MANET Routing Protocol using Mobility Model: A Study Ritu¹, Jitender Kumar², Yogesh Kumar³ ¹ Research scholar of Computer science, RIMT, DCRUST University, Haryana ^{2, 3}Department of Computer science, RIMT, DCRUST University, Haryana Abstract: A wireless Ad-Hoc network [7, 8] is a collection of mobile/semi mobile nodes with no pre-established infrastructure forming a temporary network. Each of the nodes has a wireless interface and communicates with each other over either radio or infrared media. Laptop computers and personal digital assistances (PDAs) that communicate directly with each other. Nodes in the Ad-Hoc network are often mobile, but can also consist of stationary nodes, such as access points to the Internet. Semi-mobile nodes can be used to deploy relay points in areas where relay points might be needed temporarily. The mobile nodes can receive and forward packets as a router. Routing is a critical issue in MANET. Therefore focus in this paper is to compare the performance of three routing protocols AODV,DSDV and OLSR for wireless ad hoc networks in a simulated environment using Random Waypoint (RW) Mobility Model, Freeway (FW) Mobility Model, Manhattan Grid (MH) Mobility Model and Reference Point Group (RPGM) Mobility Model against different parameters considering UDP as the transport protocol with CBR as traffic generator for by varying no. of nodes in terms of packet delivery ratio, end to end delay, routing overhead and throughput. Keywords: MANET, IETF, DSDV, OLSR, AODV, DSR, PDA, FSR, GSR, MPR, TC. ## I. INTRODUCTION MANET is a collection of independent mobile nodes that can communicate to each other via radio waves. The mobile nodes can directly communicate to those nodes that are in radio range of each other, whereas others nodes need the help of intermediate nodes to route their packets. These networks are fully distributed, and can work at any place without the aid of any infrastructure. This property makes these networks highly robust. Ad-hoc networks are highly dynamic in nature since they can form and deform quickly, without the need for any infrastructure setup and system administration. They can be deployed anytime and anywhere (indoors and outdoors), be it at battlefields or conference rooms. An Ad-Hoc network uses no centralized administration. This is to ensure that the network will not collapse just because one of the mobile nodes moves out of the transmission range of the others. Nodes should be able to enter/leave the network as they wish. Because of the limited transmitter range of the nodes, multiple hops may be needed to reach other nodes. Ad-Hoc networks are also capable of handling topology changes and malfunctions in nodes. It is fixed through network reconfiguration. For instance if a node leaves the network and causes link breakages delay, both the network will still be operational. Figure 1: Mobile Ad Hoc Network | Communication via wireless means. | |--| | Nodes can perform the roles of both hosts and routers. | | Bandwidth-constrained, variable capacity links. | | Energy-constrained Operation. | | Limited Physical Security. | | Dynamic network topology. | | Frequent routing updates. | The attributes [9] of these networks are summarized as follows: # **Routing in MANET** Mobile Ad-hoc networks are self-organizing and self-configuring multihop wireless networks, where the structure of the network changes dynamically. This is mainly due to the mobility of the nodes. Nodes in these networks utilize the same random access wireless channel, cooperating in an intimate manner to engaging themselves in multihop forwarding. The node in the network not only acts as hosts but also as routers that route data to/from other nodes in network [15]. In mobile ad-hoc networks there is no infrastructure support as is the case with wireless networks, and since a destination node might be out of range of a source node transferring packets; so there is need of a routing procedure. This is always ready to find a path so as to forward the packets appropriately between the source and the destination. Within a cell, a base station can reach all mobile nodes without routing via broadcast in common wireless networks. The properties that are desirable in Ad-Hoc Routing protocols are [13]: - i). Distributed operation: The protocol should be distributed. It should not be dependent on a centralized controlling node. This is the case even for stationary networks. The dissimilarity is that the nodes in an ad-hoc network can enter or leave the network very easily and because of mobility the network can be partitioned. - ii). Loop free: To improve the overall performance, the routing protocol should assurance that the routes supplied are loop free. This avoids any misuse of bandwidth or CPU consumption. - iii). Demand based operation: To minimize the control overhead in the network and thus not misuse the network resources the protocol should be reactive. This means that the protocol should react only when needed and should not periodically broadcast control information. - iv). Unidirectional link support: The radio environment can cause the formation of unidirectional links. Utilization of these links and not only the bi-directional links improves the routing protocol performance. - v). Security: The radio environment is especially vulnerable to impersonation attacks to ensure the wanted behavior of the routing protocol we need some sort of security measures. Authentication and encryption is the way to go and problem here lies within distributing the keys among the nodes in the ad-hoc network. - vi). Power conservation: The nodes in the ad-hoc network can be laptops and thinstandby mode to save the power. It is therefore very important that the routing protocol has support for these sleep modes. - vii). Multiple routes: To reduce the number of reactions to topological changes and congestion multiple routes can be used. If one route becomes invalid, it is possible that another stored route could still be valid and thus saving the routing protocol from initiating another route discovery procedure. - viii). Quality of Service Support: Some sort of Quality of service is necessary to incorporate into the routing protocol. This helps to find what these networks will be used for. It could be for instance real time traffic support. # II. ROUTING PROTOCOLS OF AD HOC NETWORKS Routing is a difficult problem in a MANETs. A lot of solutions have been proposed trying to address a sub-space of the problem domain. Because of complexity and diversity, Internet Engineering Task Force (IETF) has not determined a standard of routing. Figure 2.1 shows the classification of Routing Protocols in MANETs. It is clear from the diagram that we can classify the MANET routing protocols into two major categories [14, 15, 16]. Fig 2. Classification of routing protocol\ - 1. Proactive routing protocol - 2. Reactive routing protocol. # 1. Proactive Routing Protocols Proactive MANET protocols are also called as table-driven protocols and will actively determine the layout of the network. Through a regular exchange of network topology packets between the nodes of the network, at every single node an absolute picture of the network is maintained. There is hence minimal delay in determining the route to be taken. This is especially important for time-critical traffic [16, 17]. When the routing information becomes worthless quickly, there are many short-lived routes that are being determined and not used before they turn invalid. Therefore, another drawback resulting from the increased mobility is the amount of traffic overhead generated when evaluating these unnecessary routes. This is especially altered when the network size increases. The portion of the total control traffic that consists of actual practical data is further decreased. Lastly, if the nodes transmit infrequently, most of the routing information is considered redundant. The nodes, however, continue to expend energy by continually updating these unused entries in their routing tables as mentioned, energy conservation is very important in a MANET system design. Therefore, this excessive expenditure of energy is not desired. Thus, proactive MANET protocols work best in networks that have low node mobility or where the nodes transmit data frequently. Examples of Proactive MANET Protocols include [14]: | Optimized Link State Routing (OLSR) | |---| | Fish-eye State Routing (FSR) | | Destination-Sequenced Distance Vector (DSDV) | | Cluster-head Gateway Switch Routing Protocol (CGSR) | Advantage: route to a destination is always available; there is no initial delay when a route is needed. Disadvantage: high overhead; slow to converge. Destination-Sequenced Distance-Vector Routing (DSDV) Destination-Sequenced Distance-Vector Routing protocol [17, 18] is a table-driven algorithm based on the classical Bellman-Ford routing mechanism. The improvements made to the Bellman-Ford algorithm include freedom from loops in routing tables. Every mobile node in the network maintains a routing table in which all of the possible destinations within the network and the number of hops to each destination are recorded. DSDV tags each route with a sequence number and considers a route r more favorable than r' if r has a greater sequence number or if both have the same sequence number but r has a lower metric (hop count). Each node in the network advertises a monotonically increasing even sequence number for itself. | | New updates are sent as even numbers. | |---|---| | | Broken links are sent as odd numbers (one higher than sent by D). | | П | Information travels fast, and used by all nodes to detect that it is broken | Each of these broadcasts should fit into a standard size NPDU, thereby decreasing the amount of traffic generated. The mobile nodes maintain an additional table where they store the data sent in the incremental routing information packets. New route broadcasts contain the address of the destination, the number of hops to reach the destination, the sequence number of the information received regarding the destination, as well as a new sequence number unique to the broadcast. The route labeled with the most recent sequence number is always used. In the event that two updates have the same sequence number, the route with the smaller metric is used in order to optimize (shorten) the path. Mobiles node also keep track of the settling time of routes, or the weighted average time that routes to a destination will fluctuate before the route with the best metric is received. By delaying the broadcast of a routing update by the length of the settling time, mobiles node can reduce network traffic and optimize routes by eliminating those broadcasts that would occur if a better route were discovered in the very near future. # 2. Reactive Routing Protocols Portable nodes- Notebooks, palmtops or even mobile phones usually compose wireless ad-hoc networks. This portability also brings a significant issue of mobility. This is a key issue in ad-hoc networks. The mobility of the nodes causes the topology of the network to change constantly. Keeping track of this topology is not an easy task, and too many resources may be consumed in signaling. Reactive routing protocols were intended for these types of environments. These are based on the design that there is no point on trying to have an image of the entire network topology, since it will be constantly changing. Instead, whenever a node needs a route to a given target, it initiates a route discovery process on the fly, for discovering out a pathway [15, 16]. The different types of On Demand driven protocols are [14]: - ☐ Ad hoc On Demand Distance Vector (AODV) - ☐ Dynamic Source routing protocol (DSR) - ☐ Temporally ordered routing algorithm (TORA) - Associatively Based routing (ABR) - ☐ Signal Stability-Based Adaptive Routing (SSA) - Location-Aided Routing Protocol (LAR) Advantage: less overhead due to "route-messages". Disadvantage: source must wait until route is discovered # Ad hoc On-demand Distant Vector Routing (AODV) The Ad Hoc On-demand Distance Vector Routing (AODV) protocol [21, 22] is a reactive unicast routing protocol for mobile ad hoc networks. As a reactive routing protocol, AODV only needs to maintain the routing information about the active paths. In AODV, routing information is maintained in routing tables at nodes. Every mobile node keeps a next-hop routing table, which contains the destinations to which it currently has a route. A routing table entry expires if it has not been used or reactivated for a pre-specified expiration time. Moreover, AODV adopts the destination sequence number technique used by DSDV in an on-demand way. In AODV, when a source node wants to send packets to the destination but no route is available, it initiates a route discovery operation. In the route discovery operation, the source broadcasts route request (RREQ) packets (Figure 2.3). A RREQ includes addresses of the source and the destination, the broadcast ID, which is used as its identifier, the last seen sequence number of the destination as well as the source node's sequence number. Sequence numbers are important to ensure loop-free and up-to-date routes. To reduce the flooding overhead, a node discards RREQs that it has seen before and the expanding ring search algorithm is used in route discovery operation. The RREQ starts with a small TTL (Time-To-Live) value. If the destination is not found, the TTL is increased in following RREQs. Figure 3: The Route Request packets flooding in AODV #### III. SIMULATION According to dictionary, Simulation can be defined as — reproduction of essential features of something as an aid to study or training. In simulation, we can construct a mathematical model to reproduce the characteristics of a phenomenon, system, or process often using a computer in order to information or solve problems. ## **Simulation Environment** NS-2 is both compatible for Linux and Window environment. There is a UNIX emulator (such as Cygwin) required to be installed on the Windows system before installing the NS software. We require a hard disk of around 70-80GB to store the simulation files. This was chosen on the fact that simulation of 50-100 nodes run for a simulation time of 900 seconds for DSDV, OLSR and AODV could generate a NAM file of about 200-350 MB and TRACE file of around 400-450 MB. The average time taken for each simulation of 50 nodes is about 20-25 minutes. #### Architecture of NS NS-2 [41, 42, 43, 44] is an event driven network simulator that simulates variety of IP networks. NS was developed for network research and for providing support for network simulation in Ad hoc networks. | Simulators | Simulators Free | Open | Programming | |------------------|-----------------|--------|-------------| | 7 | | Source | Language | | NS-2 | Yes | Yes | C++, TCL | | GloMoSim | Limited | Yes | Parsec | | OPNET
Modeler | No | No | С | **Table 1: Comparison of the three simulators** The NS simulator is a tool that is used to simulate the Ad hoc networks for different loads, topologies and for implementing different protocols. The NS simulator is written in two languages C++ and a script language called OTcl. NS version consists of two major parts: | An OTcl (Object Oriented Tcl) interpreter | |---| | A C++ library | # **Mobility Models** To evaluate the performance of a protocol for an ad-hoc network, it is necessary to test the protocol under realistic conditions, especially including the movement of the mobile nodes. This includes the Random Waypoint (RW) Mobility Model, Reference Point Group Mobility (RPGM) Model, Freeway Mobility (FW) Model and Manhattan Grid (MH) Mobility Model that is used in our work. Mobility models are used in NS2 to generate the node movement scenario and such scenario can be generated by software called Mobility Generator which is based on a frame work called Important (Impact of Mobility Patterns on Routing in Ad-hoc Network, from University of Southern California. These mobility generator tools are used to generate a rich set of mobility scenarios used to evaluate the protocol performance in Mobile Ad Hoc Network. The tools include the Reference Point Group Mobility (RPGM) model, Freeway (FW) Mobility Model and Manhattan Grid (MH) Mobility Model. Different mobility models can be differentiated according to their spatial and temporal dependencies. - > Spatial dependency: It is a measure of how two nodes are dependent in their motion. If two nodes are moving in same direction then they have high spatial dependency. - > Temporal dependency: It is a measure of how current velocity (magnitude and direction) are related to previous velocity. Nodes having same velocity have high temporal dependency # IV. PERFORMANCE METRICS All the parameters that are used in the realistic simulations are set according to the parameters listed in the Table 2. Table 2 SIMULATION PARAMETERS for Random Waypoint Mobility Model | Parameter | Value | |-----------------|--------------------------------------| | Mobility model | Random Way Point | | Terrain Size | 1000 meter x 1000 meter | | Packet Size | 512 bytes | | Traffic Type | CBR | | No. of Sources | 10, 40 | | Packet Rate | 4 packets/second | | Simulation Time | 900 seconds | | No of nodes | 50 | | Pause time | 10 seconds | | Maximum Speed | 10, 20, 30, 40, 50, 60 meters/second | # **Simulation Results and Discussions** This section discusses the simulation results of the comparative investigation of the performance of routing protocols AODV, DSDV and OLSR for Random Way point Mobility Model. To comprehensively measure the performance of a protocol with respect to varying maximum speeds, results are as follows. Table 5.2 (a) Results for CBR Simulations (RWP Model) | Random Waypoint Mobility Model | | | | | | |--------------------------------|-------------|------------|--------------|-----------|--| | Traffic | N/W
Load | | AODV | DSDV | | | | Low | PDF | \checkmark | | | | | | RO | | V | | | | | NRL | 1 | V | | | | | Delay | | V | | | | | PL | $\sqrt{}$ | | | | | | Throughput | | $\sqrt{}$ | | | CBR | | | | | | | | High | PDF | $\sqrt{}$ | | | | | | RO | | $\sqrt{}$ | | | | | NRL | | V | | | | | Delay | $\sqrt{}$ | | | | | | PL | √ | | | | | | Throughput | | $\sqrt{}$ | | ^{*} The symbol "√" represent the best performance. Figure 4: Packet Delivery Fraction vs Speed Speed (m/sec) Figure 5: Routing Overhead vs Speed Figure 6: Normalized Routing Load vs Speed Figure 7: Average E-E Delay vs Speed Figure 8: Packet Loss vs Speed Figure 9: Throughput vs Speed # **Packet Delivery Ratio:** In case of CBR traffic, AODV performs better than DSDV and OLSR in high or low network load at all speed. PDF of all the three routing protocols decreases when speed is increased. DSDV performs better than OLSR in low or high network load as shown in Figure 5.2 (a). AODV deliver almost (90-95%), DSDV deliver almost (70-80%) and OLSR deliver (45-75%) packet when network load is low say 10. The PDF of all the three consider routing protocols is around (25-35%) when network load is high say 40 as shown in Figure 4. ## **Routing Overhead:** Under CBR traffic and for high or low network load routing overhead of DSDV is low as compared to AODV and OLSR as shown in Figure 5. When network load is high say 40, the AODV give poor performance than DSDV and OLSR Normalized Routing Load: In case of CBR traffic, DSDV performs better than AODV and OLSR in all network loads (high or low). AODV gives better result than OLSR when network load is low say 10, but when network load is high say 40, OLSR performs better than AODV as shown in Figure 6. Average End-to-End Delay: In CBR traffic, average delay of DSDV is low as compared to AODV and OLSR under low network load say 10, but when network load is high say 40, AODV give better result than DSDV and OLSR as shown in Figure 7. Packet Loss: Figure 8 shows that in CBR traffic, packet loss is very less for AODV in high or low network load as compared to DSDV and OLSR. DSDV performs better than OLSR in all network load (high or low) at all speed. Packet loss is increase with speed as shown in Figure 8. Throughput: In CBR traffic, DSDV throughput is better than AODV and OLSR for high as well as low network load as shown in Figure 9. Conclusion: From Figure 4 to 9, we concluded that in Random Waypoint Mobility Model with CBR traffic sources, AODV performs better than OLSR and DSDV, but at the cost of higher routing overhead. Routing overhead of DSDV is always less than AODV and OLSR in both type of traffic. DSDV gives better result throughput in CBR traffic. # V. CONCLUSIONS In this research, we have compared three MANET routing protocols, namely, Ad hoc On-Demand Distance Vector (AODV), Destination Sequence Distance Vector (DSDV) and Optimized Link State Routing (OLSR) with respect to packet delivery ratio, routing overhead, normalized routing load, average end-end delay, packet loss and throughput using Random Waypoint (RWP) Mobility Model, Freeway (FW) Mobility Model, Manhattan Grid (MH) Mobility Model and Reference Point Group (RPGM) Mobility Model considering UDP as transport protocols with CBR as traffic generator. The performance comparisons are carried out using various Mobility Models, network load and type of traffic (CBR) with respect to maximum speed. Simulation results indicate that for CBR traffic, AODV (Reactive) routing protocol performed significantly better than DSDV and OLSR (Proactive) routing protocols in all assumed conditions, but at the cost of higher routing overhead cost and real time delivery of packet, whereas throughput and routing overhead is better of DSDV in this type of traffic. Routing overhead of DSDV is always low as compared to AODV and OLSR in both type of traffic (CBR). Throughput of Proactive (DSDV and OLSR) routing protocols is always better than Reactive (AODV) routing protocol. Therefore OLSR and DSDV are well suited for high capacity networks. From this research work, we concluded that among the protocols considered, there is no single one with an overall superior performance. One protocol may be superior in terms of routing overhead while other may be superior in terms of packet delivery ratio, average end-end delay or throughput. The choice of a particular routing protocol will depend on the intended use of the network. Factor considering in this research affecting the performance of MANET protocols are network load and speed. Network load has a profound effect on the performance where speed affects the performance only in some instances. Generally, Proactive routing protocol not perform well in CBR traffic and in high capacity links, where Reactive routing protocol gives better result in CBR traffic and in low capacity network. Finally, whether a routing protocol is proactive or reactive, has profound effects on how the performance of protocols in various scenarios. The simulation results also suggest that all considered MANET routing protocols with Reference Point Group (RPGM) Mobility Model has optimized results for varying network load and type of traffic (CBR) followed by Random Waypoint (RWP) Mobility Model, Manhattan Grid (MH) Mobility Model and Freeway (FW) Mobility Model. #### ACKNOWLEDGMENT I would like to express my sincere appreciation to my thesis supervisor Mr. Jitendra Kumar (Head of Department), Department of CSE, RIMT, Chidana for all his invaluable guidance and encouragement ## REFERENCES - [1]. White paper by Paul Randal on High availability [for page no. 14] - [2]. Inside SQL Server book [for page no 13, 14] - [3]. High Availability with SQL Server 2008[for page no 8, 9] - [4]. Canopy Network Management with MRTG Application Note [for page no 48]. - [5]. IJCSMS.COM. - [6]. Beginning SQL Joes 2 Pros: The SQL Hands-On Guide for Beginners (SQL Exam Prep Series 70-433 Volume 1 of 5) (Sql Design Series) by Rick A Morelan. - [7]. Microsoft SQL Server 2008 Reporting Services by Brian Larson. - [8]. Pro SQL Server Disaster Recovery by James Luetkehoelter. - [9]. Microsoft SQL Server 2008 R2 Unleashed by Ray Rankins, Paul T. Bertucci, Chris Gallelli and Alex T. Silverstein. - [10]. Oracle Data Warehouse Guide: otn.oracle.com. - [11]. Table Compression in Oracle 9i: A Performance Analysis, An Oracle Whitepaper for compression algorithm [for page no.60, 61.62]. - [12]. http://otn.oracle.com/products/bi/pdf/o9ir2_compression_performance_twp.pdf for compression algorithm [on page no.60, 61.62]. - [13]. TPC web site: www.tpc.org. - [14]. Step-by-Step Guide to Log Shipping for SAP Customers using Microsoft SQL Server 2000 By Ramesh Meyyappan[for page no 1, 2,3,6,7]. - [15]. MRTG used for Basic Server Monitoring by T. Brian Granier for page no 50. - [16]. Getting Started with MRTG by OPENXTRA Limited page no 49,48.