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ABSTRACT 

 

We consider a class of singular perturbation ODE-BVP associated with, the common Dirichlet boundary 

condition, as one of the most comprehensive and difficult boundary conditions which with boundary layers at 

end points or interior layer. A new improvement of general form of Shishkin piecewise uniform fitted mesh 

technique applied, of adjustable width. Taking into consideration the locating process to find, the true locations 

of the fine subintervals in which corresponding to singular boundary layers (viscous parts) or interior layers, 

occur in their solutions using some well known easy applied techniques, then the fine subinterval also divided to 

two other a little bit different distance subintervals because of  the different rate of convection and diffusion 

phenomenon in the solutions, as alternative of the well known uniform or equidistant mesh for Deferred 

correction method, to introduce what a known by a fitted mesh.  So 4 standard problems solved and then 

compared with versus numerical solution of uniform mesh and Shishkin mesh inside deferred correction method 

for different choices of    and N. In addition to presenting illustrative Matlab plots of most of the mesh 

constructions, the solutions and the epsilon convergence for each case separately in order to show the 

verification of progress and efficiency of the new method relative to both methods.  

 

Keywords: Deferred Correction method, Differential Equation, Mesh generation and refinement, Numerical 

Analysis, Singularly perturbed problems. 

 

  

 

1. INTRODUCTION 

 

A singularly perturbed differential equation (SPDE) problem is a differential equation problem with a small 

parameter    multiplying some or all of the terms involving the highest order derivatives. The physical properties 

associated with a solution containing a boundary layer function are reflected by the mathematical properties of the 

solution of (SPDE). The solution and its derivatives approach a discontinuous limit as   approches zero. These problems 
are characterized by the property that the solution has different asymptotic expansions in distinguished sub domains of 

the entire given domain. They present layers where the solution changes abruptly. If any discretization technique is 

applied, need to analyze carefully the dependence on the parameter   of those constants that arise in consistency, stability 

and error estimates. Truncation error may depend on  . Usually the pointwise error of such solutions increases as the 

mesh is refined, to a stage where the mesh parameter (h) is of the same order of magnitude as the singular 

perturbation parameter    One obvious requirement for a numerical method being applied to these kinds of problems is 

that the pointwise errors of its solutions be bounded independently of    and that they decrease as the mesh is redefined, 

at the rate which should also be independent of  . 

 

2. THE NON-STIFF PROBLEMS REVIEW  

 

The singularly perturbed differential equation problems can also called in general stiff problems, in order to becomes 

non-stiff problems we must take     in all its appearance place inside the problem.    
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A. THE PROBLEM 

 

Our problem is the singularly perturbed two point boundary value problem nonlinear ODE has a form:  

 

                            
                          

 

It is also possible and it is usual in numerical analysis, without losing generality, reducing the restrictions in the equation 

(1b) after a few mathematical processors to homogeneous boundary conditions to reach the final formula: 

 

                                   
         

under additional conditions:  

                               

         
  

      
              

 

Then equation has unique solution             which can be approximated by a three point finite difference method. 

Let let     without loss of generality and   
   

 
 for      and let 

                                  

 

define a uniform mesh on [a, b]. The discrete problem is obtained by replacing     in equation (1) by a second order 

symmetric difference at every interior mesh point:   
             

  
                                 

                         
For short, we can denote equation (1) by  

                         
And in the same spirit of equation (4), the equation (3) will be denoted by   

                          
 

System of equations in the Euclidean space     , the unknown being the vector                 Also   will go to 

zero       and we expect that, in some sense       will converge to the respective function values of the exact 

solution. i.e. for each function      defined in       and satisfy the equation (1b)  we define 

 
 
                        

 . The operator  
 
 is some time referred to as a space discretization. So       converge 

discretely to the exact solution       if: 

   
   

       
 
   

   
                 

Where        is the maximum norm on  
   

 . Where this convergence depends on Consistency and Stability of operator 

  . 

 

Definition (1): The operator     is consistent of order    , if for the solution      of equation (1) and      it holds 

that: 

      
                             

 

Definition (2): The operator    is stable if for any pair of discrete functions      and     , 

                          , such that:  
                                       

 

Lemma (1): If    is a stable then it is locally invertible around  
 
  , and the inverse mapping   

   is uniformly 

Lipschitz continuous for all     . 

 

Theorem (1): Let us assume that the continuous problem        has a unique solution   . Let    be a stable 

discretization on the sphere       
 
       and the consistent of order   with  . Then there is an       such that: 

For any       there exists a unque solution      for the discrete problem          . 

 The discrete solution       satisfy 

       
 
                   

(i.e., they are convergent of order p) [i] 
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B.  CONSISTENCY, STABILITY, AND CONVERGENCE  
 

The local truncation error shows how much our discrete operator fails to represent the continuous operator (for which we 

have        ): 

             
      

                         

  
       

                

And the Taylor's formula expanding around   for       by using the fact that 

                   is 

        
 

       

 

   

                                

 

This expression then shows that the discrete method is consistent of order      to prove that the discrete method in 

equation (2) is stable for    sufficiently small, which through theorem (1) will give us the existence of unique discrete 

solutions of the nonlinear system of equations (2), and there discrete convergence of order    to      . The proof of the 

   stability is basically due to Lees 1964 [ii]. For every    We define the inner product of mesh functions by 

  

                         

   

   

     

This inner product induces a norm over the mesh functions that we denote by  

          
 
                

 

By the usual relationships between the standard    and    norms 

                 we have that  

 
 
               

 
                  

Since 

      
 
       

     

 
 
 
      

Let us consider the difference operators        

       
           

 

       
           

 

                 

It is clear that        
                   

   satisfies: 

                               
We need still another norm in our space, that will involve the difference operator    : 

              
 
           

 

 

   

 

 
 

              

 

Theorem (2): Let          The discretization in equations (3) is stable for satisfying: 

    

      
   

    
 

        
 

 

   

 

Proof: the proof is in (Pereyra 1973) [1] 

Theorem (1), (2), and equation (10) prove that the discretization in equations (3) is convergent of order 2, i.e. 

       
 
                                     

An asymptotic expansion for the global discretization error 

The variational equation associated with (1)  

                                        

                                     
 

Has an unique solution              for each given    functions            If we use, for equation (19), the same 

discretization in equation (2) as we used for equation (1), then an expression similar to equation (10) holds. Therefore we 

have, at the solution of equation (1)  
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Where       is the corresponding solution of equation (19), and    
 

       
  and higher order derivatives of the 

mapping  
 
    coincide, having the form 

 
 
         

   
 

 
    

 

   

   
                 

Theorem (3) 2.6 Let      be as above. Then for      the global discretization error has an asymptotic expansion in 

even powers of  : 

      
 
         

 
       

           

 

   

            

The function       are independent of   and satisfy the linear two point boundary value problems: 

          
        

                                 

The functions    constructed as: 

    
 

  
          

         
 

   
         

 

  
  

       
 

 
       

    
       

In general, the determination of    involves derivatives of the solution   , and earlier error functions            
 . Therefore the    can be determined recursively.   

 

C. DEFERRED CORRECTION METHOD 

 

In this method the approximating difference equations are solved as usual. Their solution is then used to calculate a 

correction term, at each mesh point of the solution domain, which is added to the approximating difference equation at 
each mesh point. The corrected equations are then resolved and the process repeated if necessary. The correction terms 

are numbers obtained by differencing the numerical solution in the x-direction [iii]. As early as 1947, Leslie Fox [iv] 

advocated a technique called Difference Correction. Through the years he ends his collaborators have applied this 

technique to a variety of problems in differential and integral equations. In Fox 1962 [v], a wealth of information on the 

state of the art in the English school can be found. It is there where we the term Deferred Corrections used 

interchangeably with that of difference corrections. The reasons for this switch in nomenclature are not apparent, except 

perhaps for the feeling that technique was in some way connected with the deferred approach to the limit that we were 

discussing in the earlier sections, and also because the name reflected the fact that a posteriori corrections were 

performed. We have preferred to adopt the latest name in our work on this technique since our approach is not tied up (at 

least in appearance) to expansions in terms of differences, as it was in the earlier development. We base our formulation 

of the method on the asymptotic expansion for the local truncation error:  

           

 

   

          
                      

 

Which, only needs smoothness of the exact y(x) and the applications of Taylor's formula for its derivation. For any 

smooth function y(x) we can approximate linear combinations of its derivatives with any order of accuracy in h at any 

grid point by using sufficient ordinates in a neighborhood this is again conscience of a wise applications of the Taylor's 

expansions and numerical differentiations techniques. Thus, there exist weights    such that  

 

           
 
             

        
      
                                                       

 

We shall show later how to obtain    in an efficient and sufficiently accurate way. Observe that we have multiplied 

      by   . In this fashion    becomes a bounded operator (for    ) and most of the danger of numerical 
differentiation formulas are avoided. In fact, Fox's difference correction procedure was mostly advocator desk calculator 

computation, where a table of difference manipulated by an able person was a real asset. Then main contributions of 

these notes, starting with a Stanford Report (Pereyra 1965)[vi], have been to put on a sound theoretical bases the 

asymptotic behavior of Avery general procedure modeled on Fox's difference corrections, and is even more relevant, he 

has produced tools and complete implementations of this technique in a variety applications. However, so many years 

and development later (with some minor changes) the words in Fox's (1963) [vii]. This idea (difference correction) does 

not seem to have penetrated deeply into the literature of automatic computation. Certainly we have to do some 

differencing involving extra programming, extra space, and some difficulties in automatic inspection of differences, but 
machines are getting larger and programming easier, and if we are concerned with accuracy, as we certainly should be, 

something like this was essential.  
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Probably one of the main reasons for this neglect in recent times has been the widespread interest in other high order 

methods (splines, finite elements). Unfortunately, the theoretical developments in these areas have very much surpassed ( 

and overshadowed ) the practical, efficient implementation of the methods. Thus, we find ourselves in the sad situation 

of having a highly promising, very general, theoretical well supported technique, that is begging for an at least equal 

treatment in its practical aspects, while on the other hand, for some applications at least, it is fairly clear that the results 

obtained with our more traditional finite difference technique will be hard to beat. It wasn't surprise if it finally turns out 
that a successful implementation of high order splines methods comes about via a deferred correction type of approach, 

bypassing in some way the very expensive steps of high order quadrature formulae and complicated systems arising from 

the present approaches. See [viii] for a first timid step in that direction. 

 

D. ALGORITHMS 

 

There are many ways of producing differed corrections. Fox's way consisted essentially of representing     as series of 

difference. In the first steps, common to all producers, one would compute using only the first term of the expansion, in 

this case the basic method as equation (3) and then use these o(  ) values in the difference expansion, and recomputed in 
order to obtain a more accurate solution. The process was thought as iterative, providing in infinitely many steps the 

exact solutions. This was never done in practice; in fact it is hard to find any published numerical example in which more 

than two corrections were performed, carrying perhaps three or four terms in the difference expansion. Naturally, the 

reason for this was that on a desk calculator any prolonged computation was a big undertaking. 
 

Let      be the o(  ) solution to equation (3), and let    be, as in equation (2), an o(  ) approximation to    
     

        , the first term in the local truncation error (multiplied by   ). Observe that since there is already a factor 

   in   , we only are requiring an       approximation to       at the grid points. If we have       a available then, 

there is no problem in obtaining the weight    for   . But all we have is     . In principle it cannot be expected that from 

an       discrete approximation to a function one can obtain an       approximation to derivative. It is here where we 
make use of the expansion in equation (21) for the global discretization error. In fact we have that because of linearity 

and equation (2): 

 

    
           

            
           

          

 Such that        . But       
            and               

   
                Therefore, 

    
               and we can use      instead of    

  and still obtain the same asymptotic behavior. With 

    
     computed at every grid point we solve for a corrected value      

             
                  

 

The local truncation error for this new discretization is       and therefore, since we are still talking about the same 

basic operator   , the stability condition proves that there exists a unique solution      to this problem and that  

         
                      

 

Provided we can obtain an asymptotic expansion for         
   

The procedure can be repeated, and each time two more orders in   will be gained. In general, the iterated deffered 

correction procedure can be described in the following way:  

Let      be an           discrete solution. 

Compute          
      an       approximation, to the first       terms in the local truncation error expansion. 

Solve                
      for       . (See Pereyra 1973)[i] 

 

3. AN       METHOD FOR THE PRICE OF AN       METHOD 

 

We consider problem in equation (1) again but we shall use the more accurate       discretization 
             

  
 

 

  
                                   

Where              we symbolize equation (27) by      . By recalling that                   it is easy then to 

derive via Tylor expansions that the local truncation error is in this case: 

      
         

             
   

     
          

 

   

 

Where    
 

           
 

 

 
  

 

The linearized equations that obtain at each Newton step   are the following: 
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Where 

  
          

     
      

   
  

  
     

      
      

               

for short, we can call the left hand side of equation (28):     
        Once      is obtained, then the new iterate 

results: 

  
      

               
because of the stability, it is enough to reduce the residuals    to a level compatible with the global discretization error 
in the final corected solution. In fact,  

          
               and therefor we have that 

                
                

Thus, 
       

                      
                  

and a reasonable stopping criteria for Newton's method is then: 

         
              

Where    is usually chosen to be a small constant unless some more precise information a bout c and C is a vailable. 

Let      be the computed       solution. If we now define 

       
 

  
 
  

   
      

      
  

  
 

  

  

  

   
      

      
  

  
              

And  

                                          

Then by solving  

  
                               

and putting  

                           

We shall have an       approximation. (See -Pereyra 1973) [i] 
 

4. DESCRIPTION OF THE MESH REFINEMENT METHOD: 
 

A. SHISHKIN MESH 

It is also possible, without losing generality, reducing the restrictions in the equation (1) after a few mathematical 

processors to homogeneous. We now describe the Shishkin mesh for convection-diffusion problem Let         and 

     be two mesh parameters. We define a mesh transition point   by 

                                                   

Then the intervals                 are divided into    and        equidistant subintervals (assuming that    is an 

integer). This mesh may be regarded as generated by the mesh generating function 

 

     

 
 

 
  

 
                     

 

 
            

     
  

 
      

    

     
                   

                       

if        ; Again the parameter   is the amount of mesh points used to resolve the layer.  The mesh transition 

point λ has been chosen such that the layer term            is smaller than     on      . Typically   will be chosen 
equal to the formal order of the method or sufficiently large to accommodate the error analysis [ix INT]. The course part 

of this Shishkin mesh has spacing h=(1-q)(1-   )/N, so   N-1≤h≤ qN-1. The fine part has spacing        

  
 

 
        , so    . Thus there is a very abrupt change in mesh size as one passes from the coarse part to the fine 

part. The mesh is not locally quasi-equidistant, uniformly in  . On the mesh                     and      

       for   
 

 
           

A key property, nonequidistant of the Shishkin mesh, for convection diffusion-problems are some time described as 
"layer resolving" meshes. One might infer from this terminology that wherever the derivatives of u are large, the mesh 

is chosen so fine that the truncation error of the difference scheme is controlled. But the Shishkin mesh does not fully 

resolve the layer: for  

                          

so 

                             

Which in general is large since typically       that is         is still large  

on part of the first coarse-mesh interval              . [x] 
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B. CONSTRUCTION THE "PIECEWISE UNIFORM" SHISHKIN FITTED MESH: [
xi

], [
xii

], [
xiii

], [
xiv

],[
xv

]  

 

We will use four construction of Shishkin piecewise uniform fitted mesh, as decoding of the Shishkin function in 

equation (37) , each of, which is a mesh vary depending on the location of the singularity, as follows: 38a, 38b, 38c and 

38d , below represents mapping to fix the location of boundary and interior layers, puts fine part of the mesh, of 

thickness not exceeding the value of transition point indicator    as in equation(36), at the  left, the right, the center, and 
both extreme points (left and right) respectively. 

 

   
 

  
            

     

      
                                    

 

   
     

      
                

 

  
                    

                          

 
 

   
     

      
   

  
     

 
 

 
   

 
 

 

  
    

  
   
 

 
 

   

 
 

 

  
                  

        
     

 
             

 
 

   
 

  
   

  
 
 
 

 
 

 
 

   

      
    

     
 
 
  

   
 

 
 

 

  
                  

        
 

 
                 

 
With regard to norm which is used in these types of problems like equation (1), the reference [xvi], resolved by the favor 

of the use of any Norm, do's not involve averaging namely maximum norm, which is defined by  
        

       
                           

So the maximum error e between the numerical solution    and the exact solution    is 
 

              
       

                                  

 

In this norm we see that differences between distinct functions are detected, irrespective of how small   is. Which mean 

that, the maximum norm is an appropriate norm for the study of  boundary layer phenomena. 

 

5. THE OUTLINE 

 

To find the approximation solution to the problem of equation (1) with the new improvement Shishkin fitted Mesh: 

5.1.  Decide on how many mesh points (sub intervals multiplicand number N). 

5.2. Determine the Shishkin transition point indicator   as in equation (36). 
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5.3.  Allocate fine part of Shishkin mesh on the interval [0,1], corresponding to singularly boundary layer dropping on 

X-axis, which is easy process by deducing it through applying, uniform mesh with the deferred correction method 

numerical solution, once and observing the plot of  the exit solution with the boundary conditions to discover 

lineament of location of  the singular (stiff) layers. 

5.4. The first improvement is by little tuning the value of   in equation (36) until the solution became softer. The 

second improvement let       be arbitrary real number and [f1,f2] be the fine subinterval with length 

       : 

 a- For equations 38a, 38b and 38d we divide the fine subinterval to two another non equal subintervals as follows: 
                              

Then the fine subinterval itself is divided into fine and coarse regions depending on the value of v in the arrangement 

and intensity without a change in the total length D since             , in the case of  if      then the mesh 

will return to normal construction of the Shishkin mesh. 

b- For equations 38c we divide the fine subinterval let denote it by [f1,f2] to three another non equal subintervals as 

follows: 

               
 

 
       

 

 
     

 

 
       

 

 
      

Then the fine subinterval itself is divided into three (two of them same) fine and coarse regions depending on the value 

of v in the arrangement and intensity without a change in the total length D since   

  
 

 
         

 

 
 ,  in the case of  if      then the mesh will return to normal construction of the Shishkin 

mesh. 

5.5. Apply the steps of deferred correction method to find the approximation solution. 
 

6. FLOWCHART OF THE NEW METHOD 
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7. TEST PROBLEM : [xvii], [xviii] 

 

1)                               

             
           

        
  

2)                                              

              
 
     

    
      

  

 
 

    
  

  

 

3)          
   

       
                              

               

4)                                               

               
     

    
      

   
 

 

8. NUMERICAL RESULT 

 

A. TOTAL NUMBER OF IMPLEMENTATION 

 
We present the computational performance of a Matlab implementation on a set of (9120) singularly perturbation BV 

                              as in table (1). The Matlab implementations based on the implementation of the 

eight order Deferred Correction method-uniform mesh provided by V. Pereyra 1973 [i] without slightest changes in 

composition of the Deferred Correction operator except the mesh was changed three time; uniform mesh represented in 

equation (2b); as (algorithm1), Shishkin mesh represented in equations (38); as (algorithm 2) and the new proposed 

improvement mesh represented in step(4) of the outline; as (algorithm 3). The comparisons of algorithms based on 

maximum error as in the equation (39). 

 

Table (1): Total number of implementation 

 

No. of No. of No. of No. of Total No. of 

Prob. 
Algorithm

s 
  values N values Implementation 

4 3 10 76 9120 

 

B. DETAILS 

 

Details of table (1) are given in the following context arranged in table (2) 

 

Table (2): Context of the choice of each of the fine layer location, perturbation parameter  , Shishkin ratio 

q and sub intervals multiplicand number N in the numerical results and comparisons. 

 

Prob. 
No. 

Type of layer   q N #N 

1 Boundary at x=0 
1.00E-04 

7/8 
40 48 56 … 80 88 7 

1.00E-05 16 24 32 … 72 80 9 

2 Boundary at x=1 

1.00E-03 

1/2 

32 40 48 … 72 80 7 

1.00E-04 24 32 40 … 64 72 7 

1.00E-05 40 48 56 ... 88 96 8 

3 Centered at x=0 
1.00E-05 

1/2 
160 168 176 … 200 208 7 

1.00E-06 312 320 328 … 360 368 8 

4 

Boundary at both 

end points x=-1 & 
x=1 

1.00E-04 

1/2 

56 64 72 … 104 112 8 

1.00E-05 208 216 224 … 256 264 8 

1.00E-06 1048 1056 1064 … 1088 1096 7 

Number of taken values of  N 76 
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C. SOME MATLAB PLOTS OF MESHES CONSTRUCTION 
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D. Matlab plots illustrate solutions of the new 

algorithm together with the exact solutions 
 

E.  
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F. Matlab plots compare the convergence of the three 

algorithm: 
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