Equality of Connected Edge Domination and Total Edge Domination in Graphs

S. Velammal

Department of Mathematics, Velammal College of Engineering and Technology, Viraganoor, Madurai – 625009, India

Abstract: Let G be a (p,q) –graph with connected edge domination number γ'_c and total edge domination number γ'_t . In this paper we investigate the structure of graphs in which some of the edge domination parameters are equal. We characterize graphs for which $\gamma'_c = \gamma'_t$.

Key words: Edge domination number, Connected edge domination number and Total edge domination number.

1. Introduction

By a graph G = (V,E) we mean a finite undirected graph without loops or multiple edges. Terms not defined here are used in the sense of Harary [1] The concept of edge domination was introduced by Mitchell and Hedetniemi. A subset X of E is called an edge dominating set of G if every edge not in X is adjacent to some edge in X. The edge domination number $\gamma'(G)$ (or γ' for short) of G is the minimum cardinality taken over all edge dominating sets of G. An edge domination number $\gamma'_t(G)$ (or γ'_t for short) of G is the minimum cardinality taken over all edge dominating sets of G. An edge dominating set X of G is called a total edge dominating set of G is the minimum cardinality taken over all total edge dominating sets of G. An edge dominating set X of is called a connected edge dominating set of G if the induced subgraph $\langle X \rangle$ has no isolated edge dominating sets of G. An edge dominating set X of is called a connected edge dominating set of G if the induced subgraph $\langle X \rangle$ is connected. The connected edge domination number $\gamma'_c(G)$ (or γ'_c for short) of G is the minimum cardinality taken over all cfonnected edge dominating sets of G.

Allan and Laskar [2] proved that for any $K_{1,3}$ – free graph, the domination number and independent domination number are equal. Topp and Volkmann [3] generalized the result of Allan and Laskar and constructed new classes of graphs with equal domination and independent domination number. Harary and Livingston [4] characterized caterpillars with equal domination and independent domination number. In [5] they gave the characterization of trees with equal domination and independent domination number. In [5] they gave the characterization of trees with equal domination and independent domination number. Payan and Xuong [6] proved that for any graph G on 9 vertices, $\gamma = \overline{\gamma = 3}$ if and only if $G = K_3 \times K_3$. Arumugam and Paulraj Joseph [7] studied the class of graphs for which connected domination number and domination number are equal. In this paper we initiate a study of graphs in which some of the edge domination parameters are equal. We characterize graphs for which $\gamma'_c = \gamma'_t$. For this we need the following Theorem.

Theorem 1.1 [8] Let P denote the property that $\gamma' = \gamma'_c = n$. A connected graph G is P – critical if and only if G is isomorphic to $S(K_{1,n})$

2. Main Results

We observe that for any connected graph G with $\gamma'_c = 2 \text{ or } 3$, $\gamma'_c = \gamma'_t$. we now proceed to characterize connected graphs with $\gamma'_c = \gamma'_t = n \ge 4$.

Definition 2.1: Let $P^{(n)}$ denote the property that $\gamma'_t = \gamma'_c = n$. A connected graph G is $P^{(n)} - critical$ if G satisfies $P^{(n)}$ but no proper connected sub graph H of G satisfies $P^{(n)}$.

Lemma 2.2 For $n \ge 4$, a connected subgraph G is $P^{(n)} - critical$ if and only if G satisfies the following conditions.

(i) G contains a subgraph H which is either P_5 or a tree with at least 4 edges, exactly one vertex u of degree at least 3 and all its pendent vertices are at distance 1 or 2 from u.

(ii) For each pendent edge x_i of H, there is exactly one edge y_i of G such that y_i is adjacent to x_i but not adjacent to any other edge of H.

(iii) Every vertex $v \in V(G) \setminus V(H)$ is incident with at most two y_i 's.

(iv) For $n \ge 5$, if H has a vertex of degree at least 3 and there exists a vertex w in V(G) \ V(H) incident with two y_i 's, say $y_1 = u_1 w$ and $y_2 = u_2 w$, then u_1 and u_2 are adjacent to u.

(v) The subgraph induced by x_i 's and y_i 's is G.

Proof: Suppose G is $P^{(n)} - critical$. Then $\gamma'_t(G) = \gamma'_c(G) = n (\geq 4)$. Let $S = \{x_i \setminus 1 \leq i \leq n\}$ be any

minimum connected edge dominating set of G. Then by Lemma 5.17, $H = \langle S \rangle$ satisfies the condition in (i). Also since

G is $P^{(n)} - critical$, for each pendent edge x_i in H, there is exactly one edge $y_i \in E(G) \setminus E(H)$ such that y_i is adjacent to x_i but not adjacent to any other edge of H.

Suppose there exists a vertex $v \in V(G) \setminus V(H)$ such that v is incident with three y_i 's, say y_1 , y_2 , y_3 . Then $(S \setminus \{x_1, x_3\}) \cup \{y_2\}$ is a total edge dominating set of G with cardinality γ'_c -1 which is a contradiction. Hence each vertex v in $V(G) \setminus V(H)$ is incident with at two y_i 's. Thus (ii) holds.

Now let $n \ge 5$. Suppose H has a vertex u of degree at least 3 and there exists a vertex w in V(G) \ V(H) incident with two y_i's, say y₁, y₂. If y₁ = u₁w and d(u₁, u) = 2 then $(S \setminus \{x_2, x_3\}) \cup \{y_1\}$ where x₃ is an edge of H adjacent to x₁, is a total edge dominating set of G of cardinality $\gamma'_c - 1$ which is a contradiction. Hence (iv) holds.

Now let H₁ be the subgraph induced by x_i's and y_i's. Since $\gamma'_t(H_1) = \gamma'_c(H_1) = n$ and G is $P^{(n)} - critical$, it follows that $G = H_1$.

Conversely, suppose G satisfies the conditions (i), (ii), (iii) and (iv) of the hypothesis. Then E(H) is a minimum connected edge dominating set as well as minimum total edge dominating set of G so that $\gamma'_{c}(G) = \gamma'_{t}(G)$.

Theorem 2.3 Let G be a connected graph. Then $\gamma'_t = \gamma'_c = n (\geq 4)$ if and only if it satisfies the following conditions.

(i) G contains a $P^{(n)} - critical$ subgraph H.

(ii) Every edge $e \in E(G) \setminus E(H)$ has at least one end in $V(H_1)$ where H_1 is the subgraph of H induced by a minimum connected edge dominating set of H.

(iii) Suppose $H_1 = P_5 = (u_1, u_2, u_3, u_4, u_5)$. If $u_i u_j \in E(G)$ where $i + 1 < j \le 5$ and $1 \le i \le 3$, then for each k with i < k < j, there exists an edge of $E(G) \setminus E(H)$ incident with u_k .

(iv) Suppose $H_1 = K_{1,4}$. If the subgraph of G induced by the pendent vertices of H_1 contains a P_4 , then there exists an edge of $E(G) \setminus E(H)$ incident with the center of H_1 .

If exactly one of v_1v_4 , $v_1v_5 \in E(G)$, then there exists an edge of $E(G) \setminus E(H)$ incident with v_2 and if both v_1v_4 , $v_1v_5 \in E(G)$, then there exists an edges e_2 , e_3 in $E(G) \setminus E(H)$ incident with v_2 , v_3 respectively. If v_2v_4 , $v_4v_5 \in E(G)$ or v_2v_5 , $v_4v_5 \in E(G)$ then there exists an edge of $E(G) \setminus E(H)$ incident with v_3 .

V۶

(vi) Suppose $n \ge 5$ and let u be the unique vertex of degree ≥ 3 in H_1 . If there exists an edge in $E(G) \setminus E(H)$ joining two vertices of degree 2 in H_1 , then $\deg_{H_1} u = 3$. If two pendent vertices of H_1 are joined by an edge in $E(G) \setminus E(H)$, then they are adjacent to u and all such edges are independent. Also there exists no edge in $E(G) \setminus E(H)$ joining a pendent vertex of H_1 and a vertex of degree 2 in H_1 .

Proof: Suppose $\gamma'_t = \gamma'_c = n (\geq 4)$. Let $S = \{x_1, x_2, ..., x_n\}$ be any minimum connected edge dominating set of G. By Lemma 5.17, $H_1 = \langle S \rangle = P_5 = \{u_1, u_2, u_3, u_4, u_5\}$ or a tree with exactly one vertex u of degree ≥ 3 and the distance of every pendent vertex of H_1 from u is either 1 or 2. Now as in Lemma 5.19, for each pendent edge x_i of H_1 , we can choose an edge y_i such that y_i is adjacent to x_i but not to any other edge of S and the subgraph H induced by x_i 's and y_i 's is $P^{(n)} - critical$. Hence (i) holds.

Now since S is a minimum connected edge dominating set of G, (ii) holds. We consider the following cases.

Case (i) n = 4

In this case H_1 is either P_5 , $K_{1,4}$ or

Suppose $H_1 = P_5$. If i, j, k are positive integers with $1 \le i \le k \le j \le 5$, $u_i u_j \in E(G)$ and no edge of $E(G) \setminus E(H)$ is incident with u_k , then $(E(H_1) \bigcup \{u_i u_j\}) \setminus \{u_{k-1} u_k, u_k u_{k+1}\}$ is a total edge dominating set of G with cardinality 3, which is a contradiction. Hence G satisfies (iii).

Suppose $H_1 = K_{1,4}$ and the subgraph of G induced by the pendent vertices of H_1 contains a $P_4 = (u_1, u_2, u_3, u_4)$. If no edge of $E(G) \setminus E(H)$ is incident with the center of H_1 , then $\{u_1 u_2, u_2 u_3, u_3 u_4\}$ is a total edge dominating set of G with cardinality 3, which is a contradiction. Thus G satisfies (iv).

Let us assume that exactly one of v_1v_4 , v_1v_5 , say v_1v_4 is in E(G). If no edge of E(G) \ E(H) is incident with v_2 , then $\{v_1v_4, v_3v_5, v_3v_4\}$ is a total edge dominating set of G. If both $v_1v_4, v_1v_5 \in E(G)$ and no edge of E(G) \ E(H) is incident with at least one of v_2 , v_3 , say v_3 , then $\{v_1v_2, v_1v_4, v_1v_5\}$ is a total edge dominating set of G. If v_2v_4, v_4v_5 (v_2v_5, v_4v_5) $\in E(G)$ and no edge of E(G) \ E(H) is incident with v_3 , then $\{v_2v_4, v_4v_5, v_2v_1\}$ ($\{v_2v_5, v_5v_4, v_2v_1\}$) is a total edge dominating set of G. Hence it follows that G satisfies (v).

Case (ii) $n \ge 5$.

Let u be the unique vertex of degree ≥ 3 in H₁. Suppose there exists an edge u_1u_2 in E(G) \ E(H) where u_1 , u_2 are vertices of degree 2 in H₁. If deg_{H₁} $u \geq 4$, then $(S \setminus \{uu_1, uu_2\}) \cup \{u_1u_2\}$ is a total edge dominating set of G so that $\gamma'_t \leq n - 1 < n$, which is a contradiction. Hence deg_{H₁} u = 3.

If there exists an edge e = vw of $E(G) \setminus E(H)$ joining a pendent vertex v of H_1 and a vertex w of degree 2 in H_1 , then $(S \setminus \{uv, uw\}) \cup \{uw\}$ is a total edge dominating set of G of cardinality n-1, which is a contradiction.

Now let v and w be pendent vertices of H_1 and $vw \in E(G) \setminus E(H)$. $deg_{H_1}(v, w) = deg_{H_1}(w, u) = 2$, then

 $(S \setminus \{v_1v, uw_1\}) \cup \{vw\}$ is a total edge dominating set of G of cardinality n-1 where v_1, w_1 are the vertices of H_1 adjacent to v, w respectively. If

 $\deg_{H_1}(u, v) = 2$ and $\deg_{H_1}(u, w) = 1$ then $(S \setminus \{uv_1, uw\}) \cup \{vw\}$ is a total edge dominating set of G of cardinality n-1. Hence v and w are adjacent to u in H_1 .

Now if u_1 , u_2 , u_3 are pendent vertices of H_1 and u_1u_2 , $u_2u_3 \in E(G) \setminus E(H)$, then

 $(S \setminus \{uu_1, uu_2, uu_3\}) \cup \{u_1u_2, u_2u_3\}$ is a total edge dominating set of G, which is a contradiction. Thus the set of all edges of E(G) \ E(H) joining pendent vertices of H₁ is an edge independent set of G. Hence G satisfies the condition (vi).

Conversely suppose that G satisfies the six conditions of the hypothesis. Then $E(H_1)$ is a minimum connected edge dominating set of G and also a minimum total edge dominating set of G so that $\gamma'_t = \gamma'_c = n (\geq 4)$.

References

- [1]. F. Harary, Graph Theory, Addison Wesley Reading Mass. (1972).
- [2]. R.B. Allan and R.Laskar, On domination and independent domination of a graph, Discrete Math. 23(1978), 73 76.
- [3]. J. Topp and L. Volkman, On graphs with equal domination and independent domination numbers, Discrete Math. 96 (1991) 75 80.
- [4]. F. Harary and M. Livingston, Caterpillars with equal domination and independent domination numbers, Recent studies in Graph Theory, ed. V.R.Kulli, Vishwa International Publications (1989) 149 – 154.
- [5]. F. Harary and M. Livingston, Characterization of trees with equal domination and independent domination numbers, Congr. Numer. 55 (1986), 121 – 150.
- [6]. C.Payan and N.H. Xuong, Domination balanced graphs, Journal of Graph Theory 6 (1) (1982) 23 32.
- [7]. S.Arumugam and J. Paulraj Joseph, On graphs with equal domination and connected domination numbers, Discrete Math. (To appear).
- [8]. S.Velammal and S.Arumugam, Equality of edge domination and connected edge domination in graphs, International Journal of Advanced and innovative Research, Vol.2, Issue 2 (2013) 218-222.

