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Problem Statement: 

The brain tumors, are the most common and aggressive disease, leading to a very short life expectancy in their 

highest grade.  

However the huge amount of data generated by MRI scan thwarts manual classification of tumor vs non-tumor in a 

particular time. . 

Hence trusted and automatic classification scheme are essential to prevent the death rate of human.  

The automatic brain tumor classification is very challenging task in large spatial and structural variability of 

surrounding region of brain tumor. In this work, automatic brain tumor detection is proposed by using 

Convolutional Neural Networks (CNN) classification. 

Objective: 

   To detect brain tumour using MRI images by CNN. 

 

ABSTRACT 
 

                 

Brain tumor means the aggregation of abnormal cells in some tissues of the brain. Brain tumor can be cancerous or 

noncancerous. The most common types of brain tumors are Glioma, Meningioma and Pituitary tumor. Early 

detection of tumor cells plays a major role in treatment and recovery of patient. Diagnosing a brain tumor usually 

undergoes a very complicated and time consuming process. The MRI images of various patients at various stages 

can be used for the detection of tumors. There are various types of feature extraction and classification methods 

which are used for detection of brain tumor from MRI images. Tumour segmentation is an important step in the 

pipeline in the analysis of this pathology. Manual segmentation is often inconsistent as it varies between observers. 

Automated segmentation has been proposed to combat this issue. We investigate the role of CNNs to segment brain 

tumours by firstly taking an educational look at CNNs and perform a literature search to determine an example 

pipeline for segmentation. Convolutional Neural Network image classification algorithm helps in detecting the 

tumor at early stage with high accuracy. We proposed A Convolutional Neural Network architecture for detection 

of tumor which gives high accuracy. 
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BLOCK DIAGRAM 

 

 
 

MODULE DESCRIPTION: 

MODULE 1:  

INPUT IMAGE 

Here, we are giving the collected dataset as input to the system. 

MODULE 2: 

The aim of pre-processing is an improvement of the image data that suppresses undesired distortions or enhances 

some image features relevant for further processing and analysis task 

 

INPUT IMAGE 

PREPROCESSING  

MODULE 3: 

INPUT IMAGE

PREPROCESSING

SEGMENTATION

CNN TRAINING

OUTPUT IMAGE
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Image segmentation is a method in which a digital image is broken down into various subgroups called Image 

segments which helps in reducing the complexity of the image to make further processing or analysis of the image 

simpler.  

 
MODULE 4: 

When it comes to Machine Learning, Artificial Neural Networks perform really well. Artificial Neural Networks 

are used in various classification task like image, audio, words. 

 
MODULE 5: 

Classification methods aim at identifying the category of a new observation among a set of categories on the basis 

of a labeled training set. Depending on the task, anatomical structure, tissue preparation, and features the 

classification accuracy varies. 

 

https://www.geeksforgeeks.org/implementing-ann-training-process-in-python/
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CODE: 

%%%%%%%%%% BRAIN TUMER CLASSIFICATION %%%%%%%%%%%%%% 

clc; 

clear; 

close all; 

warning off 

 

%%%%% TRAIN THE DATASET IMAGES %%%%% 

matlabroot='C:\Users\SPIRO-36\Desktop\MADLAB'; 

data1 = fullfile (matlabroot,' TRAINING IMAGES'); 

Data=image Datastore (data1,'IncludeSubfolders',true,'LabelSource','foldernames'); 

Validation Path = fullfile (matlabroot,'TESTING IMAGES'); 

imdsValidation = image Datastore (validationPath, ...     

'IncludeSubfolders',true,' LabelSource','foldernames'); 

%% CREATE CONVOLUTIONAL NEURAL NETWORK LAYERS %%%%%% 

%  layers=[imageInputLayer([255 255 3])   

  %     convolution2dLayer(3,8,'Padding','same') 

%     batchNormalizationLayer 

%     reluLayer 

%     maxPooling2dLayer(2,'Stride',2) 

%     convolution2dLayer(3,16,'Padding','same') 

%     batchNormalizationLayer 

%     reluLayer 

%     maxPooling2dLayer(2,'Stride',2) 

%     convolution2dLayer(3,32,'Padding','same') 

%     batchNormalizationLayer 

%     reluLayer 

%     maxPooling2dLayer(2,'Stride',2) 

%     convolution2dLayer(3,64,'Padding','same') 

%     batchNormalizationLayer 

%     reluLayer 

%     maxPooling2dLayer(2,'Stride',2) 

%     convolution2dLayer(3,128,'Padding','same') 

%     batchNormalizationLayer 

%     reluLayer 

%     maxPooling2dLayer(2,'Stride',2)     

% %     convolution2dLayer(3,256,'Padding','same') 

% %     batchNormalizationLayer 

% %     reluLayer 

% %     maxPooling2dLayer(2,'Stride',2) 

%     fullyConnectedLayer(2) 

%     softmaxLayer 

%     classificationLayer]; 

options=trainingOptions('sgdm','MaxEpochs',50,'InitialLearnRate',0.00001,'Shuffle','every-epoch', ...     

%     'ValidationData',imdsValidation, ...         

%     'ValidationFrequency',30,...         

%     'Verbose',false, ...         

%     'Plots','training-progress'); 

%  convnet=trainNetwork(Data,layers,options); 

%  save convnet.mat convnet 

% %%% CLASSIFY VALIDATION IMAGES AND COMPUTE ACCURACY % % % % % 

% YPred = classify(convnet,imdsValidation); 

% YValidation = imdsValidation.Labels; 

% accuracy = sum(YPred == YValidation)/numel(YValidation); 
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INPUT FRAME: 

 

 
 

ADAPTIVE THRESHOLDING: 

 

 
 

REGION BASED SEGMENTATION: 
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WATERSHED SDEGMENTATION: 

 

 
 

FINAL OUTPUT CANCER DETECTED PARTS: 
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EXISTING SYSTEM PROPOSED SYSTEM 

EXISTING METHOD: 

Classical self-supervised networks suffer from 

convergence problems and reduced segmentation 

accuracy due to forceful termination. Qubits or bilevel 

quantum bits often describe quantum neural network 

models. In this article, a novel self-supervised shallow 

learning network model exploiting the sophisticated 

three-level qutrit-inspired quantum information 

system, referred to as quantum fully self-supervised 

neural network (QFS-Net), is presented for automated 

segmentation of brain magnetic resonance (MR) 

images. The QFS-Net model comprises a trinity of a 

layered structure of qutrits interconnected through 

parametric Hadamard gates using an eight-connected 

second order neighborhood-based topology. The 

nonlinear transformation of the qutrit states allows the 

underlying quantum neural network model to encode 

the quantum states, thereby enabling a faster self-

organized counter propagation of these states between 

the layers without supervision. The suggested QFS-

Net model is tailored and extensively validated on the 

Cancer Imaging Archive (TCIA) dataset collected 

from the Nature repository. The experimental results 

are also compared with state-of-the art supervised (U-

Net and URes-Net architectures) and the self-

supervised QIS-Net model and its classical 

counterpart. Results shed promising segmented 

outcomes in detecting tumors in terms of dice 

similarity and accuracy with minimum human 

intervention and computational resources. The 

proposed QFS-Net is also investigated on natural gray-

scale images from the Berkeley segmentation dataset 

and yields promising outcomes in segmentation, 

thereby demonstrating the robustness of the QFS-Net 

model.  

 

PROPOSED METHOD: 

Brain tumor is the collection or mass of abnormal cells 

in the brain or central spine canal. Our brain is 

enclosed by skull which is very rigid. Any growth 

inside such a restricted space can cause many 

problems for human. Brain tumors can be both 

cancerous (malignant) or noncancerous (benign). The 

pressure inside the skull increase when benign or 

malignant tumors grow. This will result in brain 

damage, and it can be life-threatening. A brain tumour 

usually appears in various locations with different 

dimensions and shapes. Brain tumors are categorized 

as primary or secondary. A primary brain tumor 

originates in our brain. Many primary brain tumors are 

benign. A secondary brain tumor, which is also known 

as a metastatic brain tumor, occurs when cancer cells 

spread to our brain from another organ, such as lung or 

breast. Early detection of tumor cells can save large 

number of human lives. Detecting the brain tumor and 

its stage undergoes a very complicating and time 

consuming process. The patient refers to MRI when 

some symptoms related to tumours have appeared. 

After examining the brain images, if tumor existence 

is suspected, the patient’s brain biopsy comes into 

action. Biopsy is an invasive procedure and in some 

cases it may even take up to a month for a definite 

answer. 

EXISTING TECHNIQUE : 

 QUANTUM SELF SUPERVISED 

NETWORK 

PROPOSED ALGORITHM: 

 CNN 

TECHNIQUE DEFINITION: 

This work focuses on a novel quantum fully self-

supervised neural network (QFS-Net) characterized by 

qutrits for fast and accurate segmentation of brain 

lesions. The primary aim of the suggested work is to 

enable the QFS-Net for faster convergence and 

making it suitable for fully automated brain lesion 

segmentation obviating any kind of training or 

supervision. The proposed QFS-Net model relies on 

qutrits or three-level quantum states to exploit the 

features of quantum correlation. To eliminate the 

complex quantum backpropagation algorithms used in 

the supervised QINN models, the QFS-Net resorts to a 

novel fully self-supervised qutrit-based counter 

propagation algorithm.  

 

ALGORITHMDEFINITION: 

The Convolutional Neural Networks (CNN) is one of 

the most famous deep learning algorithms and the 

most commonly used in image classification 

applications. In general, the CNN architecture contains 

three types of layers, which are convolutional layers, 

pooling layers, and fully connected layers. The CNN 

algorithm receives an input image that passes through 

the layers to identify features and recognize the image, 

and then it produces the classification result. The 

architecture of the CNN contains alternating 

convolutional layers and pooling layers, followed by a 

set of fully connected layers. The output of each layer 

in the CNN is the input of the following layer. The 

input of the CNN is image (width × height × depth), 

the width and the height are the dimensions of the 

images. 
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DRAWBACK: 

 This process comes under normal machine 

learning techniques. 

 Here UNET and RseNet50 are used. 

 

Advantage: 

 The CNN also reduces the normal machine 

learning process like feature extraction and 

classification. 

 That is CNN= (feature extraction+ 

classification).  

 This process comes under deep learning. 

 Here a brain tumor stage of classification is 

done leads to advanced development when 

compared to existing technique. 

 

APPLICATION: 

 To support early detection, diagnosis and optimal treatment. 

 Image segmentation plays an essential role in many medical applications. 

 Low SNR conditions and various artifacts makes its automation challenging.  

 To achieve robust and accurate segmentation. 

 

HARDWARE REQUIREMENTS: 

 Processor :  Pentium Dual Core 2.00GHZ 

 Hard Disk :  500 GB 

 RAM  :  4GB (minimum) 

 Keyboard :  110 keys enhanced 

 

SOFTWARE REQUIREMENTS: 

 MATLAB 8.6 Version R2018a 

 

ADVANTAGES: 
Here the segmentation process is more accurately done.  

Because of segmentation of MRI images leads to give an accurate classification. 

This process comes under deep learning convolutional neural network 

 

FUTURE ENHANCEMENT 

            

[1]. In future, with more time and with more comprehensive research the proposed system can be made more 

accurate. Also new brain tumour disease detection algorithms can be added so as to give the doctor a wider 

variety of options to choose from. 
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