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Abstract: This paper shows how it made possible in geographical science to observe the seismic zone, clustering of 

highly sensitive earthquake zone and spatial data clustering during important geographical processes. This paper 

shows simple density based and K- Mean clustering technique. Density-Based clustering is done here using density 

estimation and by searching regions which are denser than a given threshold and to form clusters from these dense 

regions by using connectivity and density functions. Also we defined some optimal no of K locations for K-Mean 

clustering where the sum of the distance from every point to each of the K centers is minimized what is called global 

optimization. With this dataset it forms clusters using density estimation and K-Mean clustering. Also it correlates 

the clustering pattern by applying co-relation algorithm and proximity measure algorithm; hence it easily removes 

noisy data. This scheme can extract clusters efficiently with reduced number of comparisons. 
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I. INTRODUCTION 

 

SEISMIC data collection refers to collecting huge spatial data for large geographical  area.  These data are placed in 

multidimensional array for analysis and formed desired pattern. As seismological data are multidimensional, they need to 

be stored and recovered by special techniques, more complex compared to those used for the traditional alphanumerical 

data. Under this point of view, spatial entities referred to temporal periods or temporal moments referred to layers of 

geographical information are under investigation within the frame of Database Management Systems. The explosive growth 

of spatial data and widespread use of spatial databases emphasize the need for the automated discovery of spatial 

knowledge. Spatial data mining is the process of discovering interesting and previously unknown, but potentially useful 

patterns from spatial databases. The complexity of spatial data and intrinsic spatial relationships limits the usefulness of 

conventional data mining techniques for extracting spatial patterns. Spatial data are the data related to objects that occupy 

space. A spatial database stores spatial objects represented by spatial data types and spatial relationships among such 

objects. Spatial data carries topological and/or distance information and it is often organized by spatial indexing structures 

and accessed by spatial access methods. These distinct features of a spatial database pose challenges and bring 

opportunities for mining information from spatial data. Spatial data mining, or knowledge discovery in spatial database, 

refers to the extraction of implicit knowledge, spatial relations, or other patterns not explicitly stored in spatial databases. 

Till a few years back, statistical spatial analysis had been the most common approach for analyzing spatial data. Statistical 

analysis is a well studied area and therefore there exist a large number of algorithms including various optimization 

techniques. It handles very well numerical data and usually comes up with realistic models of spatial phenomena. The 

major disadvantage of this approach is the assumption of statistical independence among the spatially distributed data. This 

causes problems as many spatial data are in fact interrelated, i.e., spatial objects are influenced by their neighboring objects. 

Kriging (interpolation technique) or regression models with spatially lagged forms of the dependent variables can be used 

to alleviate this problem to some extent. Statistical methods also do not work well with incomplete or inconclusive data. 

Another problem related to statistical spatial analysis is the expensive computation of the results. With the advent of data 

mining, various methods for discovering knowledge from large spatial databases have been proposed and many such 

methods can be developed to the different kind of datasets. Spatial Data Mining is a special kind of data mining. The main 

difference between data mining and spatial data mining is that in spatial data mining tasks we use not only non-spatial 

attributes (as it is usual in data mining in non-spatial data), but also spatial attributes. Spatial data mining is the process of 

discovering interesting and previously un-known, but potentially useful patterns from large spatial datasets. Extracting 

interesting and useful patterns from spatial datasets is more difficult than extracting the corresponding patterns from 

traditional numeric and categorical data due to the complexity of spatial data types, spatial relationships, and spatial 

autocorrelation. Specific features of geographical data that preclude the use of general purpose data mining algorithms are: 
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 Rich data types (e.g., extended spatial objects) 

 Implicit spatial relationships among the variables 

 Observations that are not independent, and 

 Spatial autocorrelation among the features. 

II.  PRE-PROCESSING OF SPATIAL DATA 

 

Spatial data mining techniques have been widely applied to the data in many application domains. However, research on 

the preprocessing of spatial data has lagged behind. Hence, there is a need for preprocessing techniques for spatial data to 

deal with problems such as treatment of missing location information and imprecise location specifications, cleaning of 

spatial data, feature selection, and data transformation. Unique features of Spatial Data Mining that distinguishes spatial 

data mining from classical data mining in the following four categories: 

 

Data input: The data inputs of spatial data mining are more complex than the inputs of classical data mining because they 

include extended objects such as points, lines, and polygons. The data inputs of spatial data mining have two distinct types 

of attributes: non-spatial attribute and spatial attribute. Non-spatial attributes are used to characterize non-spatial features of 

objects, such as name, population, and unemployment rate for a city. They are the same as the attributes used in the data 

inputs of classical data mining. Spatial attributes are used to define the spatial location and extent of spatial objects. The 

spatial attributes of a spatial object most often include information related to spatial locations, e.g., longitude, latitude and 

elevation, as well as shape. Relationships among non-spatial objects are explicit in data inputs, e.g., arithmetic relation, 

ordering, is instance of, subclass of, and membership of. In contrast, relationships among spatial objects are often implicit, 

such as overlap, intersect, and behind. One possible way to deal with implicit spatial relationships is to materialize the 

relationships into traditional data input columns and then apply classical data mining techniques. However, the 

materialization can result in loss of information. Another way to capture implicit spatial relationships is to develop models 

or techniques to incorporate spatial information into the spatial data mining process.  

 

This clustering algorithm: 

 

 provides a density based and K-mean cluster    solution; 

 it uses of proximity measures; 

 faster processing due to simplified matching mechanism; 

 capable of handling noisy datasets; 

III. CLUSTERING TECHNIQUES 

The goal of spatial clustering is to group co-related spatial data together. Co-related data indicates co-function and same 

seismic zone. Spatial data has certain special characteristics and is a challenging research problem. Here, we review a series 

of spatial data clustering algorithms. 

 

3.1  K-Means:  

 

K-means represents an attempt to define an optimal number of k locations where the sum of the distance from every point 

to each of the k centers is minimized what is called global optimization. In practice, (1) making initial guesses about the k 

locations and (2) local optimization for cluster locations in relation to the nearby points is  implemented. Thus, two k-

means procedures might not produce the same results, even if k is identical because of several underlying local optimization 

methods. 

 

  The k-means algorithm is built upon four basic operations: 

 selection of the initial k means for k clusters, 

 calculation of the dissimilarity between an object and the mean of a cluster, 

 allocation of an object to the cluster whose mean is nearest to the object, 

 Re-calculation of the mean of a cluster from the objects allocated to it so that the intra cluster dissimilarity is 

minimised. Except for the first operation, the other three operations are repeatedly performed in the algorithm until 

the algorithm converges (until no points change clusters). The essence of the algorithm is to minimise the cost 

function which is a function of dissimilarity measure between each observation with mean of cluster. Dissimilarity 

is usually modelled as Euclidean Distance in k-means. The cost function is as follows; 
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N

j

k

k

jkjkj Zda
1 1

 

Where 

 

j , k denotes total number of observations and clusters 

a j denotes weight of observation j , 

djk denotes distance between observation j and centre of cluster k , and 

 

             1  if the observation j is in cluster k, 

Zjk=   

              0 otherwise 

 

 

3.2   Density Based Clustering: A Brief Review 

• This work presents a density based clustering technique.  

• It retains the regulation information which is also the main advantage of the clustering.  

• It uses no proximity measures and is therefore free of the restrictions offered by them.  

• Our approach improves the cluster quality by identifying sub-clusters within big clusters. 

• It was compared with some well-known clustering algorithms and found to perform well in terms of the z-score 

cluster validity measure. 

 

Works in two phases: 

 

Phase 1 

- Normalizing and discretizing the spatial dataset. 

Normalization of the spatial dataset to have mean 0 and standard deviation 1. Expression data having low variance 

across conditions as well as data having more than 3-fold variation are filtered in this step.  

 

-  Clustering the discretized normalized data. 

Discretization is then performed on this normalized expression data where the regulation  pattern, i.e. up- or down- 

regulation in each of the conditions for a particular spatial object plays an important role. While discretizing, 

following two cases will occur. 

 

i. The discretized value of spatial object obi at condition, t1 (i.e., the first condition) 
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        ii. The discretized values of spatial  object obi at conditions tj (j = 1,..(T −1)) i.e.,  at the rest of the conditions (T − 

{t1}) 
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where - obi, tj is the discretized value of object obi at condition tj (j = 1,..(T − 1)). 
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The expression value of spatial object obi at condition tj is given by "obi,tj . We see in the above computation that the first 

condition, t1, is treated as a special case and it‟s discretized value is directly based on "obi,t1 i.e., the expression value at 

condition t1. For the rest of the conditions the discretized value is calculated by comparing its expression value with that of 

the previous value. This helps in finding whether the object is up- (1) or -down (-1) regulated at that particular condition. 

Each object will now have a regulation pattern (}) of 0, 1, and -1 across the conditions or time points. 

 

IV. GENERALIZED DENSITY-BASED CLUSTERING 

 

Clustering is the technique of grouping the objects of a database into meaningful subclasses (that is, clusters) so that the 

members of a cluster are as similar as possible whereas the members of different clusters differ as much as possible from 

each other. Applications of clustering in spatial databases are, e.g., the detection of seismic faults by grouping the entries of 

an earthquake catalog or the creation of thematic maps in geographic information systems by clustering feature vectors. The 

clustering algorithms can be supported by the database primitives if the clustering algorithm is based on a “local” cluster 

condition, i.e. if it constructs clusters by analyzing a restricted neighbourhood of the objects. Examples are the density-

based clustering algorithm DBSCAN as well as its generalized version GDBSCAN which is discussed in the following. 

GDBSCAN (Generalized Density Based Spatial Clustering of Applications with Noise) relies on a density-based notion of 

clusters. The key idea of a density-based cluster is that for each point of a cluster its  -neighbourhood for some given 

0  has to contain at least a minimum number of points, i.e. the “density” in the  -neighbourhood of points has to 

exceed some threshold. “Density-based clusters” can be generalized to density-connected sets in the following way: 

 

First, any notion of a neighbourhood can be used instead of an  -neighbourhood if the definition of the neighbourhood is 

based on a binary predicate NPred which is symmetric and reflexive. Second, instead of simply counting the objects in a 

neighbourhood of an object, other measures to define an equivalent of the “cardinality” of that neighbourhood can be used 

as well. For that purpose we assume a predicate Min Weight which is defined for sets of objects and which is true for a 

neighbourhood if the neighbourhood has the minimum weight (e.g. a minimum cardinality as for density- based clusters). 

Whereas a distance-based neighbourhood is a natural notion of a neighbourhood for point objects, it may be more 

appropriate to use topological relations such as intersects or meets to cluster spatially extended objects such as a set of 

polygons of largely differing sizes. There are also specializations equivalent to simple forms of region growing, i.e. only 

local criteria for expanding a region can be defined by the weighted cardinality function.  

 

For instance, the neighbourhood may be given simply by the neighbouring cells in a grid and  the weighted cardinality 

function may be some aggregation of the non-spatial attribute values. While region growing algorithms are highly 

specialized to pixels, density-connected sets can be defined for any data types. 

 

The Algorithm 

 

• The clustering process starts with an arbitrary spatial data object obi and searches the neighborhood of it to check 

if it is core.  

•  If obi is not core then the process restarts with another unclassified object.  

•  If obi is a core object, then clustering proceeds with finding all reachable object from obi.  

•  All reachable object are assigned the same sub cluster id as obi . From the neighbors of obi, if any object satisfies 

the core object condition, sub cluster expansion proceeds with that object.  

•  The process continues till no more object can be assigned to the sub cluster.  

•  The process then restarts with another unclassified object and starts forming the next sub cluster.  

•  The clustering process continues till no more object can be assigned sub cluster id.  

•  Once all sub clusters have been assigned, the process groups all sub-clusters as well as genes having no sub 

cluster id but having the same regulation pattern into the same cluster and assign them the same cluster id.  

•  All unclassified object are now termed as noise spatial data. 
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                  Fig.1: Spatial Seismic Data 

 

 

 

 

 

 

 

 

   

 

 

 

 

   

 

 

 

 

Fig. 2: Sample Spatial Data for density based      clustering 

 

 

 

 
                       Fig. 3: Seismic zone clustering 
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                Fig. 4:  Systematic Structure of Spatial Data mining 

 

V. PROXIMITY MEASUREMENT FOR SPATIAL DATA 

 

Proximity measurement measures the similarity (or distance) between two data objects. Gene expression data objects, no 

matter genes or samples, can be formalized as numerical vectors. 

 

Euclidean distance is one of the most commonly-used methods to measure the distance between two data objects. 

The Euclidean distance between points p and q is the length of the line segment connecting them.  pq  

In Cartesian coordinates, if p = (p1, p2,..., pn) 

and q = (q1, q2,..., qn) are two points in Euclidean n-space, then the distance from p to q, or from q to p is given by:  

           



n

i

iinn pqpqpqpqpqdqpd
1

222

22

2

11 ...,,  

The position of a point in a Euclidean n-space is a Euclidean vector. So, p and q are Euclidean vectors, starting from the 

origin of the space, and their tips indicate two points. The Euclidean norm, or Euclidean length, or magnitude of a vector 

measures the length of the vector: 

pppppp n ....... 22

2

2

1   

where the last equation involves the dot product. A vector can be described as a directed line segment from the origin of the 

Euclidean space (vector tail), to a point in that space (vector tip). If we consider that its length is actually the distance from 

its tail to its tip, it becomes clear that the Euclidean norm of a vector is just a special case of Euclidean distance: the 

Euclidean distance between its tail and its tip. 
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The distance between points p and q may have a direction (e.g. from p to q), so it may be represented by another vector, 

given by 

 nn pqpqpqpq  ......,, 2211  

In a three-dimensional space (n=3), this is an arrow from p to q, which can be also regarded as the position of q relative 

to p. It may be also called a displacement vector if p and q represent two positions of the same point at two successive 

instants of time. 

The distance between points p and q may have a direction (e.g. from p to q), so it may be represented by another vector, 

given by 

 nn pqpqpqpq  ......,, 2211  

In a three-dimensional space (n=3), this is an arrow from p to q, which can be also regarded as the position of q relative 

to p. It may be also called a displacement vector if p and q represent two positions of the same point at two successive 

instants of time. 

The Euclidean distance between p and q is just the Euclidean length of this distance (or displacement) vector:  

  pqpqpq  .  

which is equivalent to equation 1, and also to: 

qpqppq .2
22
  

 

However, for gene expression data, the overall shapes of gene expression patterns (or profiles) are of greater interest than 

the individual magnitudes of each feature. Euclidean distance does not score well for shifting or scaled patterns. To address 

this problem, each object vector is standardized with zero mean and variance one before calculating the distance. 

Pearson's correlation coefficient between two variables is defined as the covariance of the two variables divided by the 

product of their standard deviations. 

Pearson's correlation coefficient when applied to a population is commonly represented by the Greek letter ρ (rho) and may 

be referred to as the population correlation coefficient or the population Pearson correlation coefficient. The formula 

for ρ is: 
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Pearson's correlation coefficient when applied to a sample is commonly represented by the letter r and may be referred to as 

the sample correlation coefficient or the sample Pearson correlation coefficient. We can obtain a formula for r by 

substituting estimates of the covariance‟s and variances based on a sample into the formula above. That formula for r is:  
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An equivalent expression gives the correlation coefficient as the mean of the products of the standard scores. Based on 

a sample of paired data (Xi, Yi), the sample Pearson correlation coefficient is 
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Where X
S

XX

X

i ,
  and Sx are the standard score, sample mean, and sample standard deviation, respectively. 

The absolute value of both the sample and population Pearson correlation coefficients are less than or equal to 1. 

Correlations equal to 1 or -1 correspond to data points lying exactly on a line (in the case of the sample correlation), or to a 

bivariate distribution entirely supported on a line (in the case of the population correlation). The Pearson correlation 

coefficient is symmetric: corr(X,Y) = corr(Y,X). 

http://en.wikipedia.org/wiki/Displacement_(vector)
http://en.wikipedia.org/wiki/Displacement_(vector)
http://en.wikipedia.org/wiki/Covariance
http://en.wikipedia.org/wiki/Standard_deviations
http://en.wikipedia.org/wiki/Statistical_sample
http://en.wikipedia.org/wiki/Standard_score
http://en.wikipedia.org/wiki/Statistical_sample
http://en.wikipedia.org/wiki/Standard_score
http://en.wikipedia.org/wiki/Mean
http://en.wikipedia.org/wiki/Standard_deviation
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A key mathematical property of the Pearson correlation coefficient is that it is invariant (up to a sign) to separate changes in 

location and scale in the two variables. That is, we may transform X to a + bX  and transform Y to c + dY, where a, b, c, 

and d are constants, without changing the correlation coefficient (this fact holds for both the population and sample Pearson 

correlation coefficients).  

The Pearson correlation can be expressed in terms of uncensored moments.  

Since μX = E(X), σX
2
 = E[(X − E(X))

2
] = E(X

2
) − E

2
(X) and likewise for Y, and since 

            ,YEXEXYEYEYXEXE  the correlation can also be written as 
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Alternative formulae for the sample Pearson correlation coefficient are also available: 

     22221 

  










iiii

iiii

yx

ii

xy

yynxxn

yxyxn

SSn

yxnyx
r

 

 

The above formula suggests a convenient single-pass algorithm for calculating sample correlations, but, depending on the 

numbers involved, it can sometimes be numerically unstable.  

 

VI. CONCLUSION 

The objective of this paper is to build a program that generates an application menu for the user. The system developed is 

able to meet all the basic requirements. There is always a room for improvement in any software, however efficient the 

system may be. The important thing is that the system should be flexible enough for future modifications. The system has 

been factored into different modules to make system adapt to the further changes. Every effort has been made to cover all 

user requirements and make it user friendly. This work presents a density based clustering approach which finds seismic 

zone of highly correlated spatial data within a cluster. This clustering does not require the number of clusters priory and the 

clusters obtained have been found satisfactory on visual inspection and also based on z-score for two real datasets. Work is 

going on for establishing the effectiveness of seismic zone clustering over more real-life datasets. 
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