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ABSTRACT

In this article, a new four parameter generalization of Inverse Weibull model is introduced using the generator
technique. A comprehensive account of the different structural properties including reliability analysis,
moments, order statistics, Renyi entropy and quantile function is provided. The estimates of the parameters are
computed using the technique of maximum likelihood estimation. The flexibility and the usefulness of the
distribution for modeling the lifetime data is illustrated using the real life data sets.
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I. INTRODUCTION

In the past few years, many generalization techniques were introduced in the statistical literature by adding an
additional parameter to the classical model so as to provide an adequate fit to the real data sets. This induction one or
more additional shape parameters to the baseline distribution to generate new distributions proved beneficial in
exploring tail properties and also for improving the goodness-of-fit of the proposed generator family. The well
established generators in the statistical distributional theory are Marshall-Olkin G by Marshall and Olkin [1], Beta-G by
Eugene et al. [2], Transmuted—-G by Shaw and Buckley[3], Kumaraswamy-G (K-G) by Cordeiro and de Castro [4],
McDonald-G (Mc-G ) by Alexander et. al. [5], Gamma-G (type 1) by Zografos and Balakrishanan [6], gamma-G (type
2) by Ristic and Balakrishanan [7], exponentiated generalized G by Cordeiro et al. [8], Transformed- transformer (T-X)
by Alzaatreh et al. [9] and Lomax G (LG) by Cordeiro et al. [10]. In other words, adding an extra parameter to the
already existing distributions can be very useful in analyzing lifetime data.

Il. WEIBULL-INVERSE WEIBULL DISTRIBUTION

The Weibull distribution is a lifetime probability model named after Walladi Weibull, a Swedish physicist. This
versatile distribution is widely used for analyzing lifetime data in reliability engineering, medicine, automobile
industry, computing technology and aerospace. Despite its variety of applications, Weibull distribution is unable to
analyze the lifetime data sets which have non monotonic failure rates such as bathtub and unimodal hazard rates. As
such, several generalizations of the Weibull model have been introduced in the statistical literature. The inverse
Weibull distribution was introduced by Keller et al. [11] for analyzing reliability and failure of mechanical components.
This distribution finds its variety of applications in reliability engineering, aeronautics, hydrology, physics, biomedical
sciences, agriculture, pharmaceutical sciences, psychology, metrology, economics and actuarial sciences etc.

Bourguignon et al. [12] introduced the Weibull G family of distributions. They derived some new special distribution
from this family by assuming Weibull model as a base distribution. They replaced the variable x with the term

G(x,A)

1- G(X’ A) and obtained the distribution function of Weibull generalized distribution as:
G(x,A)
1-G(x,A) ; 70{ G(x,A) ]ﬂ ,
F(X,a”g, a,b)z J' af t" e Vdt =1-e 1-G(x,A) ) Lfé?fm
5 =l-e )

Then, the corresponding probability density function turns out to be:
X, s
[ERY =]
| 5+1 €
1-G(x,A)] _ @)
where G(X,A) and g(X,A) are the distribution function and density function of the base model respectively.

f(x,@ B,A)=afg(xA)

Page | 220



International Journal of Enhanced Research in Management & Computer Applications
ISSN: 2319-7471, Vol. 6, Issue 11, November-2017, Impact Factor: 3.578

In this manuscript, four parameter Weibull Inverse Weibull model is proposed by assuming
G(X,A) and g(x,A) as cdf and pdf of Inverse Weibull distribution. The corresponding probability density function
and cumulative distribution function of Inverse Weibull are respectively given in the equation (1) and (2):

g(x) = abx Y expl-ax ) @3)
G(x) = expl-ax™) (4)

The Cumulative distribution function of the proposed new four parameter Weibull-Inverse Weibull distribution using
the equation (1) and (4) is given by:

£3)]
)

a T8
- X
l—exp( b] l{e 1}
= F(x,a,pB)=1-¢ o =1-e : ©®)
The graphical plotting of the distribution function for different values of parameters of Weibull Inverse Weibull

distribution is shown in Figure 1. It can be seen that the cumulative distribution function is an increasing function in
every case.

For beta=0.6,a=0.9,b=1.2 For alpha=0.5, beta=0.9,b=1.5
o o
e o
< <
3 3
B alpha=0.6,beta=1,
« « B alpa=0.8 beta=1.
S 7 S 7 B alpha=1.0,beta=1.
O alpha=1.2,beta=1.
0 1 2 3 4 5 o 1 2 3 a 5 o 1 2 3 a 5
x x x
Figure1. Graph of distribution function Figure1. Graph of distribution function Figure1. Graph of distribution function
For alpha=0.5, a=0.8,b=1.0 For alpha=1.1,beta=1.3,a=1.2
o o
3 3
N _ 54
T T
3 S
S S
0 1 2 3 4 5 o 1 2 3 a 5
x x
Fiaure1. Graph of distribution function function Fiaure1. Graph of distribution function

Then, the consequent pdf of the Weibull Inverse Weibull distribution using the equations (2), (3) and (4) is as follows:
-8

a

a a _(ﬂ+1) - eXb -1

f(x,c, B,a,b) = afabx Ve’ | e —1 e : (6)

Figure 2 gives the description of density function for different values of the four parameters of the proposed Weibull
Inverse Weibull model.
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This research article is further organized as follows: The section 3 describes the reliability analysis of the proposed
model. Section 4 deals with the calculation of quantile function and the three quartiles. The structural properties
associated with the newly developed model including moments, harmonic mean, m.g.f and characteristic function are
discussed in section 5. Further, the comprehensive description of order statistics and Renyi entropy of the postulated
distribution is given in section 6 and 7 respectively. The maximum likelihood estimates of four unknown parameters
along with the observed Fisher Information matrix are provided in section 8. Finally, the three real life data sets are
used for the analyzing the proposed model in the section 9.

I11. RELIABILITY ANALYSIS

In this section, the survival function, hazard rate, reverse hazard rate, mills ratio and mean residual time of the proposed
model have been discussed.

3.1 Reliability function
It is also termed as survivor function or survival function of the model. Denoted by R(x), it can be defined as the

probability that an item does not fail prior to sometime t. It is complement to the distribution function and can be
mathematically obtained as:

a 15
R(X,a,ﬂ,a,b):l—F(x,a,ﬂ,a,b):e{ } : @)

The description of the reliability function is depicted in figure 3 which indicates that it is the decreasing function for
every possible value of the parameters of the proposed model.
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3.2 Hazard rate

The hazard function of the system is also termed as the hazard rate, failure rate or force of mortality. Denoted by h(X),

it can be derived as the ratio of the probability density function and the reliability function. It can be mathematically
computed as:

al a -(8+1)
H(x)= m = afabx Ve | —1 (8)

R(x)

The hazard rate for the proposed model is given in the figure 5 for the several values of the parameters.
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3.3 Reverse hazard rate

This is also an important feature which characterizes life phenomenon. It is computed as the ratio of the probability
density function and the cumulative distribution function. Denoted by¢(X), the reverse hazard rate is given as follows:

. T
a ~(p+1) a{ex“ 1}
afabx Ve’ {ex - } e

#(x)= (0 {} - ©

IV. QUANTILE FUNCTION

Sle

This section deals with obtaining the quantile function and the first three quartiles of the Weibull Inverse Weibull
distribution. The quantile function of any distribution is obtained by the method of inversion. In this method, the cdf of

the distribution is equated to the number u drawn itself from U (0,1). The quantile function of the model under study
is given as:
Q) =F (), O<u<l (10)

a

Iog[1+ (- )" 1oga - u)ﬂ |

Qu)= (11)

Whenu = ll and 3 , we get the first, second (median) and the third quartile respectively.

Once the quantile function of the distribution is computed, we can generate the random numbers for the distribution
under discussion using the quantile function.

V. STRUCTURAL PROPERTIES OF WEIBULL-INVERSE WEIBULL DISTRIBUTION

In this section, the statistical properties comprising of moments, harmonic mean, moment generating function and
characteristic function of Weibull Inverse Weibull distribution are discussed.

5.1 Moments

The k™ moment of the continuous random variable X drawn from the proposed Weibull inverse Weibull distribution
with density function f (x) given in equation (6) can be computed as follows:
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1—e“}
Using the expansion of the exponential term
. P
o 6xA) ’ w ()i i pi . P -5
L’G(X'AJ =Z( 1')|a LGéX(’A[)\J Z( ) € —| ,the above equation reduces to
im I! — X, i—0
’ 1-e*
oA+
ox®
k < (—1)l0!iw k—b-1
E(x ):a,b’abz(;_—lj X —rrdx (13)
e !
i 1-e?

Also, from the generalized binomial theorem
-a |+1+1 . l’ -a ]
1-e? Z ( ( +1)+1+ J) e* | , theequation (13) turns out to be
= (g (|+1)+1)|_
(- a' &TBI+1)+1+ )7 O
E|x* |= afaby X0 dx.
b ] apab) ,Z(;r(ﬁ|+1+1)pI [ } X

(14)

1
. a uye du th
Setting —=u, x= 5 ,dX=————-, The expression of k™ moment finally reduces to
X
b
- ab(uj
a

s 50 1D)
ElX|=a *paby Y5, ———4—. (15)

= [l gl

the new model is obtained as:
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E(x)= a1+t1’ﬂabi ig F(l_ij

. . (16)

1+g © X r(l_;)
and for k =2, E(x2)= a "pabdy. s,

L] 5 @17
=0 =0 [B(I+1)+ jf o
where & . — (—1_)'a' T (A _+1)+1+_j)_
' il T(Bi+1)+Di
The variance of the distribution is calculated using the expression (17) and (18) as:
V(x)=E(x*)-[E(X) (18)

5.2 Harmonic mean

By the definition, the harmonic mean denoted by (H.M) can be mathematically worked out as follows:
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B F(1+ tl)J
Sa,— P gy
= [pi+1)+ j[Te

Ms

H.M :_[%f(x,a,,b’,a,b)d ~ o b

0 i

]
o

(-1) &' T(Bi+1)+1+ j)
il T(B+1)+Dir

5.3 Moment generating function

where ¢, ; =

The moment generating function (m.g.f) of the random variable X drawn from the new Weibull Inverse Weibull
distribution, denoted by M X (t) can be derived as:

M ()= E™)= [e* f (x,, 4,2, b)dx

Using the Taylor series expansion we have

MX(t)=10(1+tx+%+--]f(x,a,ﬂ,a,b)dx:Ztk—k!zxkf(x)dx.=:z;:0t—:E(X")
e

= MX():— bﬂabZZa‘ b - (20)
=0ii=0  [B(i+1)+ j[b

(-1) &' T(B(i+1)+1+ j)

where o, . =~~~ . :
" il T(Bi+1)+Di

5.4 Characteristic function
The characteristic function of the continuous random variable X is denoted by @y (t) and can be defined as:

E(e™ )= Te“x f(x,a, B,a,b)dx.

Using the Taylor series expansion, we have

¢X(t):I(lJritXJr%+---jf(x,a,ﬂ,a,b)dx._ (It) J. kf ::Zj(;(il?! E(Xk)
() i, &< F(l_kkJ
= 4l ;) ki " K IR [A+0)+ i1 >

(-1)' &' T(B(i+1)+1+ j)
il T(B+1)+Dir

VI. ORDER STATISTICS

where ¢, ; =

In statistical distributional theory and modeling lifetime data, order statistics is found to be very useful. It is widely
applicable in finding out the reliability of a system and life testing. If X(l), X(z), ..... , X(n)denote the order statistics

obtained from the random sample X;, X,,....., X,, drawn from new WIW distribution ((x,ﬂ, a,b) with cumulative

density function and probability density function given in the equations (5) and (6) respectively, then the probability
density function of the order statistics is given as below:
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f (x,a,f,ab)= m f(x,a, fB,a,b)F(x,a g,a,b) " [1-F(x,a g,ab)"".
(22) |
since [Ll— F(x, @, B,a,b)]"" = ZO(—l)j (e, ) [FOP
Using in equation (22), we get: g
1

fr(x,a,ﬂ,a,b)z

Also, [F(x,a, B,a,b)]"* =|1-¢

S Oo( )J+k n-r j+r-1
frlxa fiab)= B(rn—r+l)JZ=:=o G e bl p.a) e

Put r =1 in equation (23), the pdf of the first rder statistics is obtained as:

(e prab)=n3 S EV (e () fxalk + D pab) @b

j=0k=0 (k 1)
Similarly, for I =N in equation (23), the pdf of the " order statistics is obtained as:
(o prab)=n3 S EY (e )t (xalk+1)pab) )
j=0k= 0(k 1)

Also, when N =2Min equation (23), the pdf of the median (m+1) is obtained as follows:

fyalx f,ab)= B S S EU g Ymic, Y afk 1) pab) @9

m'm! %is (K+1)

6.1 Joint Density function of i" and j™ order statistics

The joint density function of (Xi X ) for 1<i< j<nisgiven by:

fiin (xi X ):C[F(xi )]i’l[F (xj )— F(x )]H’l[l— F(xj )]"’j f(x) f (xj ) 27)

D(j—i-Dn—
f,;(x,a,p,a,b)= Cb_e—a h(x;)# ]‘Te-a h(x ) # _e_ah(xjyﬂ}

whereC =
(i-

j-i-1

e—a(n—j)h( f a ﬂzazbz b+1

11

e [Jj h(x, )V (x, )P eents” e
fun ()= (1 =D)[F(x, )= F O )] F () (x,). When

I =land j =N, the joint density function of minimum and maximum order statistics can be computed as follows:
f1 (X a IB a b) — n(n _1)[e—ah(xl)’ﬁ _efah(xn)_ﬁ ]“*Zagﬁzaszle(bﬂ)X —(b+1)
m 1 L] il 1 n

- (28)

e (71 Z] h(x ) (p+1) h(xn )‘(ﬁ‘*’l)e*ah(xl)_ﬂ a-h ()7
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VII. RENYI ENTROPY
This section deals with the computation of the entropy of the newly proposed distribution. The entropy is a measure of
the variation of the uncertainty of a continuous random variable X. The increase in the value of the entropy is an
indicator of the greater uncertainty in the data. Denoted by | R(p), the Renyi entropy (1960) for X with probability
density WIW (Ol,ﬁ, a, b) is defined and computed as:

Ir(p):ﬁlogjf(X)de,wherep>0 and p=l. (29)
o 0
where the expression for f(x) is given in the equation (6):
Y]
—afp —-ap ia

© 0 - g X . be

Let £1(x)= { f(x)dx = !(aﬁab)” X Codx
1-e?

Using the expansion of exponential term and the generalized binomial term, we get:

% —ap(pi)ty o o (1) i . .
,u(X): (afab)’ s, | J'X—p(b+1)e dx, where 8= ZZ( 1) _(ap) F(ﬂ(' +{O)+p+ J)
) S5 it B+ p)+p)
Put ibzu, x=(§) b,dx=Lb+l, we have
X iy
—ab E b
a
IR(p)=Lloga+ilogﬂ+lloga—logb
1-p 1-p b
1“( (b+1)p-1) 1) (30)
+Llog o b
_ Ny b1, |
o [plesi+ il s
The B or g-entropy introduced by Havrda and Charvat (1967) is denoted by 1, (q) and can be computed as:

IH(q)=—{1—J'f(x)“dx}, where q>0 and g=1

) r((b +1L(q 1), 1}

a-11" y NN
q-1 [Bla+i)+j] » (31)

=% i'r(sli+q)+a)
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VIIl. PARAMETER ESTIMATION

In this section, the four unknown parameters are estimated and the observed fisher information matrix of the proposed
model is derived.

8.1 Maximum Likelihood Estimation:

The procedure of maximum likelihood estimation is used for estimating the unknown parameters of probability density
function. Let X;, X5, X3,....X,, be the sample consisting of n observations with pdf given in equation (), then the

likelihood function of the proposed distribution is given as: follows:
-B
a

n b
n ~(p+1) —a | &N -
Yl o =

L(x| e, B,a,b)= (aﬂab)”lEIx (b+t)ei lﬂlleXib -1 e . (32)

i=1
The corresponding Log likelihood function of the equation (33) is:

log L(x|a,ﬂ,a,b)=nloga+nlog,8+nloga+nlogb—(b+1)ilogx Zn:ib

i=1 =
-B (33)

~(8+13log & -1|-a¥ e

On differentiating the log likelihood function with respect to the unknown parameters of the Weibull Inverse Weibull
model and equating to zero result in the following normal equations:

. -5
d n g b
—logL JB.ab)=—— 1| =0 34
e (x|a, B,a,b) p ;(e ] (34

a a7 a
;—ﬁlogL(xm,ﬁ,a,b)———Zlog( 3 —1J+oz(exib - J Iog( W —1J=0 (35)

%IogL(x|a,ﬁ,a,b):£+_ X"~ (B+1)y S =0. (36)

n 0, ax, P’ logx X ex log x

iblogL(x|a,ﬂ,a,b):% ay X Iogx+(,8+1) (a /;Za—
Sl

It can be clearly seen that the equations are not in explicit form as such the estimates of the unknown parameters are
obtained by solving the normal equations simultaneously using the Newton Raphson algorithm.

=0. (37

N
AN

8.2 Fisher Information Matrix

For the four parameters of WIW(X; a, ﬂ, a, b)all the second order derivatives of the log- likelihood function exist.
Thus, the inverse dispersion matrix is given by:

>
>
>
>

ISH

o aa aff oca ab
B p J. N, V, V
al ~ N al . Aﬁa Aﬂﬁ Aﬂa Aﬂb (38)
6 b Vaa apg Vaa Vab
Vba Vbﬁ Vba Vbb
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i Vep Vo Vao
NN :ﬁa :ﬁﬁ :ﬁa :ﬁb )
Vao. Vg Vaa Va
Aba vbﬁ vba vbb
hereVi :aa:_az’ Vi :%’ Var = S;a:’ Vin = fszaLb’ Vp = aijal_ﬂ’ pa = aija: and so on

By deriving the inverse dispersion matrix, the asymptotic variances and covariances of the ML estimators for
a, f3,a andbare obtained.

IX. DATA ANALYSIS

In this section, the three real life data sets are considered to compare the flexibility of the proposed Weibull Inverse
Weibull distribution with different models. In order to compare the different models the criteria like AIC (Akaike
information criterion), BIC (Bayesian information criterion) and HQIC (Hannan-Quinn Information Criteria) have been
considered. The distribution which provides us lesser values of AIC, BIC and HQIC is considered as best. The values
of AIC, BIC and HQIC can be computed as follows:

AlIC=2k-2logL, BIC=klogn-2logL and HQIC=2klog (log n)-2logL, where k is the number of parameters in the
statistical model, n is the sample size and - 2logL is the maximized value of the log-likelihood function under the
considered model. The analysis of all the data sets is performed through R software. The summary of the data sets I, Il
and 11l are given in table 1, 3 and 5. The MLEs of the parameters are obtained with standard errors shown in
parentheses. Further, the different information measures corresponding to log-likelihood values, AIC, BIC and HQIC
are displayed in Table 2, 4 and 6.

Data Set I: The first data set represents 84 observations of failure times (in hours) for a particular wind shield model
reported by (Murthy et al. [13]): 0.040, 1.866, 2.385, 3.443, 0.301, 1.876, 2.481, 3.467, 0.309, 1.899, 2.610, 3.478,
0.557, 1.911, 2.625, 3.578, 0.943, 1.912, 2.632, 3.595, 1.070, 1.914, 2.646, 3.699, 1.124, 1.981, 2.661, 3.779, 1.248,
2.010, 2.688, 3.924, 1.281, 2.038, 2.823, 4.035, 1.281, 2.085, 2.890, 4.121, 1.303, 2.089, 2.902, 4.167, 1.432, 2.097,
2.934, 4.240, 1.480, 2.135, 2.962, 4.255, 1.505, 2.154, 2.964, 4.278, 1.506, 2.190, 3.000, 4.305, 1.568, 2.194, 3.103,
4.376, 1.615, 2.223, 3.114, 4.449, 1.619, 2.224, 3.117, 4.485, 1.652, 2.229, 3.166, 4.570, 1.652, 2.300, 3.344, 4.602,
1.757, 2.324, 3.376, 4.663

Table 1: Data summary of Set |

Min. 1st Qu. Median Mean 3rd Qu. Max. Standard | Skewness| Kurtosis
deviation
0.040 1.839 2.354 2.557 3.393 4.663 1.1187 0.0994 | 2.3476

TABLE 2: MLEs of the Model Parameters Using Real Life Data Set I, the Resulting SEs in parentheses and also
Criteria for Comparison

MLE Log-
Distribution _ - Likelihood | AlC BIC HQIC
a B a b

WIW 0.27782 | 3.68856 | 0.83379 | 0.43344 | 270.4543 | 278.4543 | 288.1776 | 282.363
(0.66356) | (0.73083) | (0.36647) | (0.10217)

w 1.36455 | 0.83870 | 389.0733 | 393.0733 | 397.9349 | 395.0276

(0.15162) | (0.05211)

KIw 2.45109 | 9.840455 | 0.506791 | 1.58032 | 317.1457 | 325.1457 | 334.869 | 326.0772
(0.51935) | (3.09715) | (0.04567) | (0.33485)

WIE 0.01773 | 1.64762 | 0.22424 279.985 285.985 | 293.2775 | 291.8937
(0.03591) | (0.24593) | (0.19445)
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Data Set I1: The uncensored data set corresponding to intervals in days between 109 successive coal-mining disasters
in Great Britain, for the period 1875-1951, published by Maguire et al. [14]. The sorted data are given as follows: 1, 4,
4,7,11,13,15,15,17,18,19, 19, 20, 20, 22, 23, 28 ,29,31,32,36, 37,47 ,48,49,50,54,54,55,59,
59, 61, 61, 66, 72, 72,75,78,78 ,81,93 ,96 ,99 ,108 ,113, 114, 120, 120, 120,123, 124, 129, 131, 137, 145, 151, 156,
171, 176, 182, 188, 189, 195, 203, 208, 215, 217, 217, 217, 224, 228,233, 255, 271, 275, 275, 275, 286, 291, 312, 312,
312, 315, 326, 326, 329, 330, 336, 338, 345, 348, 354, 361,364 ,369, 378, 390, 457, 467, 498, 517, 566, 644, 745, 871,
1312, 1357, 1613 ,1630

Table 3: Data Summary of Set 11

Min. 1st Qu. Median Mean 3rd Qu. Max. Standard | skewness | Kurtosis
deviation
1.0 54.0 145.0 233.3 312.0 1630.0 296.4344 | 2.9571 12.9943

TABLE 4: MLEs of the Model Parameters Using Real Life Data Set 11, the Resulting SEs in parentheses and
also Criteria for Comparison

Distribution _ME —— 200 1 Ac | BIC | HQIC
a yij a b likelihood

WIW | Cors) | (oad62) | (0.99122) | (0 09mag) | 1403216 | 1410216 | 1421.981 | 1415.582

W _ | 0aa6) | (0.03060) | 1484986 | 1488.986 | 1494.369 | 1491169

KIW | 305363 | Go191D) | (00s079) | (1 4e0ag) | 1426788 | 1436.788 | 1447.553 | 1438.062

WIE | Jorise) | 00sval) | oases0) |  — | 1409713 | 1415713 | 1423787 | 1422079

Data Set Il11: The following data set is from Kotz and Johnson [15] and represents the survival times (in years) after
diagnosis of 43 patients with a certain kind of leukemia: 0.019, 0.129, 0.159, 0.203, 0.485, 0.636, 0.748, 0.781,
0.869,1.175, 1.206, 1.219, 1.219, 1.282, 1.356, 1.362, 1.458, 1.564, 1.586, 1.592, 1.781, 1.923, 1.959, 2.134, 2.413,
2.466, 2.548, 2.652, 2.951, 3.038, 3.600, 3.655, 3.745, 4.203, 4.690, 4.888, 5.143, 5.167, 5.603, 5.633, 6.192, 6.655,
6.874

Table 5: Data Summary of Data set 111

Min. 1st Qu. Median Mean 3rd Qu. Max. Standard | Skewness| Kurtosis
deviation
0.019 1.212 1.923 2.534 3.700 6.874 1.927 0.7448 2.4363

TABLE 6: MLEs of the Model Parameters Using Real Life Data Set 111, the Resulting SEs in parentheses and
also Criteria for Comparison

Distribution MLE Log
R ~ R R Likelihood | AIC BIC HQIC
a s a b
WIwW 0.00236 1.42731 0.03212 | 0.82395 163.6384 | 171.6384 | 178.6832 | 174.2363
(0.00041) | (0.61655) | (0.04673) | (0.38257)
W _ _ 0.90316 | 0.62623 | 204.7781 | 208.7781 | 212.3005 | 210.0771
(0.15019) | (0.06041)
KIw 1.58729 5.26328 0.39055 1.57042 184.7468 | 192.7468 | 199.7916 | 192.6952
(1.59624) | (2.19729) | (0.05615) | (1.57928)
WIE 0.01467 0.97236 0.03221 _ 166.5454 | 172.5454 | 181.5902 | 177.1433
(0.01806) | (0.12633) | (0.03266)

Figure 5 (a), 5(b) and 5(c) show the fitted density functions of Weibull
Kumaraswamy Inverse Weibull and Weibull Inverse exponential distributions

Inverse Weibull, Inverse Weibull,

Page | 230



International Journal of Enhanced Research in Management & Computer Applications
ISSN: 2319-7471, Vol. 6, Issue 11, November-2017, Impact Factor: 3.578

fitted density curves fitted density curves fitted density curves
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FigS. (a) Fitted densities for Data1 FigS. (b) Fitted densities for Data2 Figs. (c) Fitted densities for Data3

X. CONCLUSION

This manuscript deals with the introduction of new Weibull Inverse Weibull distribution which is the obtained by
Weibull G technique. The main aim of the paper is to study its different statistical properties like moments, harmonic
mean, survival function, hazard rate, Renyi entropy and maximum likelihood estimation. Moreover, the postulated
distribution is compared with the different models for flexibility and testing of better fit. This newly proposed model
has been applied to the three real life data sets for competence. The results obtained are displayed in table 2, 4 and 6
respectively which show that the proposed distribution has lesser values of AIC, BIC and HQIC than the various
models and same is also clearly depicted by the fitted probability densities of the different models. This proves that the
newly developed model provides better fit for modeling lifetime data sets.
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