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ABSTRACT 
 

This project focuses on the development of an Android-based real-time object detection and pose estimation 

application using YOLOv8. The model is trained using Google Colab and converted to the ONNX format for 

seamless integration with Android. The application leverages CameraX for efficient camera access and live image 

analysis, while the detection pipeline utilizes YOLOv8 models for identifying objects and estimating human poses. 

Implemented in Kotlin and built with Jetpack libraries, the app demonstrates real-time performance and 

responsiveness. This project highlights the deployment of advanced deep learning models on mobile platforms with 

optimal performance using lightweight model conversion techniques and modern Android APIs. 

 

Keywords: YOLOv8, Object Detection, Pose Estimation, Android, CameraX, ONNX, Kotlin, Jetpack Libraries, 

Google Colab, Real-time Detection. 

 

 

 

INTRODUCTION 

 

In recent years, real-time object detection and human pose estimation have gained immense popularity due to their vast 

applications in areas such as augmented reality, fitness tracking, surveillance, and interactive gaming. The You Only Look 

Once (YOLO) algorithm has stood out for its speed and accuracy in object detection tasks. YOLOv8, the latest iteration, 

offers enhanced performance and supports both object detection and pose estimation in a unified framework. 

 

This project leverages the capabilities of YOLOv8 to develop a mobile Android application that performs real-time object 

detection and human pose estimation using the device’s camera. Built with Kotlin and Android’s Jetpack libraries, the 

application integrates CameraX for camera management and renders live inference through ONNX models optimized for 

mobile devices. The YOLOv8 model is trained and converted using Google Colab to ensure compatibility and performance 

on mobile platforms. 

 

By combining deep learning with mobile development, this project demonstrates how cutting-edge AI models can be 

deployed efficiently on Android devices, providing a practical solution that is both fast and accurate for real-time use cases. 

 

Process Overview 

The development of the Object Detection Android application involved a systematic process, divided into several key 

stages: 

 

a. Problem Definition & Objective 
The primary objective was to create a mobile application capable of detecting multiple objects in real-time using the 

device's camera. 

 

Additional features like pose estimation were included to enhance the utility for use cases like surveillance and fitness 

monitoring. 

 

b. Research and Dataset Collection 
Studied popular object detection algorithms like YOLO, SSD, and Faster R-CNN. 

 

Chose pre-trained models trained on large-scale datasets like COCO (Common Objects in Context) for better accuracy and 

performance. 
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c. Model Selection and Optimization 
Selected YOLOv5 (or YOLOv4-tiny) due to its balance of speed and accuracy, optimized for mobile environments. 

 

The model was converted to TensorFlow Lite (TFLite) format to ensure smooth operation on Android devices. 

 

d. Android App Development 
The app was developed using Android Studio with Java/Kotlin. 

 

Integrated TensorFlow Lite Interpreter for on-device model inference. 

Implemented real-time camera stream processing using CameraX API for efficient frame capturing. 

 

e. Testing and Evaluation 
The app was tested on multiple Android devices to evaluate performance, speed, and accuracy. 

 

Ensured real-time detection with minimal latency and high accuracy for commonly detected objects and human poses. 

 

f. Deployment and Documentation 
Final build was deployed on Android devices. 

 

Complete documentation including project report, user guide, and future scope was prepared. 

 

METHODOLOGY 

 

This section describes the overall process of the real-time object detection application, the system architecture, and the 

technologies used at each step to ensure efficient and accurate object detection on Android devices. 

 

1 System Overview 
The proposed system is a mobile application capable of detecting and identifying multiple objects in real-time using the 

device’s camera. The application is built using Android Studio with Kotlin/Java as the base language and leverages 

CameraX API for real-time video input. For object detection, a pre-trained YOLOv5/YOLOv4-tiny model, converted to 

TensorFlow Lite, is integrated for on-device inference. 

 

2 Working Mechanism 

2.1 Initialization 

Upon launching the application, the Android CameraX API initializes the camera and starts capturing live video frames. 

These frames are displayed in real time on the mobile screen. The system ensures permission handling and device 

compatibility for accessing camera resources. 

 

2.2 Frame Acquisition 
Each video frame is continuously passed from the CameraX preview stream to a background thread for processing. The 

frames are resized and preprocessed to match the input size expected by the YOLO model (e.g., 416×416 pixels). 

 

2.3 Model Inference 
The resized frame is input into the TFLite model, which performs: 

Feature extraction 

Bounding box prediction 

Class label assignment 

The model returns a list of bounding boxes, confidence scores, and class indices for each detected object. 

 

2.4 Post-Processing 
The output of the model is parsed using a Non-Maximum Suppression (NMS) algorithm to remove duplicate or 

overlapping boxes and retain the most confident predictions. The system then maps the indices to their respective class 

names (e.g., person, car, bicycle) using a predefined label map. 

 

2.5 Displaying Results 
The bounding boxes and corresponding labels are drawn on the preview stream using Android’s Canvas API or 

OverlayView. The real-time results are updated frame-by-frame, providing an interactive and intuitive detection 

experience. 
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Code :  

import cv2 

thres = 0.5 # Threshold to detect object 

 

cap = cv2.VideoCapture(0) 

cap.set(3,648) 

cap.set(4,448) 

cap.set(10,70) 

 

classNames = [] 

classFile = 'coco.names' 

with open(classFile,'rt') as f: 

    classNames = f.read().rstrip('\n').split('\n') 

 

configPath = 'ssd_mobilenet_v3_large_coco_2020_01_14.pbtxt' 

weightsPath = 'frozen_inference_graph.pb' 

net = cv2.dnn_DetectionModel(weightsPath,configPath) 

net.setInputSize(320,320) 

net.setInputScale(1.0/ 127.5) 

net.setInputMean((127.5, 127.5, 127.5)) 

net.setInputSwapRB(True) 

 

while True: 

    success,img = cap.read() 

    #cv2.imshow(img) 

    classIds, confs, bbox = net.detect(img,confThreshold=thres) 

    print(classIds,bbox) 

 

    if len(classIds) != 0: 

        for classId, confidence,box in zip(classIds.flatten(),confs.flatten(),bbox): 

            cv2.rectangle(img,box,color=(0,255,0),thickness=2) 

            cv2.putText(img,classNames[classId-1].upper(),(box[0]+10,box[1]+30), 

                        cv2.FONT_HERSHEY_COMPLEX,1,(0,255,0),2) 

            cv2.putText(img,str(round(confidence*100,2)),(box[0]+200,box[1]+30), 

                        cv2.FONT_HERSHEY_COMPLEX,1,(0,255,0),2) 

 

    cv2.imshow("Output",img) 

    #cv2.waitKey(1) 

    if cv2.waitKey(1) & 0xFF == ord('q'): 

        break 

 

 

Impact 
The implementation of this project demonstrates the feasibility and effectiveness of running deep learning models on 

resource-constrained mobile devices. The impact is outlined as follows: 

 

Real-Time Performance: Achieves object detection in milliseconds per frame, allowing seamless user interaction. 

On-Device Inference: Eliminates the need for a cloud backend, reducing latency and preserving user privacy. 

Educational Utility: Serves as a practical demonstration of deploying machine learning models on edge devices. 

Scalability: The modular design enables easy integration with other applications such as smart surveillance, AR, and 

accessibility tools. 
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