Role of Platelet Concentrates in Periodontics

Dr. Manpreet Kaur¹, Dr. Avneet Dengre²

¹Department of Periodontics, Post Graduate Institute of Dental Sciences, Rohtak
²Department of Pedodontics and Preventive Dentistry, Post Graduate Institute of Dental Sciences, Rohtak

ABSTRACT

Platelet rich plasma and platelet rich fibrin are utilized in periodontal regeneration because of their advantages over other regenerating materials. These are autologous materials, cost effective as compared to other regenerative materials. However, more extensive use of PRF requires further investigation.

INTRODUCTION

Platelets contains growth factors that are released during degranulation of platelets. Growth factors enhance the healing in wound. Growth factors also stimulate cell migration and proliferation within the fibrin matrix. Based on healing potential of platelets, platelet rich concentrates are utilized in periodontal regeneration.

TYPES OF PLATELET CONCENTRATES

Platelet concentrates are of two types:

- First generation platelet concentrate: Platelet rich plasma (PRP), platelet derived growth factors (PDGF)
- Second generation platelet concentrate: Platelet-rich fibrin (PRF)

Depending on leucocyte and fibrin content four categories has been proposed¹:

- Pure platelet-rich plasma (P-PRP)
- Leucocyte- and platelet-rich plasma (L-PRP)
- Pure platelet- rich fibrin (P-PRF)
- Leucocyte and platelet-rich fibrin (L-PRF) such as Choukroun’s PRF

PLATELET RICH PLASMA (PRP) — FIRST GENERATION PLATELET CONCENTRATE

Procedure for formation of PRP²:

Formation of PRP requires two centrifugation procedures. Autologous venous blood is taken with anticoagulant. The first centrifugation also known as “soft spin” separates blood in three layers. Red blood corpuscles (55% of total volume) forms at bottom of tube. Acellular plasma layer(40% of total volume) forms at the top of tube and is known as platelet-poor plasma (PPP). An intermediate layer (5% of total volume) known as “buffy coat.” PPP, PRP, and some red blood corpuscles are aspirated with help of sterile syringe and transferred to another tube, without anticoagulant. This second tube will then undergo another centrifugation (“hard spin”). 3 distinct layers are obtained with intermediate layer of PRP. With a syringe, major part of acellular plasma is discarded. The unit is then gently shaken to obtain a ready-to-use PRP. At time of application, PRP is then mixed with bovine thrombin and calcium chloride. Polymerization of fibrinogen leads to fibrin matrix formation.
Uses of PRP:

In treatment of periodontal intrabony defects3-5,6, furcation defects6 and ridge augmentation7.

Advantage of PRP:

- PRP increases the concentration of platelets by up to 338\%8.
- Autologous preparations from patients own blood.
- Decreases the cost of the regeneration therapy9.

Disadvantages of PRP:

- Addition of bovine thrombin and calcium chloride influence the mechanical and biologic properties of the final fibrin matrix10.
- Rigid fibrin meshwork is not favourable for cellular migration and incorporation of cytokines2,10.
- Release of cytokines in PRP is limited as compared to that of cytokines in PRF2,10.

PLATELET-RICH FIBRIN—SECOND GENERATION PLATELET CONCENTRATE

Choukroun et al developed PRF in France11.

Procedure for formation of PRF2:

A blood sample is taken without anticoagulant in 10-mL tubes which are immediately centrifuged at 3000 rpm (approximately 400g according to our calculations) for 10 minutes. Centrifugation leads to formation of fibrin clot in the middle of tube with acellular plasma at top and red blood cells at the bottom. Fibrin clot is extracted from the tube and fluid trapped in matrix is driven out.
Use of PRF:

In sinus-lift procedure12, periodontal intrabony13 and furcation defects14, with a coronally displaced flap in multiple gingival recessions15.

Advantages of PRF over PRP:

- Formation of PRF requires neither anticoagulant nor bovine thrombin2.
- Simple protocol is used for its formation2.
- Fibrin obtained is physiologic2,10.
- Flexible, elastic, and very strong PRF membrane allows cellular migration and incorporation of cytokines2,10.
- Long term effect of PRF as compared to PRP2,10.
- Release of relatively constant concentration of growth factors over a period of 7 days.
- Chair side preparation of PRF is quite easier and faster than PRP2.
- Autologous preparations from patients own blood.
- Decreases the cost of the regeneration therapy9.

Disadvantages:

- Procedure is to be performed rapidly so that usable clot can be extracted from procedure2.
- In case of delay in centrifugation, small blood clot is obtained2.

Recent advances to improve efficacy of PRF:

- PRF membrane is considered novel therapeutic adjuvant in the management of periodontal soft and hard tissues16. However, possible health hazard may be present depending on the unavoidable contact with silica17. Tunali et al18 have developed a new, titanium-prepared PRF (T-PRF). Titanium tubes are more effective at activating platelets than the glass tubes18.
- Low speed centrifugation with increased time duration favors increase in growth factors release from PRF19.

CONCLUSION

Platelet rich concentrates have been utilised in regeneration of periodontium. Because of advantages of PRF over PRP, PRF has been used and various modifications have been made to improve properties. However, further studies are needed for substituting their use over other regenerative materials.

REFERENCES

