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ABSTRACT 

Spatiotemporal data mining studies the process of discovering interesting and previously unknown, but 

potentially useful patterns from large spatiotemporal databases. It has broad application domains including 

ecology and environmental management, public safety, transportation, earth science, epidemiology, and 

climatology. In this survey, we review recent computational techniques and tools in spatiotemporal data mining, 

focusing on several major pattern families: spatiotemporal outlier, spatiotemporal coupling and tele-coupling, 

spatiotemporal prediction, spatiotemporal partitioning and summarization, spatiotemporal hotspots, and 

change detection. Compared with other surveys in the literature, this paper emphasizes the statistical 

foundations of spatiotemporal data mining and provides comprehensive coverage of computational approaches 

for various pattern families. 

 

Keywords: spatiotemporal data mining; survey; patio-temporal statistics; spatiotemporal patterns. 

 

 
1. INTRODUCTION 

 

Explosive growth in geospatial and temporal data as well as the emergence of new technologies emphasize the need for 

automated discovery of spatiotemporal knowledge. Spatiotemporal data mining studies the process of discovering 

interesting and previously unknown, but potentially useful patterns from large spatial and spatiotemporal database. 

Figure 1 shows the process of spatiotemporal data mining. Given input spatiotemporal data, the first step is often 

preprocessing to correct noise, errors, and missing data and exploratory space-time analysis to understand the 

underlying spatiotemporal distributions. Then, an appropriate spatiotemporal data mining algorithm is selected to run 

on the preprocessed data, and produce output patterns. Common output pattern families include spatiotemporal outliers, 

associations and tele-couplings, predictive models, partitions and summarization, hotspots, as well as change patterns. 

Spatiotemporal data mining algorithms often have statistical foundations and integrate scalable computational 

techniques. Output patterns are post-processed and then interpreted by domain scientists to find novel insights and 
refine data mining algorithms when needed. 

 

 
 

Figure 1. The process of spatiotemporal data mining. 
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2. INPUT: SPATIAL AND SPATIOTEMPORAL DATA 

 

One important aspect of spatiotemporal data mining is its input data. This section provides a taxonomy of different 

spatial and spatiotemporal data types. The section also summarizes their unique data attributes and relationships. The 

goal is to provide a systematic overview of different techniques in spatiotemporal data mining tasks. 
 

Types of Spatial and Spatiotemporal Data 

 

The data inputs of spatiotemporal data mining tasks are more complex than the inputs of classical data science tasks 

because they include discrete representations of continuous space and time. Table 1 gives a taxonomy of different 

spatial and spatiotemporal data types (or models). Spatial data can be categorized into three models, i.e., the object 

model, the field model, and the spatial network model [3,32]. Spatiotemporal data, based on how temporal information 

is additionally modeled, can be categorized into three types, i.e., temporal snapshot model, temporal change model, and 

event or process model [33–35]. In the temporal snapshot model, spatial layers of the same theme are time-stamped. 

For instance, if the spatial layers are points or multi-points, their temporal snapshots are trajectories of points or spatial 

time series (i.e., variables observed at different times on fixed locations). Similarly, snapshots can represent trajectories 

of lines and polygons, raster time series, and spatiotemporal networks such as time expanded graphs (TEGs) and time 
aggregate graphs (TEGs) [36,37]. The temporal change model represents spatiotemporal data with a spatial layer at a 

given start time together with incremental changes occurring afterward. For instance, it can represent motion (e.g., 

Brownian motion, random walk [38]) as well as speed and acceleration on spatial points, as well as rotation and 

deformation on lines and polygons. Event and process models represent temporal information in terms of events or 

processes. One way to distinguish events from processes is that events are entities whose properties are possessed 

timelessly and therefore are not subject to change over time, whereas processes are entities that are subject to change 

over time (e.g., a process may be said to be accelerating or slowing down) . 

 

Table 1: Taxonomy of Spatial and Spatiotemporal Data Models. 

 

 

  Snapshot Temporal    

Spatial Data Temporal   s Change  Events/Processes 

  (Time (Delta/Derivativ    

  Series) e)     

       

   displacement/motion    

 point(s) 1. point trajectories (e.g.,  spatial/spatiotemporal 

object   Brownian motion,  process  

  2. spatial time series random  point : Poisson, 

model   walk),  Cox, or Cluster 

   speed/acceleration process  

       

  line motion/extension/rotat    

 line(s) trajectories ion,  line process  

   deformation,    

   split/merge    

       

 polygon(  motion/expansion/rotat    

 s) polygon trajectories ion/  flat process  

   deformation,    

   split/merge    

      

field regular, raster time series change across raster cellular automation 

   snapshot     

model irregular  s     

        

  spatiotemporal additio or removal  rando  

Spatial graph network: n of 1. m geometric 

  1. time expanded nodes and graph   

network  graph, edges  ;   
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  time aggregated   2. spatiotemporal 

Model  graph;   event or  

  2. network   process on spatial 

  flow   network;  
 

 

Data Attributes and Relationships 

 

There are three distinct types of data attributes for spatiotemporal data: non-spatiotemporal attributes, spatial attributes, 

and temporal attributes. Non-spatiotemporal attributes are used to characterize non-contextual features of objects, such 

as name, population, and unemployment rate for a city. They are the same as the attributes used in the data inputs of 

classical data mining [40]. Spatial attributes are used to define the spatial location (e.g., longitude and latitude), spatial 

extent (e.g., area, perimeter) [41,42], shape, as well as elevation defined in a spatial reference frame. Temporal 

attributes include the timestamp of a spatial object, a raster layer, or a spatial network snapshot, as well as the duration 

of a process. Relationships on these data attributes are summarized in Tables 2 and 3. 
  

Table 2. Common Relationships among Non-spatial and Spatial Attributes. 

 

 

Attributes Categories Relationships 

   

non-spatial nominal Explicit 

 ordinal Arithmetic 

 interval Ordering 

 Ratio instance of 

  subclass of 

spatial location Often implicit 

 area set space: union, intersection, membership, etc. 

 perimeter topological space: meet, within, overlap, etc. 

 shape metric space: metric: distance, area, perimeter. 

  directional: above, below, northeastern 

  others: shape based and visibility 

 

 

Table 3. Relationships on Spatiotemporal Data. 

 

Spatial Data Temporal Snapshots Change    Event/Process 

  (Time                     

  Series)          (Delta/Derivative)        

                          

  1            1.           

object point(s), .  spatiotemporal displacement/motion 1.   spatiotemporal 

  predicates              co-variance 

model line(s), [43]           speed/acceleration [38]    

                     

 polygon(s 2                       

 ) .     trajectory attraction/repulsion 2.   spatiotemporal 

               2. (for line and coupling for 

  distance [44,45] polygon)    point   events 

  3        time            

  .  spatial     series extension/expansion, or extended  spatial 

               rotatio deformation objects [48– 
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  correlation [46], n, , 53]     

               split/merg           

  tele-connection [47] e           

                          

  1. cubic map algebra local,    cellular automation 

field Regular [54]           focal, zonal change [55]    
             

  2   correlation            

model Irregular .  temporal , across snapshots [29]        

  tele-connection            

                        

  1 predecessor/successo i    spatiotemporal 

spatial graph .            r change  n centrality, coupling of 

networ               connectivi           

k  on a Lagrangian path ty    network events 

  2 temporal centrality            

  .    [56]            

                     

 

3. STATISTICAL FOUNDATIONS 

 

This section provides a taxonomy of common statistical concepts for different spatial and spatiotemporal data types. 
Spatial and spatiotemporal statistics are distinct from classical statistics due to the unique characteristics of space and 

time. One important property of spatial data is spatial dependency, a property so fundamental that geographers have 

elevated it to the status of the first law of geography: ―Everything is related to everything else, but nearby things are 

more related than distant things‖ [65]. Spatial dependency is also measured using spatial autocorrelation. Other 

important properties include spatial heterogeneity, temporal autocorrelation and non-stationarity, as well as the multiple 

scale effect. 

 

Spatial Statistics for Different Types of Spatial Data 

 

Spatial statistics [38,66–68] is a branch of statistics concerned with the analysis and modeling of spatial data. The main 

difference between spatial statistics and classical statistics is that spatial data often fails to meet the assumption of an 

identical and independent distribution (i.i.d.). As summarized in Table 4, spatial statistics can be categorized according 
to their underlying spatial data type: Geostatistics for point referenced data, lattice statistics for areal data, and spatial 

point process for spatial point patterns. 

 

Another important issue is the modifiable areal unit problem (MAUP) (also called the multi-scale effect) [73], an effect 

in spatial analysis that results for the same analysis method will change on different aggregation scales. For example, 

analysis using data aggregated by states will differ from analysis using data at individual family level. 

 

Spatial point processes: A spatial point process is a model for the spatial distribution of the points in a point pattern. It 

differs from point reference data in that the random variables are locations. Examples include positions of trees in a 

forest and locations of bird habitats in a wetland. One basic type of point process is a homogeneous spatial Poisson 

point process (also called complete spatial randomness, or CSR) [38], where point locations are mutually independent 
with the same intensity over space. However, real world spatial point processes often show either spatial aggregation 

(clustering) or spatial inhibition instead of complete spatial independence as in CSR. Spatial statistics such as Ripley’s 

K function [74,75], i.e., the average number of points within a certain distance of a given point over the total average 

intensity, can be used to test a point pattern against CSR. Moreover, real world spatial point processes such as crime 

events often contain hotspot areas instead of following homogeneous intensity across space. A spatial scan statistic [76] 

can be used to detect these hotspot patterns. It tests if the intensity of points inside a scanning window is significantly 

higher (or lower) than outside. Though both the K-function and spatial scan statistics have the same null hypothesis of 

CSR, their alternative hypotheses are quite different: the K-function tests if points exhibit spatial aggregation or 

inhibition instead of independence, while spatial scan statistics assume that points are independent and test if a hotspot 

with much higher intensity exists. Finally, there are other spatial point processes such as the Cox process, in which the 

intensity function itself is a random function over space, as well as a cluster process, which extends a basic point 

process with a small cluster centered on each original point [38]. For extended spatial objects such as lines and 
polygons, spatial point processes can be generalized to line processes and flat processes in stochastic geometry [77]. 

  

Spatial network statistics: Most spatial statistics research focuses on the Euclidean space. Spatial statistics on the 

network space is much less studied. Spatial network space, e.g., river networks and street networks, is important in 
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applications of environmental science and public safety analysis. However, it poses unique challenges including 

directionality and anisotropy of spatial dependency, connectivity, as well as high computational cost. Statistical 

properties of random fields on a network are summarized in [78]. Recently, several spatial statistics, such as spatial 

autocorrelation, K-function, and Kriging, have been generalized to spatial networks [79– 81]. Little research has been 

done on spatiotemporal statistics on the network space. 

 

Spatiotemporal Statistics 

 

Spatiotemporal statistics [38,82] combine spatial statistics with temporal statistics (time series analysis [83], dynamic 

models [82]). Table 4 summarizes common statistics for different spatiotemporal data types, including spatial time 

series, spatiotemporal point process, and time series of lattice (areal) data. 

 

4. OUTPUT PATTERN FAMILIES 

 

Spatiotemporal Outlier 

What are Spatiotemporal Outliers? 

 

To understand the meaning of spatiotemporal outliers, it is useful first to consider global outliers. Global outliers [86–
88] have been informally defined as observations in a data set which appear to be inconsistent with the remainder of 

that set of data, or which deviate so much from other observations as to arouse suspicions that they were generated by a 

different mechanism. In contrast, a spatiotemporal outlier [89–92] is a spatially and temporally referenced object whose 

non-spatiotemporal attribute values differ significantly from those of other objects in its spatiotemporal neighborhood. 

Informally, a spatiotemporal outlier is a local instability or discontinuity. 

 

Application Domains 

 

Detecting spatiotemporal outliers is useful in many applications including transportation, ecology, homeland security, 

public health, climatology, and location-based services [93,94]. For example, spatiotemporal outlier detection can be 

used to detect anomalous traffic patterns from sensor observations on a highway road network. 

 

Statistical Foundation 

 

The spatial statistics for spatial outlier detection are also applicable to spatiotemporal outliers as long as spatiotemporal 

neighborhoods are well-defined. The literature provides two kinds of bi-partite multidimensional tests: graphical tests, 

including variogram clouds [95] and Moran scatterplots [68,96], and quantitative tests, including scatterplot [97] and 

neighborhood spatial statistics [93,98]. 

 

Common Approaches 

  

The intuition behind spatiotemporal outlier detection is that they reflect ―discontinuity‖ on non-spatiotemporal 

attributes within a spatiotemporal neighborhood. Approaches can be summarized according to the input data types. 

 

Spatiotemporal Couplings and Tele-Couplings 

What are Spatiotemporal Couplings and Tele-Couplings? 

 

Spatiotemporal coupling patterns represent spatiotemporal object types whose instances often occur in close geographic 

and temporal proximity. These patterns can be categorized according to whether there exists temporal ordering of 

object types: spatiotemporal (mixed drove) co-occurrences [48] are used for unordered patterns, spatiotemporal 

cascades [51] for partially ordered patterns, and spatiotemporal sequential patterns [53] for totally ordered patterns. 

Spatiotemporal tele-coupling [46] is the pattern of significantly positive or negative temporal correlation between 

spatial time series data at a great distance. 

 

Application Domains 

 

Discovering various patterns of spatiotemporal coupling and tele-coupling is important in applications related to 

ecology, environmental science, public safety, and climate science. For example, identifying spatiotemporal cascade 

patterns from crime event datasets can help police department to understand crime generators in a city, and thus take 

effective measures to reduce crime events [116]. 

 

Statistical Foundation 

 

The underlying statistic for spatiotemporal coupling patterns is the spatiotemporal cross K function [117], which 

extends spatiotemporal Ripley’s K function (Section 3.2) to the case of multiple variables. 
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Common Approaches 

 

Mixed Drove Spatiotemporal Co-Occurrence Patterns represent subsets of two or more different object-types whose 

instances are often located in spatial and temporal proximity. Discovering MDCOPs is potentially useful in identifying 

tactics in battlefields and games, understanding predator-prey interactions, and in transportation (road and network) 

planning [118,119]. However, mining MDCOPs is computationally very expensive because the interest measures are 
computationally complex, datasets are larger due to the archival history, and the set of candidate patterns is exponential 

in the number of object-types. Recent work has produced a monotonic composite interest measure for discovering 

MDCOPs and novel MDCOP mining algorithms are presented in [48,120]. A filter-and-refine approach has also been 

proposed to identify spatiotemporal co-occurrence on extended spatial objects [49]. 

 

Spatial time series and tele-connection: Given a collection of spatial time series at different locations, teleconnection 

discovery aims to identify pairs of spatial time series whose correlation is above a given threshold. Tele-connection 

patterns are important in understanding oscillations in climate science. Computational challenges arise from the length 

of the time series and the large number of candidate pairs and the length of time series. An efficient index structure, 

called cone-tree, as well as a filter and refine approach [46,127] have been proposed which utilize spatial 

autocorrelation of nearby spatial time series to filter out redundant pair-wise correlation 

  
computation. Another challenge is spurious ―high correlation‖ pairs of locations that happen by chance. Recently, 

statistical significant tests have been proposed to identify statistically significant tele-connection patterns called dipoles 

from climate data [47]. The approach uses a ―wild bootstrap‖ to capture the spatio-temporal dependencies, and takes 

account of the spatial autocorrelation, the seasonality and the trend in the time series over a period of time. 

 

Spatiotemporal Prediction 

What is Spatiotemporal Prediction? 

 

Given spatiotemporal data items, with a set of explanatory variables (also called explanatory attributes or features) and 

a dependent variable (also called target variables), the spatiotemporal prediction problem aims to learn a model that can 

predict the dependent variable from the explanatory variables. When the dependent variable is discrete, the problem is 
called spatiotemporal classification. When the dependent variable is continuous, the problem is spatiotemporal 

regression. One example of spatiotemporal classification problem is remote sensing image classification over temporal 

snapshots [128], where the explanatory variables consists of various spectral bands or channels (e.g., blue, green, red, 

infra-red, thermal, etc.) and the dependent variable is a thematic class such as forest, urban, water, and agriculture. 

Examples of spatiotemporal regression include yearly crop yield prediction [129], and daily temperature prediction at 

different locations. 

 

Application Domains 

 

Spatiotemporal prediction has broad applications such as land cover classification on remote sensing images [130], 

future trends projection in global or regional climate variables [131], and real estate price modeling [132]. 

 

Statistical Foundation 

 

The statistical foundation of spatiotemporal prediction techniques includes classical statistics augmented to account for 

lagged (spatially and temporally) variables [133], as well as spatiotemporal statistics including spatial and temporal 

autocorrelation, spatial heterogeneity and temporal non-stationary, as well as the multi-scale effect (introduced in the 

Section 3). 

 

Common Approaches 

 

Spatiotemporal Autoregressive Regression (STAR): In the spatial auto regression model, the spatial dependencies of 

the error term, or, the dependent variable, are directly modeled in the regression equation [134]. If the dependent values 
yi are related to each other, then the regression equation can be modified as y = W y + X + , where W is the 

neighborhood relationship contiguity matrix and is a parameter that reflects the strength of the spatial dependencies 

between the elements of the dependent variable via the logistic function for binary dependent variables. 

SpatioTemporal Autoregressive Regression (STAR) extends SAR by further explicitly modeling the temporal and 

spatiotemporal dependency across variables at different locations. More details can be found in [68]. 

 

Spatiotemporal Partitioning and Summarization 

What is Spatiotemporal Partitioning and Summarization? 

 

Spatiotemporal partitioning, or Spatio-temporal clustering is the process of grouping similar spatiotemporal data items, 

and thus partitioning the underlying space and time [27]. It is important in many societal applications. For example, 
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partitioning and summarizing crime data, which is spatial and temporal in nature, helps law enforcement agencies find 

trends of crimes and effectively deploy their police resources. It is important to note that spatiotemporal partitioning or 

clustering is closely related to, but not the same as spatiotemporal hotspot detection. Hotspots can be considered as 

special clusters such that events or activities inside a cluster have much higher intensity than outside. 

 

Spatiotemporal summarization aims to provide a compact representation of spatiotemporal data. For example, traffic 
accident events on a road network can be summarized into several main routes that cover most of the accidents. 

Spatiotemporal summarization is often done after or together with spatiotemporal partitioning so that objects in each 

partition can be summarized by aggregated statistics or representative objects. 

 

Application Domains 

 

Spatiotemporal partitioning and summarization are important in many societal applications such as public safety, public 

health, and environmental science. For example, partitioning and summarizing crime data, which is spatial and 

temporal in nature, helps law enforcement agencies find trends of crimes and effectively deploy their police resources 

[135]. 

 

Statistical Foundation 

 

Relevant statistics for spatiotemporal partitioning and summarization include spatiotemporal point density estimation 

[38] (e.g., Kernel density function), and temporal correlation for spatial time series, etc. 

 

Table 4: Summarization Framework for Various Data Types. 

 

Data Types Partition Definition Summarization 

   

  aggregate statistics: sum, count, mean, 

classical data partition of rows of records etc. 

   

spatial data 

partition of Euclidean space representatives: centroids, medoids, etc. 

partition of spatial network representatives: K main routes, etc.  

   

 partition of trajectories on  

spatio-temporal data a representatives: K primary corridors, etc. 

 spatial or spatio-temprol  

 network  

   

 

Spatiotemporal Hotspots 

 What are Spatiotemporal Hotspots? 

  

Given a set of spatial objects (e.g., activity locations) in a study area, spatiotemporal hotspots are regions together 

certain time intervals where the number of objects is anomalously or unexpectedly high within the time intervals. 

Spatiotemporal hotspots are a special kind of clustered pattern whose inside has significantly higher intensity than 

outside. 

 

Application Domains 

 

Application domains for spatiotemporal hotspot detection range from public health to criminology. For example, in 

epidemiology finding disease hotspots allows officials to detect an epidemic and allocate resources to limit its spread 

[152]. 

 

Statistical Foundation 

 

Spatiotemporal scan statistics [76,152] are used to detect statistically significant hotspots from spatiotemporal datasets. 

It uses a cylinder to scan the space-time for candidate hotspots and perform hypothesis testing. The null hypothesis 

states that the activity points are distributed randomly according to a homogeneous (i.e., same intensity) Poisson 

process over the geographical space. The alternative hypothesis states that the inside of the cylinder has higher intensity 
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of activities than outside. A test statistic called the log likelihood ratio is computed for each candidate hotspot (or 

cylinder) and the candidate with the highest likelihood ratio can be evaluated using a significance value (i.e., p-value). 

 

5. SPATIAL AND SPATIOTEMPORAL ANALYSIS TOOLS 

 

This section lists currently existing spatial and spatiotemporal analysis tools, including geographic information system 
(GIS) software, spatial and spatiotemporal statistical tools, spatial database management systems, as well as spatial big 

data platforms. 

 

GIS Softwares: ArcGIS [175] is the currently most widely used commercial GIS software for working with maps and 

geographic information. It has an extension named Tracking Analyst to support visualization and analysis for 

spatiotemporal data. QGIS [176] (previously Quantum GIS) is a very popular open source GIS software. 

 

Spatial Statistical Tools: R provides many packages for spatial and spatiotemporal statistical analysis [177], such as 

spatstat for point pattern analysis, gstat and geoR for Geostatistics, spdep for areal data analysis. Matlab also provides 

Mapping Toolbox [178] and other spatial statistical toolboxes. SAS recently provides support on spatial statistics [179] 

such as KRIGE2D Procedure for Kriging, SIM2D 

  
Procedure for Gaussian random field, SPP Procedure for spatial point pattern, and VARIOGRAM Procedure for 

variograms. 

 

6. RESEARCH TREND AND FUTURE RESEARCH NEEDS 

 

Most current research in spatiotemporal data mining uses Euclidean space, which often assumes isotropic property and 

symmetric neighborhoods. However, in many real world applications, the underlying space is network space, such as 

river networks and road networks [187–189]. One of the main challenges in spatial and spatiotemporal network data 

mining is to account for the network structure in the dataset. For example, in anomaly detection, spatial techniques do 

not consider the spatial network structure of the dataset, that is, they may not be able to model graph properties such as 

one-ways, connectivity, left-turns, etc. The network structure often violates the isotropic property and symmetry of 
neighborhoods, and instead, requires asymmetric neighborhood and directionality of neighborhood relationship (e.g., 

network flow direction). 

 

Recently, some cutting edge research has been conducted in the spatial network statistics and data mining [80]. For 

example, several spatial network statistical methods have been developed, e.g., network K function and network spatial 

autocorrelation. Several spatial analysis methods have also been generalized to the network space, such as network 

point cluster analysis and clumping method, network point density estimation, network spatial interpolation (Kriging), 

as well as network Huff model. Due to the nature of spatial network space as distinct from Euclidean space, these 

statistics and analysis often rely on advanced spatial network computational techniques [80]. 

 

We believe more spatiotemporal data mining research is still needed in the network space. First, though several spatial 

statistics and data mining techniques have been generalized to the network space, few spatiotemporal network statistics 
and data mining have been developed, and the vast majority of research is still in the Euclidean space. Future research 

is needed to develop more spatial network statistics, such as spatial network scan statistics, spatial network random 

field model, as well as spatiotemporal autoregressive models for networks. Furthermore, phenomena observed on 

spatiotemporal networks need to be interpreted in an appropriate frame of reference to prevent a mismatch between the 

nature of the observed phenomena and the mining algorithm. For instance, moving objects on a spatiotemporal network 

need to be studied from a traveler’s perspective, i.e., the Lagrangian frame of reference [190–192] instead of a snapshot 

view. This is because a traveler moving along a chosen path in a spatiotemporal network would experience a road-

segment (and its properties such as fuel efficiency, travel-time etc.) for the time at which he/she arrives at that segment, 

which may be distinct from the original departure-time at the start of the journey. These unique requirements as well as 

new computational approaches for spatiotemporal network data mining. 

 
Another future research need is to develop spatiotemporal graph big data platforms, motivated by the upcoming rich 

spatiotemporal network data collected from vehicles. Modern vehicles have rich instrumentation to measure hundreds 

of attributes at high frequency and are generating big data. 

 

7. SUMMARY 

  

This paper provides an over view of current research in the field of spatiotemporal data mining from a computational 

perspective. Spatiotemporal data mining has broad application domains including ecology and environmental 

management, public safety, transportation, earth science, epidemiology, and climatology. However, the complexity of 

spatiotemporal data and intrinsic relationships limits the usefulness of conventional data science techniques for 

extracting spatiotemporal patterns. We provide a taxonomy of different spatiotemporal data types and underlying 



      International Journal of Enhanced Research in Management & Computer Applications 

ISSN: 2319-7471, Vol. 6 Issue 6, June-2017, Impact Factor: 3.578 

Page | 115  

spatiotemporal statistics. We also review common spatiotemporal data mining techniques organized by major output 

pattern families: spatiotemporal outlier, spatiotemporal coupling and tele-coupling, spatiotemporal prediction, 

spatiotemporal partitioning and summarization, spatiotemporal hotspots, and change detection. Popular software tools 

for spatial and spatiotemporal data analysis are also listed. Finally, we discuss the cutting edge research areas and 

future research needs. 
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