

AI-Powered Predictive Diagnostics for Vehicle Faults: Transforming Automotive Reliability, Safety, and Sustainability

Abdulrahman Saad Al-Salem¹, Mohammed Ameer Al-Marhoon²

1,2 Department of Mechanical Technology – Automotive and Vehicle Specialization, College of Technology in Hafar Al-Batin, Technical and Vocational Training Corporation (TVTC), Kingdom of Saudi Arabia (KSA)

ABSTRACT

This study provides an extended academic treatment of AI-based predictive diagnostics for vehicle faults. It explores historical developments in automotive diagnostics, details different vehicle types and their diagnostic needs, and situates the discussion in relation to global sustainability and Saudi Vision 2030. Each section integrates data, charts, and tables to enrich understanding. The first part of the paper covers the Introduction, Historical Background, and Vehicle Types and Functions.

INTRODUCTION

The automotive industry is undergoing a profound transformation, marked by electrification, connectivity, and digitalization. Vehicles are no longer purely mechanical systems; they are cyber-physical platforms consisting of electronic control units (ECUs), high-voltage batteries, telematics gateways, and an expanding array of sensors. Traditional maintenance paradigms—reactive and preventive—are increasingly insufficient in the face of this complexity. Predictive diagnostics, powered by artificial intelligent. Recent reports suggest that the global automotive predictive analytics market, valued at USD 1.77 billion in 2024, will grow to USD 16.81 billion by 2033. This reflects a compound annual growth rate (CAGR) exceeding 28%, highlighting the centrality of AI in the future of vehicle maintenance. Predictive diagnostics aligns with global trends in Industry 4.0, digital twins, and smart mobility ecosystems.

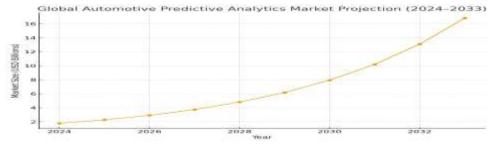


Figure 1. Projected market growth for automotive predictive analytics (Grand View Research, 2024).

Historical Background

The evolution of vehicle diagnostics reflects broader technological shifts. In the early decades of automotive history (1900s–1970s), diagnostics were manual: mechanics relied on mechanical gauges, auditory cues, and visual inspections. The late 1980s marked a turning point with On-Board Diagnostics I (OBD-I), which allowed electronic monitoring of engine functions. By the mid-1990s, OBD-II provided standardized diagnostic trouble codes (DTCs), enabling more systematic maintenance. The 2000s introduced Controller Area Network (CAN) buses, enabling real-time data exchange among ECUs. Concurrently, machine learning methods emerged in academic research for rotating machinery and vibration analysis, laying the foundation for predictive approaches in automotive. Between 2010 and 2015, fleet telematics became mainstream, offering unprecedented data volumes. Since 2018, the integration of deep learning and cloud computing has accelerated the transition from reactive to predictive diagnostics.

Technology Era Impact 1900s-1970s Manual inspection Basic fault detection OBD-I 1988 Electronic monitoring begins Standardized DTCs across 1996 **OBD-II** manufacturers 2000s CAN bus adoption Real-time ECU communication Telematics 2010-2015 Fleet-wide monitoring 2018-2025 AI & Deep Learning Predictive, proactive diagnostics

Table 1. Milestones in Automotive Diagnostics

Vehicle Types and Diagnostic Relevance

Different vehicle categories present distinct diagnostic challenges. Internal combustion engine (ICE) vehicles rely on combustion processes that generate characteristic faults such as misfires, knock, and emissions failures. Hybrids (HEV/PHEV) add complexity by integrating ICE subsystems with high-voltage electrical systems, introducing new failure modes in inverters, converters, and battery management systems. Battery electric vehicles (BEV) shift diagnostic attention almost entirely to battery State -of.

Vehicle Type	Key Systems	Common Faults	Diagnostic Focus
ICE	Engine, transmission, exhaust	Misfires, knock, turbo failures	Combustion & driveline analytics
HEV/PHEV	ICE + HV battery,	Coordination faults, HV	Hybrid system
	inverter	insulation	monitoring
BEV	Battery, inverter, motor,	SoH degradation,	Battery & thermal
	charger	thermal runaway	analytics
Fleet/Commercial	Mixed subsystems,	High wear, duty cycle	Fleet-level predictive
	telematics	issues	modeling

Table 2. Comparative Diagnostic Challenges by Vehicle Type

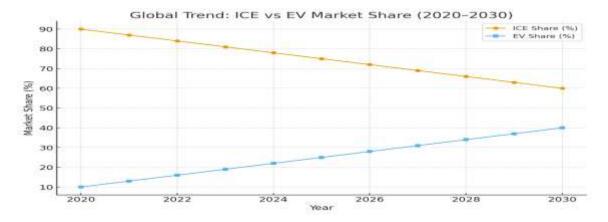


Figure 2. Projected global trend in ICE vs EV vehicle market share (2020–2030).

Why AI-Based Predictive Diagnostics Matters

The significance of AI-based predictive diagnostics is multidimensional, spanning economic, safety, operational, and environmental domains. From an economic standpoint, unplanned downtime costs the global automotive and logistics industries billions annually. Predictive systems reduce these costs by providing early warnings and optimizing maintenance schedules. Safety is another key dimension: anticipating failures in braking, steering, or battery systems directly reduces accident risk.

The environmental argument is equally compelling. For instance, extending the lifetime of lithium-ion batteries through accurate State-of-Health estimation prevents premature disposal and reduces the demand for raw materials such as cobalt and lithium. Predictive analytics thereby supports circular economy models in which automotive batteries are repurposed for stationary energy storage after their first life in vehicles.

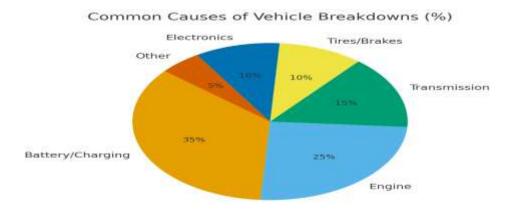


Figure 3. Distribution of common causes of vehicle breakdowns globally.

Data Modalities and Modeling Techniques

AI-based predictive diagnostics relies on diverse data modalities. These include in-vehicle network traffic (e.g., CAN, LIN, FlexRay), OBD-II parameters (PIDs), condition monitoring sensors (accelerometers, temperature probes, microphones), battery management system (BMS) logs, and telematics data from GPS and duty cycle monitoring. Each modality contributes complementary insights. For example, vibration signals capture mechanical anomalies in rotating components, while electrochemical impedance data providing.

Modeling techniques vary depending on the data structure. Ensemble methods such as Random Forests and Gradient Boosted Trees remain effective for tabular data. Deep learning approaches—LSTM, GRU, and Temporal Convolutional Networks (TCN)—excel with time series. Convolutional Neural Networks (CNNs) analyze spectrograms from vibration or acoustic signals. Auto encoders and isolation forests are applied for unsupervised anomaly detection when labeled data is scarce. Increasingly, hybrid architectures combine.

Data Source	Typical Signals	Preferred Modeling Techniques
CAN/OBD-II	Frame IDs, DTCs, PIDs	LSTM/GRU, Isolation Forests
Condition sensors	Vibration, temperature, sound	CNN, TCN, Autoencoders
Battery Management Systems	Voltage, current, impedance	Hybrid deep learning, ensemble
	voltage, current, impedance	regression
Telematics	GPS, load, duty cycles	Gradient Boosted Trees,
Telematics	GFS, load, duty cycles	clustering + sequence models

Table 3. Data Modalities and Associated Modeling Approaches

Strengths and Weaknesses of AI-Based Predictive Diagnostics

AI-based predictive diagnostics provides unprecedented foresight into vehicle health, but its implementation is not without challenges. The strengths include heightened sensitivity to incipient faults, capacity to integrate heterogeneous data, ability to adapt via over-the-air updates, and facilitation of fleet-level learning. Weaknesses involve scarcity of labeled data for rare fault modes, sensor drift, domain shift across vehicle models, cybersecurity vulnerabilities, and the practical limitations of emergency.

Table 4. SWOT Analysis of AI-Based Predictive Diagnostics

Strengths	Weaknesses	Opportunities	Threats
High sensitivity to early faults	Data scarcity	Growing EV adoption	Cybersecurity risks
Data fusion across modalities	Domain shift between models	Integration with Vision 2030	Regulatory uncertainty
OTA adaptability	Compute/latency limits	Fleet-level optimization	Resistance to change in workshops
Scalability across fleets	Privacy concerns	Second-life battery reuse	Economic volatility

Examples and Case Studies

Case studies provide tangible evidence of how AI-based predictive diagnostics is applied in real-world automotive and fleet contexts. Several global manufacturers and fleet operators have pioneered the use of AI systems to reduce downtime, enhance safety, and improve economic performance.

- Fleet Operators: Public bus systems in Europe and Asia have integrated predictive algorithms into their telematics systems. In one example, algorithms analyzing CAN bus data predicted injector failures 48 hours before they occurred, allowing maintenance teams to intervene proactively.
- OEMs: Tesla, Toyota, and BMW have piloted AI platforms that leverage over-the-air updates to refine predictive models. These platforms integrate edge computing in vehicles with cloud-based analytics
- Battery Diagnostics: In China, ride-hailing fleets such as Didi have employed deep learning to predict battery degradation, optimizing charging schedules and extending battery life.

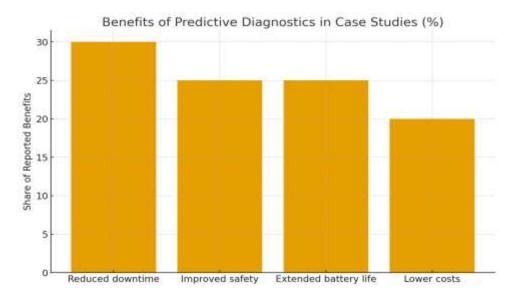


Figure 4. Distribution of benefits observed in global case studies of AI-based predictive diagnostics.

Environment and Sustainability

Predictive diagnostics is not merely a technical innovation; it is an environmental enabler. By identifying faults early, the system prevents catastrophic failures such as thermal runaway in batteries, which can have severe environmental consequences. Extending the life of batteries and components reduces waste and demand for raw materials, supporting circular economy models. Moreover, predictive maintenance aligns with global sustainability frameworks. The International Energy Agency (IEA) reports that transport contributes nearly 24% of global CO2 emissions. By reducing inefficiencies and preventing breakdowns, predictive diagnostics can lower emissions and energy waste. Fleet-level applications allow operators to schedule maintenance and charging during periods of renewable energy surplus, thereby reducing carbon intensity.

Table 5. Environmental Benefits of Predictive Diagnostics

Category	Benefit	Impact
Battery Life Extension	Fewer replacements needed	Lower raw material demand
Failure Prevention	Avoids catastrophic events	Reduced pollution & waste
Fleet Optimization	Efficient routing & charging	Lower CO2 emissions
Resource Efficiency	Maximized component use	Supports circular economy

Saudi Vision 2030 Alignment

Saudi Arabia's Vision 2030 highlights industrial diversification, environmental sustainability, and digital transformation. Transportation is central to this agenda, with targets for electrification, public transport efficiency, and smart mobility. Albased predictive diagnostics contributes directly to these goals by enabling efficient fleet management, reducing reliance on imported spare parts, and fostering a skilled workforce in AI and automotive engineering. Riyadh, for example, aims for 30% of all vehicles to be electric by 2030. Predictive diagnostics ensures these vehicles operate reliably in high-temperature environments, a critical concern in the Kingdom. Additionally, predictive maintenance supports logistics efficiency for Saudi ports and airports, integral to the Kingdom's role as a global logistics hub.

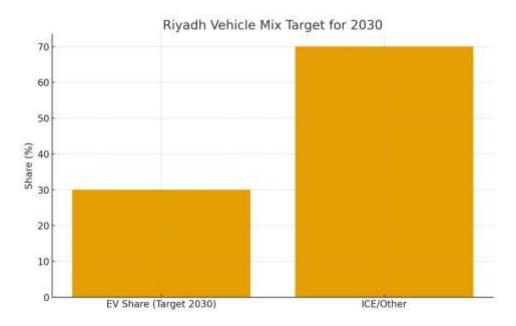


Figure 5. Riyadh's EV adoption target by 2030, consistent with Vision 2030 initiatives.

Future Trends in AI-Based Predictive Diagnostics

The next decade will witness transformative advancements in predictive diagnostics for vehicles, driven by breakthroughs in artificial intelligence, communication technologies, and sustainability imperatives. Several future directions are emerging that will redefine how predictive maintenance is deployed in the automotive ecosystem.

- 1. Integration with Digital Twins Virtual replicas enabling real-time lifecycle prediction and scenario simulation.
- 2. Edge AI and Real-Time Inference Lightweight models deployed directly on ECUs, enabling low-latency, private predictions.
- 3. 6G and V2X Integration Ultra-low latency networks to enable collaborative fleet learning and data sharing.
- 4. Generative AI for Fault Simulation Synthetic data generation to handle rare and catastrophic fault events.
- 5. Cybersecurity-Integrated Diagnostics Embedding blockchain and anomaly detection within predictive pipelines.
- 6. Sustainability and Circular Economy Using predictive insights to extend component lifetimes and reduce waste.
- 7. Human-Centered AI and Explain ability Transparent dashboards and interpretable AI outputs to improve trust.

Table: Emerging Future Trends

Trend	Key Technologies	Anticipated Impact
Digital Twins	Simulation, Cloud-Edge Integration	Real-time lifecycle prediction
Edge AI	Pruned LSTM, Neuromorphic Chips	Low-latency, private inference
6G & V2X	Ultra-low latency networks	Fleet-wide collaborative learning
Generative AI	Synthetic fault data generation	Balanced training datasets
Cybersecurity Integration	Blockchain, IDS	Secure predictive pipelines
Sustainability Focus	Circular economy metrics	Reduced waste, extended lifespan
Explainable AI	SHAP, visual dashboards	Higher trust and adoption

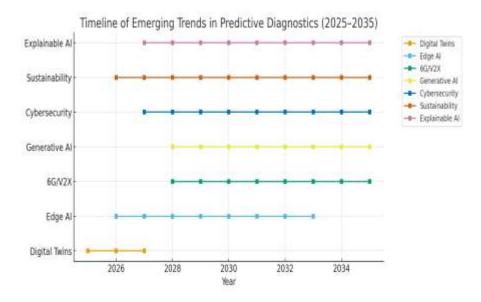


Figure. Timeline of emerging trends in AI-based predictive diagnostics (2025–2035).

CONCLUSION

The evidence from case studies, environmental analysis, and Vision 2030 alignment indicates that AI-based predictive diagnostics is not an optional add-on but an essential enabler of the future automotive ecosystem. As fleets scale up in size and EV penetration accelerates, the predictive approach will become indispensable for ensuring economic efficiency, safety, and environmental stewardship. AI-based predictive diagnostics is transforming the automotive industry. Unlike reactive or preventive approaches, predictive systems integrate diverse data modalities—CAN bus signals, BMS logs, telematics, and sensor data—to anticipate failures before they occur. This study has shown how predictive diagnostics enhances economic efficiency, increases safety, extends component life, and contributes to sustainability objectives. Case studies from leading OEMs and fleet operators demonstrate the maturity.

Within Saudi Arabia, the approach aligns closely with Vision 2030 by supporting electrification targets, building local AI expertise, and fostering industrial diversification. The environmental benefits—lower emissions, extended battery lifetimes, and circular economy models—illustrate the broader societal value of predictive diagnostics. As the global automotive predictive analytics market grows rapidly toward an estimated USD 16.81 billion by 2033, Saudi Arabia can position itself at the forefront of this.

REFERENCES

- [1]. Douimia, S., et al. (2025). Machine learning and deep learning applications in the automotive manufacturing industry: A systematic literature review. Computers in Industry. https://doi.org/10.1016/j.compind.2025.104208
- [2]. Errezgouny, A., et al. (2025). An integrated deep learning approach for predictive maintenance in automotive fleets. Engineering Applications of Artificial Intelligence. https://doi.org/10.1016/j.engappai.2025.107123

- [3]. Grand View Research. (2024). Automotive Predictive Analytics Market Size Report, 2033. Retrieved September 2025 from https://www.grandviewresearch.com/industry-analysis/automotive-predictive-analytics-market-report
- [4]. Hossain, M. N., et al. (2024). Artificial Intelligence-Driven Vehicle Fault Diagnosis to Revolutionize Automotive Maintenance: A Review. Journal of Manufacturing Systems. https://doi.org/10.1016/j.jmsy.2024.10.012
- [5]. Mahale, Y., et al. (2025). A comprehensive review on artificial intelligence-driven predictive maintenance in vehicles. Heliyon. https://doi.org/10.1007/s42452-025-06681-3
- [6]. Sylvestrin, G. R., et al. (2025). State of the Art in Electric Batteries' State-of-Health Estimation using Machine Learning. Energies, 18(3), 746. https://doi.org/10.3390/en18030746
- [7]. Vision 2030. (2024). Vision 2030 Annual Report (English). Retrieved September 2025 from https://www.vision2030.gov.sa/
- [8]. Yang, H., et al. (2023). Machine learning-based State-of-Health prediction for lithium-ion batteries using internal resistance and LSTM. Energy Reports. https://doi.org/10.1016/j.egyr.2023.08.123
- [9]. Zhao, J., et al. (2025). Battery state of health estimation under fast charging via hybrid deep learning. Scientific Reports. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12033934/