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ABSTRACT 

 

In this article, a new four parameter generalization of Inverse Weibull model is introduced using the generator 

technique. A comprehensive account of the different structural properties including reliability analysis, 

moments, order statistics, Renyi entropy and quantile function is provided. The estimates of the parameters are 

computed using the technique of maximum likelihood estimation. The flexibility and the usefulness of the 

distribution for modeling the lifetime data is illustrated using the real life data sets. 
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I. INTRODUCTION 

 

In the past few years, many generalization techniques were introduced in the statistical literature by adding an 

additional parameter to the classical model so as to provide an adequate fit to the real data sets. This induction one or 

more additional shape parameters to the baseline distribution to generate new distributions proved beneficial in 

exploring tail properties and also for improving the goodness-of-fit of the proposed generator family. The well 

established generators in the statistical distributional theory are Marshall-Olkin G by Marshall and Olkin [1], Beta-G by 

Eugene et al. [2], Transmuted–G by Shaw and Buckley[3], Kumaraswamy-G (K-G) by Cordeiro and de Castro [4], 

McDonald-G (Mc-G ) by Alexander et. al. [5], Gamma-G (type 1) by Zografos and Balakrishanan [6], gamma-G (type 

2) by Ristic and Balakrishanan [7], exponentiated generalized G by Cordeiro et al. [8], Transformed- transformer (T-X) 
by Alzaatreh et al. [9] and Lomax G (LG) by Cordeiro et al. [10]. In other words, adding an extra parameter to the 

already existing distributions can be very useful in analyzing lifetime data. 

 

II. WEIBULL-INVERSE WEIBULL DISTRIBUTION 

 

The Weibull distribution is a lifetime probability model named after Walladi Weibull, a Swedish physicist. This 

versatile distribution is widely used for analyzing lifetime data in reliability engineering, medicine, automobile 

industry, computing technology and aerospace. Despite its variety of applications, Weibull distribution is unable to 

analyze the lifetime data sets which have non monotonic failure rates such as bathtub and unimodal hazard rates. As 

such, several generalizations of the Weibull model have been introduced in the statistical literature.  The inverse 

Weibull distribution was introduced by Keller et al. [11] for analyzing reliability and failure of mechanical components. 

This distribution finds its variety of applications in reliability engineering, aeronautics, hydrology, physics, biomedical 
sciences, agriculture, pharmaceutical sciences, psychology, metrology, economics and actuarial sciences etc.  

Bourguignon et al. [12] introduced the Weibull G family of distributions. They derived some new special distribution 

from this family by assuming Weibull model as a base distribution. They replaced the variable x with the term 
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Then, the corresponding probability density function turns out to be: 
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where     ,and, xgxG  are the distribution function and density function of the base model respectively. 
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 In this manuscript, four parameter Weibull Inverse Weibull model is proposed by assuming 

    ,and, xgxG  as cdf and pdf of Inverse Weibull distribution. The corresponding probability density function 

and cumulative distribution function of Inverse Weibull are respectively given in the equation (1) and (2): 

     .exp1 bb axabxxg                             (3) 

   .exp baxxG           (4) 

The Cumulative distribution function of the proposed new four parameter Weibull-Inverse Weibull distribution using 

the equation (1) and (4) is given by: 
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The graphical plotting of the distribution function for different values of parameters of Weibull Inverse Weibull 

distribution is shown in Figure 1. It can be seen that the cumulative distribution function is an increasing function in 

every case.  

 

 
 

Then, the consequent pdf of the Weibull Inverse Weibull distribution using the equations (2), (3) and (4) is as follows: 
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Figure 2 gives the description of density function for different values of the four parameters of the proposed Weibull 

Inverse Weibull model. 

 

 

0 1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

For  beta=0.6,a=0.9,b=1.2

Figure1.  Graph of distribution function

x

F
(x

)

a=0.3

a=0.6
a=0.9

a=1.2

0 1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

For alpha=0.5, a=0.8,b=1.0

Figure1.  Graph of distribution function function

x

F
(x

)

beta=0.3

 beta =0.5
 beta =0.8

 beta =1.1

0 1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

For alpha=0.5, beta=0.9,b=1.5

Figure1.  Graph of distribution function

x

F
(x

)

a=0.3

 a=0.5

 a=0.7
 a=0.9

0 1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

For alpha=1.1,beta=1.3,a=1.2

 Figure1.  Graph of distribution function 

x

F
(x

)

b=1.0

b=1.2

b=1.4

b=1.6

0 1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure1.  Graph of distribution function

x
F

(x
)

alpha=0.6,beta=1.1,a=0.9,b=1.0

alpa=0.8,beta=1.3,a=1.1,b=1.2

alpha=1.0,beta=1.5,a=1.3,b=1.4

alpha=1.2,beta=1.7,a=1.5,b=1.6 

0 1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

For  beta=0.6,a=0.9,b=1.2

Figure2.  Graph of density function

x

f(
x
)

a=0.3

a=0.6
a=0.9

a=1.2

0 1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

For alpha=0.5, a=0.8,b=1.0

Figure2.  Graph of density function

x

f(
x
)

beta=0.3

 beta =0.5
 beta =0.8

 beta =1.1

0 1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

For alpha=0.5, beta=0.9,b=1.5

Figure2.  Graph of density function

x

f(
x
)

a=0.3

 a=0.5
 a=0.7

 a=0.9

0 1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

For alpha=1.1,beta=1.3,a=1.2

Figure2.  Graph of density function

x

f(
x
)

b=1.0

b=1.2

b=1.4
b=1.6

0 1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure2.  Graph of density function

x

f(
x
)

alpha=0.6,beta=1.1,a=0.9,b=1.0

alpa=0.8,beta=1.3,a=1.1,b=1.2
alpha=1.0,beta=1.5,a=1.3,b=1.4

alpha=1.2,beta=1.7,a=1.5,b=1.6 



      International Journal of Enhanced Research in Management & Computer Applications 

ISSN: 2319-7471, Vol. 6, Issue 11, November-2017, Impact Factor: 3.578 

 

Page | 222 

 

This research article is further organized as follows: The section 3 describes the reliability analysis of the proposed 

model. Section 4 deals with the calculation of quantile function and the three quartiles. The structural properties 

associated with the newly developed model including moments, harmonic mean, m.g.f and characteristic function are 
discussed in section 5. Further, the comprehensive description of order statistics and Renyi entropy of the postulated 

distribution is given in section 6 and 7 respectively. The maximum likelihood estimates of four unknown parameters 

along with the observed Fisher Information matrix are provided in section 8. Finally, the three real life data sets are 

used for the analyzing the proposed model in the section 9. 

 

III. RELIABILITY ANALYSIS 

 

In this section, the survival function, hazard rate, reverse hazard rate, mills ratio and mean residual time of the proposed 

model have been discussed. 

 

3.1 Reliability function 
 

 It is also termed as survivor function or survival function of the model. Denoted by R(x), it can be defined as the 

probability that an item does not fail prior to sometime t. It is complement to the distribution function and can be 

mathematically obtained as: 
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The description of the reliability function is depicted in figure 3 which indicates that it is the decreasing function for 

every possible value of the parameters of the proposed model. 

 

 
 

3.2 Hazard rate 

 

 The hazard function of the system is also termed as the hazard rate, failure rate or force of mortality. Denoted by  xh , 

it can be derived as the ratio of the probability density function and the reliability function. It can be mathematically 

computed as: 
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The hazard rate for the proposed model is given in the figure 5 for the several values of  the parameters. 
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3.3 Reverse hazard rate 

 

 This is also an important feature which characterizes life phenomenon. It is computed as the ratio of the probability 

density function and the cumulative distribution function. Denoted by  x , the reverse hazard rate is given as follows: 
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       (9) 

 

IV. QUANTILE FUNCTION 

 

This section deals with obtaining the quantile function and the first three quartiles of the Weibull Inverse Weibull 

distribution. The quantile function of any distribution is obtained by the method of inversion. In this method, the cdf of 

the distribution is equated to the number u drawn itself from  1,0U . The quantile function of the model under study 

is given as: 

)()( 1 uFuQ  , 10  u             (10) 
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When
4

3
and

2

1
,

4

1
u , we get the first, second (median) and the third quartile respectively. 

Once the quantile function of the distribution is computed, we can generate the random numbers for the distribution 

under discussion using the quantile function. 

 

V. STRUCTURAL PROPERTIES OF WEIBULL-INVERSE WEIBULL DISTRIBUTION 
 

In this section, the statistical properties comprising of moments, harmonic mean, moment generating function and 

characteristic function of Weibull Inverse Weibull distribution are discussed. 

 

5.1 Moments 
 

 The kth moment of the continuous random variable X drawn from the proposed Weibull inverse Weibull distribution 

with density function f (x) given in equation (6) can be computed as follows: 
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Using the expansion of the exponential term 
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Also, from the generalized binomial theorem 
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When k=1, the expected value of the new model is obtained as: 
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The variance of the distribution is calculated using the expression (17) and (18) as: 

      22 XEXEXV          (18) 

 

 

5.2 Harmonic mean 

  

By the definition, the harmonic mean denoted by (H.M) can be mathematically worked out as follows: 
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5.3 Moment generating function 

 

 The moment generating function (m.g.f) of the random variable X drawn from the new Weibull Inverse Weibull 

distribution, denoted by  tM X  can be derived as: 
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5.4 Characteristic function 

 

 The characteristic function of the continuous random variable X is denoted by  tX  and can be defined as: 
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VI. ORDER STATISTICS 

 

 In statistical distributional theory and modeling lifetime data, order statistics is found to be very useful. It is widely 

applicable in finding out the reliability of a system and life testing. If      nXXX ,.....,, 21 denote the order statistics 

obtained from the random sample nXXX ,.....,, 21  drawn from new WIW distribution  ba,,,  with cumulative 

density function and probability density function given in the equations (5) and (6) respectively, then the probability 

density function of the order statistics is given as below: 
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Put 1r  in equation (23), the pdf of the first order statistics is obtained as: 
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Similarly, for nr   in equation (23), the pdf of the nth order statistics is obtained as: 
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Also, when mn 2 in equation (23), the pdf of the median (m+1) is obtained as follows: 
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6.1 Joint Density function of i
th

 and j
th

 order statistics 

 

 The joint density function of  ji xx ,  for nji 1 is given by: 
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VII. RENYI ENTROPY 

 
This section deals with the computation of the entropy of the newly proposed distribution. The entropy is a measure of 

the variation of the uncertainty of a continuous random variable X. The increase in the value of the entropy is an 

indicator of the greater uncertainty in the data. Denoted by  RI , the Renyi entropy (1960) for X with probability 

density WIW ),,,( ba is defined and computed as: 
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where the expression for f(x) is given in the equation (6): 
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Using the expansion of exponential term and the generalized binomial term, we get: 
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 The β or q-entropy introduced by Havrda and Charvat (1967) is denoted by  qI H  and can be computed as: 
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VIII. PARAMETER ESTIMATION 

 

 In this section, the four unknown parameters are estimated and the observed fisher information matrix of the proposed 

model is derived. 

 

8.1 Maximum Likelihood Estimation:  

 

The procedure of maximum likelihood estimation is used for estimating the unknown parameters of probability density 

function. Let nxxxx ,....,, 321 be the sample consisting of n observations with pdf given in equation ( ), then the 

likelihood function of the proposed distribution is given as: follows:  
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The corresponding Log likelihood function of the equation (33) is: 
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On differentiating the log likelihood function with respect to the unknown parameters of the Weibull Inverse Weibull 

model and equating to zero result in the following normal equations
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It can be clearly seen that the equations are not in explicit form as such the estimates of the unknown parameters are 

obtained by solving the normal equations simultaneously using the Newton Raphson algorithm. 

 

8.2 Fisher Information Matrix 

 For the four parameters of WIW  bax ,,,;  all the second order derivatives of the log- likelihood function exist. 

Thus, the inverse dispersion matrix is given by: 
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By deriving the inverse dispersion matrix, the asymptotic variances and covariances of the ML estimators for

ba and,, are obtained. 

 

IX. DATA ANALYSIS 

 

 In this section, the three real life data sets are considered to compare the flexibility of the proposed Weibull Inverse 

Weibull distribution with different models. In order to compare the different models the criteria like AIC (Akaike 

information criterion), BIC (Bayesian information criterion) and HQIC (Hannan-Quinn Information Criteria) have been 

considered. The distribution which provides us lesser values of AIC, BIC and HQIC is considered as best. The values 

of AIC, BIC and HQIC can be computed as follows: 

AIC=2k-2logL, BIC=klogn-2logL and HQIC=2klog (log n)-2logL,  where k is the number of parameters in the 

statistical model, n is the sample size and - 2logL is the maximized value of the log-likelihood function under the 

considered model. The analysis of all the data sets is performed through R software. The summary of the data sets I, II 

and III are given in table 1, 3 and 5. The MLEs of the parameters are obtained with standard errors shown in 
parentheses. Further, the different information measures corresponding to log-likelihood values, AIC, BIC and HQIC 

are displayed in Table 2, 4 and 6. 

 

Data Set I: The first data set represents 84 observations of failure times (in hours) for a particular wind shield model 

reported by (Murthy et al. [13]): 0.040, 1.866, 2.385, 3.443, 0.301, 1.876, 2.481, 3.467, 0.309, 1.899, 2.610, 3.478, 

0.557, 1.911, 2.625, 3.578, 0.943, 1.912, 2.632, 3.595, 1.070, 1.914, 2.646, 3.699, 1.124, 1.981, 2.661, 3.779, 1.248, 

2.010, 2.688, 3.924, 1.281, 2.038, 2.823, 4.035, 1.281, 2.085, 2.890, 4.121, 1.303, 2.089, 2.902, 4.167, 1.432, 2.097, 

2.934, 4.240, 1.480, 2.135, 2.962, 4.255, 1.505, 2.154, 2.964, 4.278, 1.506, 2.190, 3.000, 4.305, 1.568, 2.194, 3.103, 

4.376, 1.615, 2.223, 3.114, 4.449, 1.619, 2.224, 3.117, 4.485, 1.652, 2.229, 3.166, 4.570, 1.652, 2.300, 3.344, 4.602, 

1.757, 2.324, 3.376, 4.663 

 

Table 1: Data summary of Set I 

 

Min. 1st Qu. Median Mean 3rd Qu. Max. Standard 

deviation 

Skewness Kurtosis 

0.040 1.839 2.354 2.557 3.393 4.663 1.1187 0.0994 2.3476 

 

TABLE 2: MLEs of the Model Parameters Using Real Life Data Set I, the Resulting SEs in parentheses and also 

Criteria for Comparison 

 

 

Distribution 

                           MLE Log-

Likelihood AIC BIC 

 

HQIC 

̂  ̂  â  b̂  

WIW 0.27782 
(0.66356) 

3.68856 
(0.73083) 

0.83379 
(0.36647) 

0.43344 
(0.10217) 

270.4543 278.4543 288.1776 282.363 

IW   1.36455 

(0.15162) 

0.83870 

(0.05211) 

389.0733 393.0733 397.9349 395.0276 

KIW 2.45109 

(0.51935) 

9.840455 

(3.09715) 

0.506791 

(0.04567) 

1.58032 

(0.33485) 

317.1457 325.1457 334.869 326.0772 

WIE 0.01773 
(0.03591) 

1.64762 
(0.24593) 

0.22424 
(0.19445) 

 279.985 285.985 293.2775 291.8937 
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Data Set II: The uncensored data set corresponding to intervals in days  between 109 successive coal-mining disasters 

in Great Britain, for the period 1875-1951, published by Maguire et al. [14]. The sorted data are given as follows: 1,  4,  

4 , 7 , 11 , 13 , 15 , 15 , 17 , 18 , 19 , 19,  20,  20,  22,  23,  28  ,29 , 31 , 32 , 36, 37 , 47 , 48 , 49 , 50 ,54 , 54 , 55 , 59 , 

59,  61, 61, 66, 72, 72 ,75 ,78 ,78 ,81 ,93 ,96 ,99 ,108 ,113, 114, 120, 120, 120,123, 124, 129, 131, 137, 145, 151, 156, 
171, 176, 182, 188, 189, 195, 203, 208, 215, 217, 217, 217, 224, 228,233, 255, 271, 275, 275, 275, 286, 291, 312, 312, 

312, 315, 326, 326, 329, 330, 336, 338, 345, 348, 354, 361,364 ,369, 378, 390, 457, 467, 498, 517, 566, 644, 745, 871, 

1312, 1357, 1613 ,1630 

 

Table 3: Data Summary of Set II 

 

Min. 1st Qu. Median Mean 3rd Qu. Max. Standard 

deviation 

skewness Kurtosis 

1.0 54.0 145.0 233.3 312.0 1630.0 296.4344 2.9571 12.9943 

 

TABLE 4: MLEs of the Model Parameters Using Real Life Data Set II, the Resulting SEs in parentheses and 

also Criteria for Comparison 

 

Distribution 
MLE Log-

likelihood 
AIC BIC HQIC 

̂  ̂  â  b̂  

WIW 
0.00559 

(0.002013) 

0.78465 

(0.44811) 

0.52299 

(0.39122) 

1.10876 

(0.63748) 
1403.216 1411.216 1421.981 1415.582 

IW _ _ 
5.08664 

(0.64263) 

0.45826 

(0.03093) 
1484.986 1488.986 1494.369 1491.169 

KIW 
3.46344 

(1.48353) 

2.61520 

(0.71911) 

0.45292 

(0.05072) 

3.46070 

(1.48236) 
1428.788 1436.788 1447.553 1438.062 

WIE 
0.01333 

(0.01112) 

0.72502 

(0.05721) 

0.50450 

(0.49910) 
_ 1409.713 1415.713 1423.787 1422.079 

 

Data Set III: The following data set is from Kotz and Johnson [15] and represents the survival times (in years) after 

diagnosis of 43 patients with a certain kind of leukemia: 0.019, 0.129, 0.159, 0.203, 0.485, 0.636, 0.748, 0.781, 

0.869,1.175, 1.206, 1.219, 1.219, 1.282, 1.356, 1.362, 1.458, 1.564, 1.586, 1.592, 1.781, 1.923, 1.959, 2.134, 2.413, 

2.466, 2.548, 2.652, 2.951, 3.038, 3.600, 3.655, 3.745, 4.203, 4.690, 4.888, 5.143, 5.167, 5.603, 5.633, 6.192, 6.655, 

6.874 

 

Table 5: Data Summary of Data set III 

 

Min. 1st Qu. Median Mean 3rd Qu. Max. Standard 

deviation 

Skewness Kurtosis 

0.019 1.212 1.923 2.534 3.700 6.874 1.927 0.7448 2.4363 

 

TABLE 6: MLEs of the Model Parameters Using Real Life Data Set III, the Resulting SEs in parentheses and 

also Criteria for Comparison 

 

Distribution
 

MLE Log 

Likelihood AIC BIC 
 

 HQIC 
̂  ̂  â  b̂  

WIW 0.00236 

(0.00041) 

1.42731 

(0.61655) 

0.03212 

(0.04673) 

0.82395 

(0.38257) 
163.6384 171.6384 178.6832 174.2363 

IW _ _ 0.90316 

(0.15019) 

0.62623 

(0.06041) 

204.7781 208.7781 212.3005 210.0771 

KIW 1.58729 

(1.59624) 

5.26328 

(2.19729) 

0.39055 

(0.05615) 

1.57042 

(1.57928) 

184.7468 192.7468 199.7916 192.6952 

WIE 0.01467 

(0.01806) 

0.97236 

(0.12633) 

0.03221 

(0.03266) 

_ 166.5454 172.5454 181.5902 177.1433 

 

Figure 5 (a), 5(b) and 5(c) show the fitted density functions of Weibull Inverse Weibull, Inverse Weibull, 

Kumaraswamy Inverse Weibull and Weibull Inverse exponential distributions  



      International Journal of Enhanced Research in Management & Computer Applications 

ISSN: 2319-7471, Vol. 6, Issue 11, November-2017, Impact Factor: 3.578 

 

Page | 231 

 

 
 

 

X. CONCLUSION 

 

This manuscript deals with the introduction of new Weibull Inverse Weibull distribution which is the obtained by 

Weibull G technique. The main aim of the paper is to study its different statistical properties like moments, harmonic 

mean, survival function, hazard rate, Renyi entropy and maximum likelihood estimation. Moreover, the postulated 

distribution is compared with the different models for flexibility and testing of better fit. This newly proposed model 
has been applied to the three real life data sets for competence. The results obtained are displayed in table 2, 4 and 6 

respectively which show that the proposed distribution has lesser values of AIC, BIC and HQIC than the various 

models and same is also clearly depicted by the fitted probability densities of the different models. This proves that the 

newly developed model provides better fit for modeling lifetime data sets. 
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