muhammad Ibn Saud Islamic University

Riyadh, KSA 11432
Email: zqtaha@imamu.edu.sa

Abstract

A construction of hexagonal shaped 8-point QAM called H8QAM is shown. It is shown that H8QAM constel-
lation outperforms the conventional rectangular constellation and 8-PSK. Further, we construct H8QAM sequences
having low peak-to-mean envelope power ratios (PMEPR) from QPSK Golay sequences. Various upper bounds on
peak envelope powers of these sequences are evaluated.

I. INTRODUCTION

Quadrature amplitude modulation (QAM) is a very popular constellation in the literature [1], [2], [3]. QAM
occurs in many arrangements and the one that is most commonly encountered in literature is square arrangement.
Non square QAMs and their advantages are known for a long time, we mention few of its relevant advantages.
They can be differentially detected with non-coherent techniques which are computationally simpler than coherent
detection [4], [2]. In this article, we focus on Hexagonal-8-QAM (H8QAM) constellation and its application
in orthogonal frequency-division multiplexing (OFDM). H8QAM is choosen among other 8-point constellations
because of its unique construction suited to develop suitable codes for OFDM.

OFDM has become a most favored technique for LTE (long term evolution) standards due to susceptibility to
signal dispersion under multipath conditions. A major drawback of deploying OFDM is the high peak-to-mean
envelope power ratio (PMEPR) of uncoded OFDM signals. High PMEPR leads to spectral growth of the OFDM
signal in the form of intermodulation among subcarriers and out-of-band radiation. Therefore, the transmit amplifier
used must have large linear range and are expensive and power consumption is high leading to short battery life.

Many solution have been proposed to control PMEPR in OFDM [5] and the reference there in. One approach is
designing codes that not only provide error correction but also reduce the PMEPR [6], [7], [8]. It has been known
since the work of Popovic and Boyd [9], [10] that the use of Golay complementary sequences (GCS) [11] as
codewords to control the modulation of carrier signals results in OFDM with PMEPR of at most 2. Davis and Jedwab
[12] made a major theoretical advance, discovering that the large sets of binary length 2m Golay complementary
pairs described in [11] can be obtained from certain second-order cosets of the classical first order Reed-Muller
Code. Special cases of these codes were given in [13], [14], and the underlying theory was developed in [15].
However, the aformentioned codes are defined over the phase-shift keying (PSK) signal constellations. Codes based
on other popular constellations such as square QAM were shown in [16], [17], [18]. Codes constructed from
Golay complementary sequences are employed as pilot sequences by the European Telecommunications Standards
Institute (ETSI) Broadband Radio Access Networks (BRAN) committee. Previously we presented the construction
of such codes for non-square STAR-16-QAM as a scaled set sum of two quadrature phase-shift keying (QPSK)
constellations is given in [4]. Here a sligthly modified construction is presented to obtain H8QAM and it is shown
that such a construction give codes with low PMEPR of 3 (4.77dB).

The rest of the paper is organized as follows: Section 2 shows the construction of H8QAM constellation; Section 3
contains the symbol error rate analysis and comparison with various other 8-point constellations; Section 4 describes
the OFDM system model and defines PMEPR; Section 5 takes up PMEPR for H8QAM sequences using Golay
sequences and conclusion is in Section 6.
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Fig. 1. Hexagonal-8-QAM constellation

II. CONSTRUCTION OF H8QAM

The QPSK constellation set, denoted by Q, can be realized as Q
def= jx where x ∈ Z4 = {0, 1, 2, 3} and

j =
√−1. A unique n-tuple QPSK sequence u = (u0, u1, · · · , un−1) can be associated with a unique sequence

x = (x0, x1, · · · , xn−1), where xi ∈ Z4, 0 ≤ i ≤ n − 1, and ui = jxi . We define Ẑ4 = {0, 2} as a subset of Z4.
Another constellation QPSK set, denoted by Q̂, can be realized as Q̂

def= jyi where y ∈ Ẑ4 = {0, 2}. Definition 1:
Let A and B be the sets of complex numbers. Then the set sum of A and B is defined as

A⊕B
def= {r + w|r ∈ A,w ∈ B}. (1)

Definition 2: Let h be a complex number and A be the set of complex numbers. Then the product of h and A
is defined as

hA
def= {hr|r ∈ A}. (2)

According to these definitions, the H8QAM constellation is constructed as follows:

H def=
1√
5
Q̂⊕ 2√

5
Q (3)

The corresponding constellation is given in Fig. 1. A sequence u = (u0, u1, · · · , un−1) of H8QAM, where
uk ∈ H, k = 0, 1, · · · , n − 1, can be uniquely associated with two sequences x = (x0, x1, · · · , xn−1) and
y = (y0, y1, · · · , yn−1) such that (xk, yk) ∈ Ẑ4 × Z4. Consequently, we can write

uk =
1√
5
jxk +

2√
5
jyk (4)

III. SER OF VARIOUS 8-POINT CONSTELLATIONS

In order to determine the error performance for any QAM, we must specify the signal constellation. There are
many possible configurations for M = 8 in the literature [1], [2]. We shall consider six constellations including
the proposed constellation, H8QAM as in Fig. 1. Let dij represent the Euclidean distance between i-th and j-th
signal point in the constellation, then minimum distance of constellation is defined as dmin = arg mini 6=j |dij |.
All constellations shown in Fig. 1 are constructed such that dmin = 2. Let x + iy denote i-th point, then its power
is calculated as, |Ai|2 = x2 + y2. Assuming that all signal points are equally probable, the average transmitted
signal power is given as:

Pav =
1
M

M∑

i=1

|Ai|2. (5)
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TABLE I
VARIOUS 8-POINT CONSTELLATIONS

The ratio of the average-signal-power to the average-noise-power can be expressed as follows (Eq.(6) in [1]):

ρ =
1

8σ2

M∑

i=1

|Ai|2, (6)

where σ2 is the single-sided power spectral density of the white Gaussian noise. Closed form expressions for symbol
error rate (SER) for the all constellations in Table. I do not exist, therefore to compare we use a union bound of
SER (Eq. (8) in [1]):

Pe =
σ

8
√

π

8∑

i=1

8∑

k=1
i 6=k

exp[−|Ai −Ak|2/(4σ2)]
|Ai −Ak| . (7)

The probability error performance curves obtained by (7) is very close to the exact SER when Pe < 10−2 [1]. The
probability of error depends on minimum distance between pairs of signal points and average transmitter power.
As can be seen from the figure H8QAM constellation outperforms 8-psk, 8-AMPM and square 8 QAM. H8QAM
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performance is outperformed by circle71QAM by a small margin. Out of six constellations given in Table. I of
figures only two constellations can be constructed as a set sum of two QPSK constellations namely H8QAM and
8-AMPM, which is the key to developing low PMEPR codes. Comparing these two, H8QAM certainly has better
error performance.

Now we discuss characteristic that influence constellation design in terms of SNR efficiency. Assuming that all
points are equally likely in a given constellation, the key parameter that determine the SNR efficiency are the
minimum squared distance (d2

min) between its points, and its average power (Pav). We generally wish to maximize
d2

min for a given Pav, or to minimize Pav for a given d2
min. Therefore, defining constellation figure of merit(CFM),

as the ratio [3]:

CFM =
d2

min

Pav
(8)

By keeping dmin constant, in Table. II we give values of CFM for all costellations under consideration. Again,

Constellation Avg. Power CFM
design (Pav) (Λ)
8-psk 6.81 0.585

8-AMPM 6.00 0.667
H8QAM 5.00 0.800
Circle 7,1 4.63 0.860
Square 8 6.00 0.667

Two Squares 6.83 0.585

TABLE II
CFM FOR CONSTELLATIONS

H8QAM has a better CFM of 0.8 than 8-AMPM’s CFM, which is 0.667. Thus, our motivation to select H8QAM
among various 8-point constellations can be summarized as (a) H8QAM can be constructed by set sum of two
QPSK constellations (b) Given (a) is satisfied, better CFM.

IV. OFDM

The basic block diagram of the OFDM system is shown in Fig. 3. Let the number of subcarriers be n for the
OFDM system. Consider a sequence u = (u0, u1, · · · , un−1) of length n consisting of elements of an M-point
constellation. The collection of all Mn distinct sequences forms a code C. The time domain OFDM signal after
undergoing Inverse Fast Fourier Transform (IFFT) operation is given by

Su(t) =
n−1∑

i=0

uie
j2πi∆ft

for 0 ≤ t ≤ T , where ∆f = fi+1 − fi is an integer multiple of time period of OFDM symbol T . The value of
∆f depends on the guard time and the cyclic prefix but we ignore this matter since it has no direct impact on
the current work. This is chosen in order to maintain the orthogonality of subcarriers frequencies. The transmitted
OFDM signal is the real part of the complex signal Su(t). The real part of the transmitted complex envelope for a
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Fig. 3. Block diagram of OFDM system

given codeword u is given by <(Su(t)) and its instantaneous envelope power is equal to
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Pu(t) = |Su(t)|2

=

(
n−1∑

i=0

uie
j2πi∆ft

)(
n−1∑

k=0

u∗ke
−j2πk∆ft

)

=
n−1∑

i=0

n−1∑

k=0

uiu
∗
ke
−j2π(i−k)∆ft. (9)

Thus, the mean power of Su(t) during a symbol period is

1
T

∫

0,T
Pu(t)dt = ||u||2 def=

n−1∑

k=0

|u|2.

We define peak envelope power (PEP) of a sequence or codeword as the maximum instantaneous power of Su(t)
within T denoted by

PEP(u) =
max

0 ≤ t ≤ T Pu(t)

and the PMEPR of a code is
PMEPR(C) =

max
u ∈ C PEP(u)/Pav(C)

where Pav(C) is the mean envelope power of an OFDM signal in one symbol period averaged over all OFDM
signals generated from C.

Pav(C) =
1
T

∑

u∈C
p(u)

∫

0,T
Pu(t)dt

=
1
T

∑

u∈C
p(u)||u||2

where p(u) is the probability of transmitting the codeword u. Since all codewords are assumed equally probable
and for QPSK constellation in which all symbols have unit energy i.e., ||u||2 = n. Therefore we get

Pav(C) = n. (10)

V. PMEPR OF H8QAM

In this section, we find PMEPR of OFDM signal corresponding to H8QAM constellation. The transmitted OFDM
signal corresponding to the sequence u of H8QAM is given by

Su(t) =
n−1∑

i=0

uie
j2πi∆ft

def= Sx,y(t) =
1√
5
Sx(t) +

2√
5
Sy(t), (11)

where

Sx(t)
def=

n−1∑

i=0

jxiej2πi∆ft

and

Sy(t)
def=

n−1∑

i=0

jyiej2πi∆ft

such that (xi, yi) ∈ Ẑ4×Z4. The instantaneous envelope power of the transmitted signal given by (11) is given as

Pu(t)
def= Px,y(t) = |Sx,y(t)|2

= | 1√
5
Sx(t) +

2√
5
Sy(t)|2 (12)
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Consider two complex valued sequences x = (x0, x1, · · · , xn−1) and y = (y0, y1, · · · , yn−1) of length n satisfying

Cx(η) + Cy(η) = (||x||2 + ||y||2)δ(η) (13)

where Cx(η) =
∑

i xix
∗
i+η is the aperiodic autocorrelation of sequence x at delay shift η and δ(η) is the Kronecker

function. Then, x and y are called Golay complementary sequences(GCS) [11]. We say that x is a Golay sequence
(GS) if there exists a sequence y that is complementary to x. Popovic made this important observation [19] and
also reported in [15], [17], [20].

Lemma 1: Let x and y of length n be two sequences form a GCS such that any combination of (xk, yk)wherek =
0, 1, · · · , n− 1 can be used to generate a H8QAM symbol as in (4). Consider the following two summations:

Sx(t) =
n−1∑

k=0

jxke−j2πk∆ft,

Sy(t) =
n−1∑

k=0

jyke−j2πk∆ft.

Then for any t, the following inequality hold:

|Sx(t)| ≤
√

2n, |Sy(t)| ≤
√

2n (14)

The proof of lemma 1 is based on the key property:|Sx(t)|2 + |Sy(t)|2 = 2n.
Consider the generalized form of (12):

Px,y(t) = |Sx,y(t)|2 = | 1√
5
Sx(t) +

2√
5
Sy(t)|2 (15)

For any sequence x ∈ Z4, we define x + 2 = (x0 + 2, x1 + 2, · · · , xn−1 + 2). Accordingly, we have

Sx+2(t) =
n−1∑

k=0

jxkj2e−j2πk∆ft

= −Sx(t) (16)

Based on the results obtained in Lemma 1, we derive a theorem for peak envelope power of Px,y(t). Theorem 1:
If x and y form a GCS, then Px,y(t) ≤ 4n.

Proof: Expanding (15) and using (16), we get

Px,y(t) =
1
5
|Sx(t)|2 +

4
5
|Sy(t)|2 +

2
5
[Sx(t)S∗y(t) + S∗x (t)Sy(t)] (17)

Px,y+2(t) =
1
5
|Sx(t)|2 +

4
5
|Sy(t)|2 − 2

5
[Sx(t)S∗y(t) + S∗x (t)Sy(t)] (18)

Adding (17) and (18), we get

Px,y(t) + Px,y+2(t) = 2
(1
5
|Sx(t)|2 +

4
5
|Sy(t)|2

)
(19)

applying the inequalities of (14) and since Px,y+2(t) ≥ 0, we have

Px,y(t) ≤ 4n. (20)

H8QAM is constructed using (3) and each sequence x and y are statistically independent and contain symbols
from QPSK constellation. All symbols of QPSK constellation have unit energy and are equiprobable. Using (10),
we get Pav(Sx(t)) = n and Pav(Sy(t)) = n. Therefore average power of each OFDM symbol over all codewords
of H, Pav = 1

5Pav(Sx(t)) + 2
5Pav(Sy(t)) = 3n/

√
5 ≈ 1.33n. As a result, when sequences x and y form GCS the

PMEPR of H8QAM is given by Px,y(t)
Pav

≤ 4n
1.33n . Thus, when Golay complementary sequences are used, the PMEPR

of H8QAM is upper-bounded by 3 (4.77dB).
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VI. CONCLUSION

In this article, we present construction of a Hexagonal 8-point constellation whose symbols can be found as a
sum of two QPSK symbols. We compared this constellation various other 8-point constellations in terms of SER
performance and CFM. This kind of constructions helps us develop a code H using GCS that will lead to a PMEPR
upper-bounded by 3 (4.77dB).
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