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Abstract: The memory consistency model for a shared-memory multiprocessor specifies the behaviour of 

memory with respect to read and write operations from multiple processors. Relaxed models that impose fewer 

memory ordering constraints offer the potential for higher performance by allowing hardware and software to 

overlap and reorder memory operations. Many of the previously proposed models either fail to provide 

reasonable programming semantics or are biased toward programming ease at the cost of sacrificing 

performance. The optimizations enabled by relaxed models are extremely effective in hiding virtually the full 

latency of writes in architectures with blocking reads. We evaluate all the consistency models and the 

comparison for the weak consistency model and release consistency model, the performance benefits of 

exploiting relaxed models based on detailed simulations of realistic parallel applications. We believe that the 

combined benefits in hardware and software will make relaxed models universal in future multiprocessors, as is 

already evidenced by their adoption in several commercial systems. 
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Introduction 

Parallel architectures provide the potential for achieving substantially higher performance than traditional uniprocessor 

architectures. The key differentiating feature among multiprocessors is the mechanisms used to support communication 

among different processors. By utilizing the fastest available microprocessors, multiprocessors are increasingly 

becoming a feasible and cost-effective technology even at small numbers of processing nodes. 

 

Multiprocessors with a single address space, such as shared-memory architectures, make the entire memory accessible 

to all processors and allow processors to communicate directly through read and write operations to memory. The 

single address space abstraction greatly enhances the programmability of a multiprocessor. In comparison to a 

message-passing architecture, the ability of each processor to access the entire memory simplifies programming by 

reducing the need for explicit data partitioning and data movement. The single address space also provides better 

support for parallelizing compilers and standard operating systems. These factors make it substantially easier to 

develop and incrementally tune parallel applications. Since shared-memory systems allow multiple processors to 

simultaneously read and write the same memory locations, programmers require a conceptual model for the semantics 

of memory operations to allow them to correctly use the shared memory. This model is typically referred to as a 

memory consistency model or memory model. To maintain the programmability of shared-memory systems, such a 

model should be intuitive and simple to use [1]. Consistency models place specific requirements on the order that 

shared memory accesses (events) from one process may be observed by other processes in the machine. More 

generally, the consistency model specifies what event orderings are legal when several processes are accessing a 

common set of locations [2]. 

 

The memory system model is more complex because the definitions of “last value written”, “subsequent loads” and 

“next store” become unclear when there are multiple processors reading and writing a location. Furthermore, the order 

in which shared memory operations are done by one process may be used by other processes to achieve implicit 

synchronization. Unfortunately, architecture and compiler optimizations that are required for efficiently supporting a 

single address space often complicate the memory behavior by causing different processors to observe distinct views of 

the shared memory. It is one of the challenging problems in designing a shared-memory system is to present the 

programmer with a view of the memory system that is easy to use and yet allows the compiler optimizations that are 

necessary for efficiently supporting a single address space.  

 

There have been numerous attempts at defining an appropriate memory model for shared memory systems. Several 

memory consistency models have been proposed in the literature: examples include sequential consistency, processor 

consistency, and weak consistency. This thesis focuses on providing a balanced solution that directly addresses the 

trade-off between programming ease and performance, providing automatic portability across a wide range of 

implementations. 
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Memory consistency models 

In computer science, consistency models are used in distributed systems like distributed shared memory systems or 

distributed data stores (such as a file systems, databases, optimistic replication systems or Web caching). The system 

supports a given model if operations on memory follow specific rules. The data consistency model specifies a contract 

between programmer and system, wherein the system guarantees that if the programmer follows the rules, memory will 

be consistent and the results of memory operations will be predictable. Verifying sequential consistency is not 

decidable in general, even for finite-state cache-coherence protocols [3]. Consistency models define rules for the 

apparent order and visibility of updates, and it is a continuum with tradeoffs [4].  

 

Sequential consistency 

 

The most commonly assumed memory consistency model for shared memory multiprocessors is sequential 

consistency, formally defined by Lamport [5]: 

 

Definition: [A multiprocessor system is sequentially consistent if the result of any execution is the same as if 

the operations of all the processors were executed in some sequential order, and the operations of each 

individual processor appear in this sequence in the order specified by its program. 

 

Sequential consistency is one of the consistency models used in the domain of concurrent programming (e.g. 

in distributed shared memory, distributed transactions, etc.).  

The system provides sequential consistency if every node of the system sees the (write) operations on the same memory 

part (page, virtual object, cell, etc.) in the same order, although the order may be different from the order as defined by 

real time (as observed by a hypothetical external observer or global clock) of issuing the operations. 

 

There are two aspects to sequential consistency:  

 

 Maintaining program order among operations from individual processors, and  

 Maintaining a single sequential order among operations from all processors.  

 

The latter aspect makes it appear as if a memory operation executes atomically or instantaneously with respect to other 

memory operations. Sequential consistency provides a simple view of the system to programmers as illustrated in Fig 

1, where P1…Pn shows the processors.  

 

 
 

Figure 1: Conceptual representation of sequential consistency 

 

Conceptually, there is a single global memory and a switch that connects an arbitrary processor to memory at any time 

step. Each processor issues memory operations in program order and the switch provides the global serialization among 

all memory operations. The sequential consistency is weaker than strict consistency (which would demand that 

operations are seen in order in which they were actually issued, which is essentially impossible to secure in distributed 

system as deciding global time is impossible) and is the easiest consistency model to understand, since a system 

preserving that model is behaving in a way expected by an instantaneous system. 

Relaxed Memory Consistency Models 

The original specifications of these models emphasized system optimizations enabled by the models; we retain the 

system-centric emphasis in our descriptions of this section. We focus on models proposed for hardware shared-memory 

systems; relaxed models proposed for software-supported shared memory systems are more complex to describe. The 
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basic idea behind relaxed memory models is to enable the use of more optimizations by eliminating some of the 

constraints that sequential consistency places on the overlap and reordering of memory operations. While sequential 

consistency requires the illusion of program order and atomicity to be maintained for all operations, relaxed models 

typically allow certain memory operations to execute out of program order or non-atomically. The degree to which the 

program order and atomicity constraints are relaxed varies among the different models. 

 

Fig 2 shows the relaxations allowed by the memory models. We categorize relaxed memory consistency models based 

on two key characteristics: (1) how they relax the program order requirement, and (2) how they relax the write 

atomicity requirement. 

 

With respect to program order relaxations, we distinguish models based on whether they relax the order from a write to 

a following read, between two writes, and finally from a read to a following read or write. In all cases, the relaxation 

only applies to operation pairs with different addresses. 

 

 
 

Fig 2: Relaxations allowed by memory models. 

 

 

Figure 3: Simple categorization of relaxed models. 

 

Fig 3 provides an overview of the models. A tick indicates that the corresponding relaxation is allowed by 

straightforward implementations of the corresponding model. It also indicates that the relaxation can be detected by the 

programmer (by affecting the results of the program) except for the following cases. The “Read Own Write Early” 

relaxation is not detectable with the SC, WO, Alpha, and PowerPC models. The “Read Others‟ Write Early” relaxation 

is possible and detectable with complex implementations of RCsc. 

 

Processor Consistency 

 

Processor consistency is the first model that we consider where the multiple-copy aspects of the memory are exposed to 

the programmer. To relax some of the orderings imposed by sequential consistency, Goodman introduces the concept 

of processor consistency [6]. Processor consistency requires that writes issued from a processor may not be observed in 
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any order other than that in which they were issued. However, the order in which writes from two processors occur, as 

observed by themselves or a third processor, need not be identical. Processor consistency is weaker than sequential 

consistency; therefore, it may not yield „correct‟ execution if the programmer assumes sequential consistency. 

However, Goodman claims that most applications give the same results under the processor and sequential consistency 

models. Specifically, he relies on programmers to use explicit synchronization rather than depending on the memory 

system to guarantee strict event ordering. Goodman also points out that many existing multiprocessors satisfy processor 

consistency, but do not satisfy sequential consistency. The description given in [6] does not specify the ordering of read 

accesses completely. We have defined the following conditions for processor consistency. 

  

Condition 1: Conditions for Processor Consistency 

 

 Before a LOAD is allowed to perform with respect to any other processor, all previous LOAD accesses 

must be performed, and 

 Before a STORE is allowed to perform with respect t0 My Other processor, all previous accesses (LOADS 

and STORES) must be performed. 

 

The above conditions allow reads following a write to bypass the write. To avoid deadlock, the implementation should 

guarantee that a write that appears previously in program order will eventually perform. 

 

Fig 4 shows the representation for this model where P1…Pn are the processors and M1….Mn are the memories. The 

conceptual system consists of several processors each with their own copy of the entire memory. By modeling memory 

as being replicated at every processing node, we can capture the non-atomic effects that arise due to presence of 

multiple copies of a single memory location. 

 

Since the memory no longer behaves as a single logical copy, we need to extend the notion of read and write memory 

operations to deal with the presence of multiple copies. Read operations are quite similar to before and remain atomic. 

The only difference is that a read is satisfied by the memory copy at the issuing processor‟s node (i.e., read(R) from Pi 

is serviced by Mi). Write(W) operations no longer appear atomic, however. 

 

 
Figure 4: The processor consistency model. 

 

Each write operation conceptually results in all memory copies corresponding to the location to be updated to the new 

value. Therefore, we model each write as a set of n sub-operations, W(1)…: W(n), where n is the number of processors, 

and each sub-operation represents the event of updating one of the memory copies (e.g., W(1) updates the location in 

M1). Since we need to refer to the sub-operations of a write, we will also refer to a read as a single atomic sub-

operation for uniformity (denoted as R(i) for a read from Pi). We use the double lines between a pair of operations to 

denote the fact that operations may no longer be atomic and that all sub-operations of the first operation must complete 

before any sub-operations of the second operation. 

Since write operations are no longer atomic, processor consistency imposes an additional constraint on the order of 

write sub-operations to the same location. This requirement is called the coherence requirement. 

Weak Consistency 

The weak consistency is one of the consistency models used in the domain of the concurrent programming (e.g. 

in distributed shared memory, distributed transactions etc.). The protocol is said to support weak consistency if: 

 All accesses to synchronization variables are seen by all processes (or nodes, processors) in the same order 

(sequentially) - these are synchronization operations. Accesses to critical sections are seen sequentially. 

 All other accesses may be seen in different order on different processes (or nodes, processors). 

 The set of both read and write operations in between different synchronization operations is the same in each 

process. 
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Therefore, there can be no access to a synchronization variable if there are pending write operations. And there cannot 

be any new read/write operation started if system is performing any synchronization operation. The opposite of weak 

consistency is strong consistency, where parallel processes can observe only one consistent state. 

 

A weaker consistency model can be derived by relating memory request ordering to synchronization points in the 

program. The intuition behind weak ordering is that most programs are written using synchronization operations to 

coordinate memory operations on different processors and maintaining program order at such synchronization 

operations typically leads to correct outcomes for the program. Figure 5 shows the representation for weak ordering. 

 

 

Fig 5: The weak ordering model. 

As an example, consider a processor updating a data structure within a critical section. If the computation requires 

several STORE accesses and the system is sequentially consistent, then each STORE will have to be delayed until the 

previous STORE is complete. But such delays are unnecessary because the programmer has already made sure that no 

other process can rely on that data structure being consistent until the critical section is exited, Given that all 

synchronization points are identified, we need only ensure that the memory is consistent at those points. This scheme 

has the advantage of providing the user with a reasonable programming model, while permitting multiple memory 

accesses to be pipelined. The disadvantage is that all synchronization accesses must be identified by the programmer or 

compiler. 

 

The weak consistency model proposed by Dubois et 01. [7] is based on the above idea. They distinguish between 

ordinary shared accesses and synchronization accesses, where the latter are used to control concurrency between 

several processes and to maintain the integrity of ordinary shared data. The conditions to ensure weak consistency are 

given below. 

 

Condition 2: Conditions for Weak Consistency 

 

o before an ordinary LOAD or STORE access is allowed to perform with respect to any other processor, all 

previous synchronization accesses must be performed 

o before a synchronization access is allowed to perform with respect to any other processor, all previous 

ordinary LOAD and STORE accesses must be performed, and 

o Synchronization accesses are sequentially consistent with respect to one mother. 

 

Release consistency 
 

Release consistency is one of the consistency models used in the domain of the concurrent programming (e.g. 

in distributed shared memory, distributed transactions etc.). Release consistency extends the ideas in weak ordering by 

further distinguishing among memory operations. There are two kinds of coherence protocols that implement release 

consistency: 

 

 eager, where all coherence actions are performed on release operations,[8] and 

 lazy, where all coherence actions are delayed until after a subsequent acquire[9] 

Tread Marks is an application of lazy release consistency [10]. 
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Figure 6: The release consistency (RC) models. 

Fig 6 provides the representation for release consistency. There are two flavours of release consistency that differ in the 

order that is maintained among synchronization operations. The first flavour maintains sequential consistency among 

synchronization operations and is referred to RCsc, while the second flavour maintains processor consistency among 

such operations and is called RCpc. Except for the program order requirements, these two models are identical. 

Considering the conceptual system, release consistency is similar to weak ordering except a read is allowed to return 

the value of a write (to the same location) that is in the buffer. The value requirement for both RCsc and RCpc is the 

same as that for PC. Finally, both models obey the coherence requirement. 

 

 
 

Figure 7: Distinguishing operations for release consistency. 

Compared to weak ordering, release consistency provides further distinctions among memory operations. Fig 7 

pictorially depicts this classification of memory operations. Operations are first distinguished as ordinary or special. 

These two categories loosely correspond to the data and synchronization categories in WO. Special operations are 

further distinguished as sync or nsync operations. Syncs intuitively correspond to synchronization operations, whereas 

nsyncs correspond to asynchronous data operations or special operations that are not used for synchronization. Finally, 

sync operations are further distinguished as acquire or release operations. Intuitively, an acquire is a read memory 

operation that is performed to gain access to a set of shared locations (e.g., a lock operation or spinning for a flag to be 

set). A release is a write operation that is performed to grant permission for accessing a set of shared locations (e.g., an 

unlock operation or setting of a flag).  

Before issuing a write to a memory object a node must acquire the object via a special operation, and later release it. 

Therefore the application that runs within the operation acquire and release constitutes the critical region. The system is 

said to provide release consistency, if all write operations by a certain node are seen by the other nodes after the former 

releases the object and before the latter acquire it. 

The main idea behind release consistency is that read and write synchronization operations have different ordering 

requirements. The purpose of a write synchronization used as a release is to signal that previous accesses are complete 

and it does not have anything to say about ordering of accesses that follow it. Therefore, while the completion of the 

release is delayed until previous memory operations in program order complete, memory operations after a release are 

not delayed for the release to complete. Similarly, the completion of a read synchronization used as an acquire need not 

be delayed for previous memory operations to complete. This is because acquire is not giving permission to any other 

process to read or write the previous pending locations. This allows for extra reordering and overlap of memory 

operations across acquires and releases. 

http://en.wikipedia.org/wiki/Mutual_exclusion
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Conclusion 

 

This paper presented the background information for the memory consistency. We motivated the need for a memory 

consistency model for the purpose of specifying the behaviour of memory operations, and introduced the notion of 

sequential consistency as an intuitive model for shared-memory multiprocessors. Next considered were some of the 

architecture and compiler optimizations that are desirable in multiprocessors, and showed that the majority of these 

optimizations violate the semantics of sequential consistency. This led to the discussion of alternative memory models 

that enable a higher degree of performance by relaxing some of the constraints imposed by sequential consistency. 

Choosing among these models requires considering fundamental trade-offs between programmability, portability, 

implementation complexity, and performance. 
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