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Abstract: The Electromyography (EMG) signal with broad applications in various areas especially in prosthetics and myoelectric 

control is one of the bio-signals utilized in helping humans to control equipments. Here presents a new technique for feature extraction 

of forearm electromyographic (EMG) signals using a proposed mother wavelet matrix (MWM). A MWM including 45 potential 

mother wavelets is suggested to help the classification of surface EMG signals recorded from multiple locations on the upper forearm 

for ten hand motions. Also, a surface electrode matrix (SEM) is suggested to select the proper sensors for each pair of motions. For 

this purpose, EMG signals were recorded from sixteen locations on the forearms of six subjects in ten hand motion classes. The main 

goal in classification is to define a proper feature vector able to generate acceptable differences among the classes. The MWM 

includes the mother wavelets which make the highest difference between two particular classes. Six statistical feature vectors are 

compared using the continuous form of wavelet packet transform. The mother wavelet functions are selected with the aim of optimum 

classification between two classes using one of the feature vectors. The locations where the satisfactory signals are captured are 

selected from several mounted electrodes. Finally, two ten-by-ten symmetric MWM and SEM represent the proper mother wavelet 

function and the surface selection for recording the ten hand motions. 
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I.  INTRODUCTION  
 
Classification and identification of biosignals is still a challenge in several areas. EMG signals are complex due to the non-stationary 
characteristics and subject dependency of the signals. EMG signals are generally divided into two main groups: surface and needle 
EMG signals. Surface EMG signals have attracted remarkable attention in the design and manufacturing of artificial limbs. EMG 
classification is a complicated task since several parameters may effect the EMG signals, for example motor unit action potential 
(MUAP), muscle fatigue and force. Two difficulties in EMG signal classification for prosthetic applications are the selection of 
electrode locations on the forearm and the extraction of a feature vector that able to classify several motions, since the EMG signals are 
subject dependent. This study addresses these challenges in forearm EMG signals, which is applicable to the manufacturing of 
prosthetic hands. However, this study would not be able to address the other significant parameters, such as force, fatigue, and so forth 
for this application. 

To name a few examples of prior presentation, Park & Lee presented a fuzzy-based decision-making system to classify six motions of 
the six subjects, including elbow flexion and extension, wrist pronation and supination, and in and out humeral rotation[3]. Englehart, 
Hudgins, Parker, & Stevenson compared frequency domain and time–frequency methods to preprocess EMG signals and introduced 
wavelet packet transform with satisfactory results [4]. Englehart, Hudgins, & Parker applied the combination of wavelet packet and 
principal component analysis to extract suitable features from myoelectric signals to classify six classes of hand motions. Englehart & 
Hudgins also developed a wavelet-based system to control myoelectric signals of four classes of hand motions with high accuracy, low 
response time, and a user interface control system [4]. Lowery, Stoykov, Taflove, & Kuiken presented a finite element method (FEM) 
model to investigate the effect of skin, muscle, fat, and bone tissue on simulated surface electromyography (SEMG) signals and 
demonstrated that all aforementioned materials have an effect on EMG signals. Gazzoni, Farina, & Merletti proposed an ANN-based 
automatic detection and identification system to pinpoint motor unit action potentials using wavelet transform and artificial neural 
network in specific case studies. Sebelius et al. introduced an ANN-based intelligent system to classify seven hand movements for 
limited subjects [5]. 

This presentation focuses on the significance of obtaining the necessary features that are needed for different classification tasks, is 

getting the real muscle activity bursts from the overall noisy signal. Surface electrode matrix (SEM) is support to the optimal electrodes 

to reduce the computational time for real time control of prosthetic hand.  In this study, a statistical-based feature extraction system is 

presented for nine hand motions plus a rest state, including key grip and chuck grip, two motions known for their difficulty in 

classification. 

 

II. DATA ACQUIZATION SYSTEM 
 
In this study measures of forearm EMG signals have been collected and processed, which is applicable to prosthetics. The experimental 
surface EMG signals used in this study have been provided by the Institute of Biomedical Engineering at the University of New 
Brunswick with a protocol approved by the University’s Research Ethics Board [1]. Special data acquisition system was used to collect 
surface EMG signals. A 16-electrode linear array with inter electrode spacing of 2 cm was used (see Fig. 1). Each channel was filtered 
between 10 and 500 Hz and amplified with a gain of two thousand.  
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Fig. 1: A cross section of the upper forearm to illustrate the locations of 16 surface electrodes[1]. 

Frequency information of surface EMG is shown in Fig. 2 for one subject. The tests were repeated for each subject, resulting in 10 s of 

EMG signals per person for each motion. The subjects denied feeling fatigued during these exercises. The studied hand motions 

includes forearm pronation (FP), forearm supination (FS), wrist flexion (WF), wrist extension (WE), wrist abduction (WAB), wrist 

adduction (WAD), key grip (KG), chuck grip (CG), spread fingers (SF), and a rest state (RS). 

 

Fig. 2: A Typical Surface EMG for one subject. 

III. WAVELET TRANSFORM 

 

Wavelet transform is being used in broad areas of biosignal processing. Wavelet transform is generally divided into either a discrete and 

or continuous form. The continuous wavelet transform (CWT) of a signal s(t) is defined as the integral of the product between the signal 

s(t) and the daughter wavelets, which are the time translation and scale expansion/compression versions of a mother wavelet function ψ 

(t). Equivalent to a scalar production, this calculation generates continuous wavelet coefficients CWC (a, b), which determine the 

similarity between the signal and the daughter wavelets located at position b (time shifting factor) and positive scale a: 

 

CWC (a, b) = ∫-∞
+∞S(t)(1/√a)ψ*((t-b)/a)dt                              (1) 

Where * stands for complex conjugation and ψ Є L2 (R)\ n {0}. In the frequency domain, Eq. (1) is expressed as: 

 

F{CWC(a, b)}=√aψ*(a.ω)S(ω)                                              (2) 

 

Where F {CWC (a, b)}, ψ *(ω), and S(ω) stand for the Fourier transforms of the continuous wavelet coefficients CWC (a, b), the signal 

S (t), and the mother wavelet function ψ (t), respectively. Eq. (2) shows that a mother wavelet function is a band-pass filter in the 

frequency domain, and the use of CWC identifies the local features of the signal. According to the theory of Fourier transform, the 

center frequency of the mother wavelet ψ (aω) is defined as F0/a, given that the center frequency of the ψ (ω) is F0. Consequently, 

extraction of frequency contents from the signal is possible in different scales. In the windowed Fourier transform, the frequency 

resolution is constant and depends on the width of window. 
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However, wavelet transform offers a rich analysis for a wide variety of window widths as the function of a. Use of a wide variety of 

mother wavelet functions, which must satisfy the admissibility condition Cψ, is another advantage of wavelet analysis [5]: 

 

Cψ=∫-∞
+∞(|ψ*(ω)|2)/ω dω α ∞                                                    (3) 

 

Cψ is satisfied if the mean value of the mother wavelet function ψ(t), is equal to zero and ψ (t) decays to zero rapidly when t→ ± ∞. If 

the mother wavelet satisfies the above condition as well as orthogonality, the signal can be reconstructed from wavelet coefficients. 

 

Unlike DWT, CWT operates at any scale and is continuous in terms of shifting. In the calculation of CWC, the mother wavelet is shifted 

smoothly throughout the analyzed signal and gives rich time–frequency information. The main drawback of CWT is that the 

computation is time-consuming. For signals with low signal to noise ratio, CWT could work better than DWT because DWT down-

sampling of the signals can lead to the loss of significant information. Wavelet decomposition of the signals is also divided into two 

main branches: pyramid and packet decompositions. In both methods, signals are divided into approximation (low frequencies) and 

detail (high frequencies) in the first level. In the pyramid decomposition, after the first level, only approximations are permitted to be 

decomposed through higher levels. However, in the packet decomposition both approximation and detail are decomposed into further 

levels. Therefore, packet decomposition offers rich contents of signals. For EMG signals, the significant frequency contents are 

achieved in high scales. Continuous wavelet transform, which means continuous shifting through time, is used with packet 

decomposition is used. 

 

Therefore, CWT converts a one-dimensional signal s (t) into a matrix of CWC (a, b) as follows: 

        N-1 

CWC (a, b) = Ts /(√|a|) ∑ ψ*[(n-i)Ts/a]S(nTs)                         (4)                              

                      n=0 

where i = 0,1,2,. . .,N,  Ts is sampling time and N stand for the number of samples, respectively. 

 

In classification, feature vector is defined as a compressed, meaningful vector possessing the significant information of different classes. 

Here CWC is used for the calculation of feature vectors for EMG signals. The CWC of the signal, itself, is not appropriate as a feature 

vector because it is computationally expensive. Hence, further processing is needed in order to define a precise and compressed feature 

vector, which is explained in the next section. 

 

 

Fig. 3: Segmented surface EMG signals in a 256-points window from one subject performing 10 different hand motions 

IV. MOTHER WAVELET MATRIX AND SENSOR SELECTION 

 

Selection of the mother wavelet function is a challenge in wavelet transform. Two points regarding the application of mother functions 

are discussed here. The first concern is the selection of proper mother wavelet function since the application of mother wavelets is 

problem-dependent. Applicable mother wavelet functions in EMG signal processing could vary depending on the parameters of the 

problem at hand. If the technique is based on the similarity of the signal to the mother function, then the most important factor is the 

amplitude of the wavelet coefficient across the signals. The mother functions similar to the signal are not suitable for all wavelet based 

approaches. A clear example is the wide application of the Haar function, which is dissimilar to the signals but has been introduced as a 

relatively efficient function in several studies. In wavelet-based classification systems the mother wavelet functions are related to the 

problem parameters rather than the shape of signals, unless the method was established based on signal similarity. Another issue in 

EMG signals classification is the optimal sensor selection. Applicable sensor selection depends on the problem as well. For example, 

optimal selection of sensors for prosthetic hands to classify six motions is different from those for eight motions. To reduce the 

computational time for real-time control of a prosthetic hand, the optimal electrodes to be chosen are presented for the ten motions 

classification by introducing surface electrode matrix (SEM).  
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V. FEATURE VECTOR ALGORITHM 

 

First, the feature vector is defined based on the following steps: 

 

1] Signal segmentation: Here surface EMG signals are classified for ten hand motions, after recording EMG signals by means of 

sixteen electrodes for surface, the raw signals were segmented into the 256-point windows for surface EMG signals. For simplicity, a 

signal with a length of 256 points is called the segmented signal. Therefore, a matrix of segmented signals is 16 X 256 metrics and can 

be one input for the control system of prosthetic hand.  

 

2] In the fourth decomposition level, continuous wavelet coefficients of the segmented signals (CWC-SS) were calculated (24 scales 

for each segmented unit signal). 

 

3] The average of the absolute value of the segmented signals (1 X 256 vectors) were calculated for each segmented signal and titled 

‘weight’ (W) to construct the feature vector as follows:                    

                 N 

W = (1/N) ∑ | Si (t) |                                                              (4) 

                i=1 

Where N is the number of data points in each segmented signal (256). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Feature Extraction Algorithm 
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4] The calculation of feature vectors – six feature vectors are:  

 

A] Weighted sum of absolute value of CWC-SS (SA) is calculated as the sum of the absolute value of CWC-SS multiplied by the 

average of the absolute value of the segmented signals (weight). 

                       N 

SA(a15,b)=W(∑|CWC(a15,b)|)                                                                  (5) 

                      n=1  

 

where a15 is the scale related to (4, 15) from de-composition tree. Scale selection is another important issue in wavelet analysis. 

Decomposing the signals into higher scales leads to a greater focus on the frequency domain. Nevertheless, computational time in 

CWT is of paramount significance, and going through high scales makes the computations for the real-time control system of the 

prosthetic hand difficult. The fourth level of decomposition has been considered the reasonable level. Based on trial-and-error, a15 

represented larger wavelet coefficients, and subsequently the daughter wavelet at this scale is more similar to both classes of EMG 

signals, which, at that scale, leads to a greater difference in the wavelet coefficient from one motion to another [2].  

 

B] Weighted standard deviation of CWC-SS (SD) is calculated as the standard deviation of CWC-SS multiplied by the average of the 

absolute value of the segmented signals (weight). 

 

SD(a15,b)=W(√(1/(N-1)∑(CWCn ( a15,b) - (CWC ( a15, b))2                            (6) 

Where (CWC (a15, b)) = (1/ (N-1)) (∑ (CWCn (a15, b))                            (7) 

 

C] Weighted variance of CWC-SS (VR) is calculated as the variance of CWC-SS multiplied by weight, as the last steps for SD and 

SA are defined. 

 

D] Weighted fourth central moment of CWC-SS (CM) is calculated as the fourth central moment of CWC-SS multiplied by weight. 

The basic formula is not included for simplicity. 

 

E] Weighted skewness of CWC-SS (SK) is calculated as the skewness of CWC-SS multiplied by weight. 

 

F] Weighted kurtosis of CWC-SS (KU) is calculated as the kurtosis of CWC-SS multiplied by weight. 

5] All these features are normalized to make the calculations consistent. SA feature was one of the features showing better 

classification performance for surface EMG signals. Therefore, SA is mainly considered to define the mother wavelet matrix. 

        The feature obtained from above steps will be used for identification of corresponding activity of the subject [1, 2 and 4]. 

 

VI.  MATRIX FORMATION ALGORITHM 

 

After selection of the feature, the following procedure is applied to find the MWM and SEM: 

 

For each pair of motions the corresponding entity of MWM matrix is the function ψ that possesses the minimum value for the criterion 

C(ψ): 

 

    L 

∀i,j=1,…….10 and i≠jMWM(I,j)= ψ:min[(1/L)∑Dl(ψ)]       (9) 

   ψ            l=1 

where L is the number of the electrodes and ψ is selected from a pool of 324 wavelet basis function. 

 

Dl(ψ) = (Ri(ψ)+Rj(ψ))/(|Mi(ψ) -Mj(ψ) |)                                (10)      

 

where Ri(ψ) is the range of SA function for all k = 1, . . .N, and N = 240 segmented signals for ith motion (N = 240 since there are six 

subjects and 40 segmented signals for each subject): 

 

Ri(ψ) = |mink(SAik(ψ)) - maxk(SAik(ψ))|                                (11) 

 

In Eq. (10), Mi(ψ) is the average value of SA function for all 

k = 1,. . .,N segmented signals for ith motion: 

 

                     N 

Mi(ψ) = (1/k)∑SAik(ψ)                                                           (12) 

                     k=1 

 

where SAik(ψ) is the value of SA function for ith motion and kth segmented signal calculated by Eq. (6). By minimizing the value of C 

(ψ) and therefore the value of Dl (ψ) for each pair of motions, the mother wavelet having the less range of feature values for N 

segmented signals and more difference between two motions is selected. After finding MWM matrix, SEM matrices can be obtained. 
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For each pair of motions, the corresponding entity of SEM matrix is the surface electrode number, which has the minimum value of 

Dl(ψ) function (Eq. 10) calculated for corresponding mother wavelet extracted from MWM matrix.   

 

VII. DISCUSSION 

 

At this juncture six statistical features are studied for surface EMG signals for one specific scale recorded from a specific sensor 

attached to the arm of one subject. Among the features, SK and KU did not show proper classification for this scale/sensor and neither 

for the others. The other four features can be useful for forearm EMG signal classification. It is worth mentioning that CM feature 

cannot visually show proper classification. However, by zooming on the CM plot, more information may be observed. Also, mother 

wavelet matrices (MWM) matched with our experimental data surface EMG sign. 

 

 

Fig. 5: Ten hand activities of one of the subject 

The advantages of the proposed technique can be summarized as follows: 

 

1) The number of motions is increased to ten hand motions. Chuck and key grips, which are the complicated motions for 

classification because of the engagements of several in-depth muscles and complexity of the signals, are studied by the 

proposed algorithm. 

2) The presented features would also be appropriate for training purposes of intelligent classifiers or to determine rules for 

fuzzy systems. 

3) This method is able to find optimal sensors for each pair of motions applicable for classification purposes. 

CONCLUSION 

A method suggested extracting appropriate features for forearm electromyographic (EMG) signals using a mother wavelet matrix 
(MWM). After broad investigations on 324 mother wavelet functions, the combination of some mother wavelets ameliorated the EMG 
signal analysis. Among several installed electrodes on the subjects’ forearms, the optimal sensors appropriate for feature extraction were 
selected in terms of surface electrode matrix (SEM). Six statistical feature vectors are also studied. 
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