

On a subspace of Cesaro Summable Difference Sequence Space $C_1(\Delta)$

Parth Sarthi

Assistant Professor Mathematics, Government College for Girls, Madlauda, Panipat (Haryana)

ABSTRACT

In this paper author prove that the subset $\{(x_k) \in C_1(\Delta) : ((x_1 - x_{k+1})/k) \text{ converges to zero}\}$ of the Cesaro summable difference sequence space $C_1(\Delta)$ is separable with respect to the norm $||.||_{\Delta}$ where $||x||_{\Delta} = |x_1| + \sup\{|(x_1 - x_{k+1})/k| : k \ge 1\}$. As a corollary of this, it is proved that the space $(l_{\omega}, ||.||_{\Delta})$ where l_{ω} the spaces of all bounded sequences $x = (x_k)$ with complex terms is separable. Thus the norms $||.||_{\Delta}$ and $||.||_{\omega}$ where $||x||_{\omega} = \sup\{|x_k| : k \ge 1\}$ on the set l_{ω} are not equivalent. MSC: 46A45, 54D65

Keywords: Sequence Space, Metric Space, Separable

1. INTRODUCTION

The normed linear space $(C_1(\Delta), ||.||_{\Delta})$ introduced in [1] is proved to be inseparable. But we see that the proof is not sound (see Remark 3.2 below). We don't know whether the Cesaro summable difference sequence space $C_1(\Delta)$ is separable or not. But we find a subset of $C_1(\Delta)$ containing the set l_{∞} which is separable with respect to the norm $||.||_{\Delta}$. It follows that $(l_{\infty}, ||.||_{\Delta})$ is separable. This proves that the norms $||.||_{\Delta}$ and $||.||_{\infty}$ are not equivalent.

2. NOTATION AND DEFINITIONS

IN, Q and IR denote the set of all natural numbers, the set of all rational numbers and the set of all real numbers respectively. By *s* we shall denote the linear space of all complex sequences over the field of complex numbers. l_{∞} denote the spaces of all bounded sequences $x = (x_k)$ with complex terms, respectively, normed by $||x||_{\infty} = \sup\{|x_k| : k \ge 1\}$. Let $C_0(\Delta) = \{(x_k) \in C_1(\Delta) : ((x_1 - x_{k+1})/k) \text{ converges to zero}\}$. A sequence space X is called normal or solid if $y = (y_k) \in X$ whenever $|y_k| \le (x_k)$, $k \ge 1$, for some $(x_k) \in X$.

3. SEPARABLE, NORMAL SPACE

Lemma. 3.1. Let (X,d) be a separable metric space. Let $\delta > 0$. Let A be a non-empty subset of X such that $d(a,b) > \delta$ for every two distinct points a, b of A. Then A is countable.

Proof. We prove the result by contradiction. Suppose not. Then A is uncountable. Let D be any dense set in (X,d). We define a function $f : A \rightarrow D$ as follows. Let $a \in A$. Since D is dense in (X,d), so there is some $a_D \in D$ such that $d(a,a_D) < \delta/2$. By axiom of choice, we can set $f(a) = a_D$. We prove that f is one-one. Let $a, b \in A, a \neq b$. Now by given condition, $d(a,b) > \delta$. Now $d(a,b) \le d(a,b_D) + d(b_D,b) < d(a, b_D) + \delta/2$. This implies that $d(a, b_D) > \delta/2$. Therefore $a_D \neq b_D$. Thus f is one-one. This proves that D is uncountable as A is uncountable. Hence X is not separable which is a contradiction to the given condition. The proof is complete.

Remark. 3.2. Since the real line IR is separable, it follows from Lemma 3.1 that the set A taken in the proof of Theorem 3.7 of [1] is countable. So the proof is not sound to prove $C_1(\Delta)$ as an inseparable space.

Corollary. 3.3. If a metric space (X,d) has an uncountable set A such that for every two distinct points a, b of A, $d(a,b) > \delta$ for some $\delta > 0$, then X is inseparable.

We don't know whether the sequence space $(C_1(\Delta), ||.||_{\Delta})$ is separable or not. But below, we prove that $C_0(\Delta)$ is separable with respect to the norm $||.||_{\Delta}$. As a corollary of this, we see that the space $(l_{\infty}, ||.||_{\Delta})$ is also separable.

Theorem. 3.4. The sequence space $(C_0(\Delta), ||.||_{\Delta})$ is separable.

Proof. Let $A = \{y = (y_k) : y_k \in Q \text{ for } 1 \le k \le n \text{ and } y_k = 0 \text{ for } k > n, n \in IN\}$. Then A is countable. Also A is a subset of $C_0(\Delta)$. We prove that A is dense in $(C_0(\Delta), ||.||_{\Delta})$. Let $\in > 0$. Let $x = (x_k) \in C_0(\Delta)$. Then $((x_1 - x_{k+1})/k)$ converges to zero. So there is some natural number p such that $|(x_1 - x_{k+1})/k| < \epsilon/6$ for all $k \ge p$. Let m be a natural number such that $|x_1|/m < \epsilon/6$. Let $t = max\{p,m\}$. Then $|(x_1 - x_{k+1})/k| < \epsilon/6$ for all $k \ge t$ and $|x_1|/t < \epsilon/6$. Since Q is dense in the real line, so there is rational numbers y_k , $1 \le k \le t$ such that $|x_k - y_k| < \epsilon/6$. We set $y_k = 0$ for k > t. Let $y = (y_k)$. Then $y \in A$. Now $||x - y||_{\Delta} = |x_1 - y_1| + \sup\{|((x_1 - y_1) - (x_{k+1} - y_{k+1}))/k| \le k \le 1\}$. Now for $1 \le k \le t - 1$, $|((x_1 - y_1) - (x_{k+1} - y_{k+1}))/k| \le |x_1 - y_1|/k + |x_{k+1} - y_{k+1}|/k < \epsilon/6k + \epsilon/6k = \epsilon/3k < \epsilon/3$. For $k \ge t$, $|((x_1 - y_1) - (x_{k+1} - y_{k+1}))/k| = |((x_1 - y_1) - (x_{k+1} - y_1)| + |x_{k+1}/k| < \epsilon/6 + |(x_{k+1} - x_1)/k| + |x_1/k| < \epsilon/6 + \epsilon/6 + \epsilon/6 = \epsilon/2$. It follows that $||x - y||_{\Delta} < \epsilon/6 + \epsilon/6 + \epsilon/6 + \epsilon/2 < \epsilon$. This proves that A is dense in $(C_0(\Delta), ||.||_{\Delta})$.

Lemma. 3.5. $l_{\infty} \subset C_0(\Delta)$. Proof. Let $x = (x_k) \in l_{\infty}$. Then there exists M > 0 such that $|x_1 - x_{k+1}| \le M$ for all $k \ge 1$, and so $((x_1 - x_{k+1})/k) \to 0$ as $k \to \infty$.

Theorem. 3.6. The sequence space $(l_{\infty}, ||.||_{\Delta})$ is separable. Proof. Since subspace of a separable metric space is separable, so the theorem follows by Lemma 3.5 and Theorem 3.4.

Remark. 3.7. By Theorem 3.6, we see that the norms $||.||_{\Delta}$ and $||.||_{\infty}$ where $||x||_{\infty} = \sup\{|x_k| : k \ge 1\}$ on the set l_{∞} are not equivalent.

Theorem. 3.8. $C_0(\Delta)$ is normal or solid.

Proof. Let (y_k) be such that $|y_k| \le |x_k|$ for some $(x_k) \in C_0(\Delta)$. We prove that $(y_k) \in C_0(\Delta)$. Let $\in > 0$. Then there is some natural number p such that $|(x_1 - x_{k+1})/k| < \epsilon/6$ for all $k \ge p$. Let m be a natural number such that $|x_1|/m < \epsilon/6$. Let $t = \max\{p,m\}$. Then $|(x_1 - x_{k+1})/k| < \epsilon/6$ for all $k \ge t$ and $|x_1|/t < \epsilon/6$. Now all $k \ge t$, $|(y_1 - y_{k+1})/k| \le |y_1/k| + |y_{k+1}/k| \le |x_1/k| + |x_{k+1}/k| \le \epsilon/6 + |(x_{k+1} - x_1)/k| + |x_1/k| < \epsilon/6 + \epsilon/6 < \epsilon$. This proves that $(y_k) \in C_0(\Delta)$. Thus $C_0(\Delta)$ is normal.

REFERENCES

[1] V.K. Bhardwaj and S. Gupta, Journal of Inequalities and Applications 2013, 2013:315.