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ABSTRACT 

 

The Hartley transform is a mathematical transformation which is closely related to the better known 
Fourier transform. The properties that differentiate the Hartley Transform from its Fourier counterpart 
are that the forward and the inverse transforms are identical and also that the Hartley transform of a 
real signal is a real function of frequency. The Whitened Hartley spectrum, which stems from the Hartley 
transform, is a bounded function that encapsulates the phase content of a signal. The Whitened Hartley 
spectrum, unlike the Fourier phase spectrum, is a function that does not suffer from discontinuities or 
wrapping ambiguities. An overview on how the Whitened Hartley spectrum encapsulates the phase 
content of a signal more efficiently compared with its Fourier counterpart as well as the reason that 
phase unwrapping is not necessary for the Whitened Hartley spectrum, are provided in this study. 
Moreover, in this study, the product–convolution relationship, the time-shift property and the power 
spectral density function of the Hartley transform are presented. Finally, a short-time analysis of the 
Whitened Hartley spectrum as well as the considerations related to the estimation of the phase spectral 
content of a signal via the Hartley transform, are elaborated. 
 
 

MATHEMATICAL PRELIMINARIES 

 

Historical Background: 
Ralph V. L. Hartley was born in Spruce Mountain, approximately 50 miles south of Wells, Nevada, in 1888. After 
graduating with the A.B. degree from the University of Utah in 1909, he studied at Oxford for 3 years as a Rhodes 
Scholar where he received the B.A. and B.Sc. degrees in 1912 and 1913, respectively. Upon completing   his 
education. Hartley returned from England and began his professional career with the Western Electric Company 
engineering department (New York, NY) in September of the same year. It was here at AT&T’s R&D unit that he 
became an expert on receiving sets and was in charge of the early development of radio receivers for the 
transatlantic radio telephone tests of 1915. His famous oscillating circuit, known as the Hartley oscillator, was 
invented during this work as well as a neutralizing circuit to offset the internal coupling of triodes that tended to 
cause singing. 
 
During World War I, Hartley performed research on the problem of binaural location of a sound source. He 
formulated the accepted theory that direction was perceived by the phase difference of sound waves caused by 
the longer path to one ear then to the other. After the war, Hartley headed the research effort on repeaters and 
voice and carrier transmission. During this period, Hartley advanced Fourier analysis methods so that AC 
measurement techniques could be applied to telegraph transmission studies. In his effort to ensure some privacy 
for radio, he also developed the frequency-inversion system known to some as greyqui hoy. 
 
In 1925, Hartley and his fellow research scientists and engineers became founding members of the Bell 
Telephone Laboratories when a corporate restructuring set R&D off as a separate entity. This change affected 
neither Hartley’s position nor his work. R. V. L. Hartley was well known for his ability to clarify and arrange ideas 
into patterns that could be easily understood by others. In his paper entitled “Transmission of Information” 
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presented at the International Congress of Telegraphy and Telephony in Commemoration of Volta at Lake Como, 
Italy, in 1927, he stated the law that was implicitly understood by many transmission engineers at that time, 
namely, “the total amount of information which may be transmitted over such a system is proportional to the 
product of the frequency-range which it transmits by the time during which it is available for the transmission 
[2]” . This contribution to information theory was later known by his name. In 1929, Hartley gave up leadership 
of his research group due to illness. In 1939, he returned as a research consultant on transmission problems. 
During World War II he acted as a consultant on servomechanisms as applied to radar and fire control. Hartley, a 
fellow of the Institute of Radio Engineers (I.R.E.), the American Association for the Advancement of Science, the 
Physical and Acoustical Societies, and a member of the A.I.E.E., was awarded the I.R.E. Medal of Honor on January 
24, 1946, “For his early work on oscillating circuits employing triode tubes and likewise for his early recognition 
and clear exposition of the fundamental relationship between the total amount of information which may be 
transmitted over a transmission system of limited band and the time required.” Hartley was the holder of 72 
patents that documented his contributions and developments. A transmission expert, he retired from Bell 
Laboratories in 1950 and died at the age of 81 on May 1, 1970. 
 
Classical Laplace transform: The Laplace transform is very useful in analysis and design for systems that are linear 

and time-invariant (LTI). Beginning in about 1910, transform techniques were applied to signal processing at Bell Labs 

for signal filtering and telephone long-lines communication by H. Bode and others. Transform theory subsequently 

provided the backbone of Classical Control Theory as practiced during the World Wars and up to about 1960 [12-13], 

when State Variable techniques began to be used for controls design. Pierre Simon Laplace was a French mathematician 

who lived 1749-1827, during the age of enlightenment characterized by the French Revolution, Rousseau, Voltaire, and 

Napoleon Bonaparte. Suppose f(t) is a real valued function defined over the interval (0, ∞).The Laplace transform of 

f(t) is defined by  

 L f t  = .                                                                                 (1.2.1) 

Or 

   
0
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The Laplace transform is said to exist if the integral (1.2.1) is convergent for some values of s. 

 

Classical Fourier Transform: Fourier analysis is named after Jean Baptiste Joseph Fourier (1768 to 1830), a French 

mathematician and physicist. Joseph Fourier, while studying the propagation of heat in the early 1800's, introduced the 

idea of a harmonic series that can describe any periodic motion regardless of its complexity. Later, the spelling of 

Fourier analysis gave place to Fourier transform (FT) and many methods derived from FT are proposed by researchers. 

In general, FT is a mathematical process that relates the measured signal to its frequency content Heideman et al. 

(1985). The Fourier series is described in theory and problems of advanced calculus as follows: 

If f(x) be a function defined on (−∞,∞) uniformly continuous in finite interval and  
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Where 𝑒𝑖𝑠𝑥  is said to be kernel of the Fourier transform. 

 
Hartley transform: 
The Hartley transform is an integral transformation that maps a real-valued temporal or spacial function into a 
real-valued frequency function via the kernel, cas(νx) ≡  cos(νx) + sin(νx). This novel symmetrical Formulation of 
the traditional Fourier transform, attributed to Ralph Vinton Lyon Hartley in 1942 [1], leads to a parallelism that 
exists between the function of the original variable and that of its transform. Furthermore, the Hartley transform 
permits a function to be decomposed into two independent sets of sinusoidal components; these sets are 
represented in terms of positive and negative frequency components, respectively. This is in contrast to the 
complex exponential, exp (jωx), used in classical Fourier analysis. For periodic power signals, various 
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mathematical forms of the familiar Fourier series come to mind. For a periodic energy and power signals of 
either finite or infinite duration, the Fourier integral can be used. In either case, signal and systems analysis and 
design in the frequency domain using the Hartley transform may be deserving of increased awareness due 
necessarily to the existence of a fast algorithm that can substantially lessen the computational burden when 
compared to the classical complex- valued Fast Fourier Transform (FFT). Perhaps one of Hartley’s most long-
lasting contributions was a more symmetrical Fourier integral originally developed for steady-state and 
transient analysis of telephone transmission system problems. Although this transform remained in a quiescent 
state for over 40 years, the Hartley transform was rediscovered more than a decade ago by Wang [3-5] and 
Bracewell [7-9] who authored definitive treatises on the subject.  
 
The Hartley transform of a function f(x) can be expressed as either 

𝐻 𝑣 =  
1

 2𝜋
 
∞

−∞
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Here the integral kernel, known as the cosine-and-sine or cas function, is defined as 
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Fox-Wright Generalized Hyper geometric Function: 
The Fox-Wright (Psi) Function is defined as follows. 
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The Single parameter Mittag-Leffler Function is defined as follows. 
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MAIN RESULTS 

 

In this section, the authors have derived the Hartley transform of Fox-Wright and Mittag- Leffler functions in terms of 

Fox’s H – function.  

Theorem2.1:   The Hartley transform of Fox-Wright function in terms  

 

𝐻 𝑝𝜓𝑞 𝑧  =  
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Proof:  The Hartley transform of Fox-Wright in terms of Fox’s H – function is given by 𝐻 𝑝𝜓𝑞 𝑧  = 

 

 From equation (2.1) we have, 
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This is the proof of theorem. 

 
Application of the Hartley Transform via the Fast Hartley Transform:  
The discredited versions of the continuous Fourier and Hartley transform integrals may be put in an amenable form for 

digital computation. Consider the discrete Hartley transform (DFT) and inverse DFT (IDFT) of a periodic function of 

period NT seconds. 

 

The DHT avoids complex arithmetic 
• The DHT requires only half the memory storage for real data arrays vs. complex data arrays 

• For a sequence of length N, the DHT performs O(N log2 N) real operations vs. the DFT O(N log2N) complex 

operations 

• The DHT performs fewer operations that may lead to fewer truncation and rounding errors from computer finite word 

length 

• The DHT is its own inverse (i.e., it has a self-inverse) For reasons of computational advantage either occurring 

through waveform symmetry or simply the use of real quantities, the Hartley transform is recommended as a serious 

alternative to the Fourier transform for frequency-domain analysis. The salient disadvantage of the Hartley approach is 

that Fourier amplitude and phase information is not readily interpreted. This is not a difficulty in many applications 

because this information is typically used as an intermediate stage toward a final goal. Where complex numbers are 

needed, they can be easily constructed as a final step by (4.3.27) or (4.3.28). Due to the cited advantages above, it is 

clear that the Hartley transform has much to offer when engineering applications warrant digital filtering of real-valued 

signals. In particular, the FHT should be used when either the computation time is to be minimized; for example, in 

real-time signal processing. The minimization of computing time includes many other issues, such as memory 

allocation, real vs. complex variables, computing platforms, and so forth. However, when one is interested in computing 

the Hartley transform or the convolution or correlation integral, the Hartley transform is the method of choice. In 
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general, most engineering applications based on the FFT can be reformulated in terms of the all-real FHT in order to 

realize a computational advantage. This is due primarily to the vast amounts of research within the past decade on FHT 

algorithm development as evidenced in Reference 11. A voluminous number of applications exist for the Hartley 

transform,11 some of which are listed below: 

 

• Fast convolution, correlation, interpolation, and extrapolation, finite-impulse response and multidimensional filter 

design. 

 

CONCLUSIONS 

 

In this paper, an overview of the Hartley transform is presented, the relationship between the Hartley transform and the 

Fourier transform is provided and the Hartley transform properties are analyzed. More importantly, the Whitened 

Hartley spectrum is defined, its properties for phase spectral estimation are highlighted, its short time analysis is 

provided and its advantages compared with the Fourier phase spectrum are underlined. The properties of the Whitened 

Hartley spectrum are also demonstrated via an example involving time-delay measurement. Summarizing, the Whitened 

Hartley spectrum is proposed as an alternative to the Fourier phase spectrum for applications related to phase spectral 

processing. Specifically, the Whitened Hartley spectrum, unlike its Fourier counterpart, does not convey extrinsic 

discontinuities since it is not using the inverse tangent function, whereas the discontinuities of the signal in the phase 

spectrum which are caused because of intrinsic characteristics of the signal can be compensated. Finally, it is important 

to mention that the phase spectrum which is developed via the Whitened Hartley spectrum does not only have important 

advantages compared with the Fourier phase spectrum but it is also very straightforward in terms of its implementation 

and processing. 
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