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ABSTRACT 

 

This paper given a new type hybrid conjugate gradient method for solving unconstrained optimization. The 

basic idea is to choose a new formula, and by searching a particular direction, the new method possess the 

descent property. The global convergence is established. The numerical results show that the given method is 

competitive to the other conjugate gradient methods for the test problems. 
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INTRODUCTION 

 

Optimization problems can be classified as unconstrained optimization problems and constrained optimization 

problems. The mathematical description of unconstrained optimization problems is that : 

min
n

R  x,  )( xf    )1(..........  

where f  is smooth and its gradient g  is available. Conjugate gradient method is quite useful in finding an  

unconstrained  minimum of a high-dimensional function f . The iterates of conjugate gradient methods are obtained 

by : 
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where 
k

  is step size  is determined a line search step satisfying the sufficient descent condition :   

2
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T

k
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in addition to the standard Wolfe conditions, that is, the step size satisfying : 
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where 10
21
  are constants with the search direction are computed as : 
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k
  is a suitable scale known as the conjugate gradient parameter. 

The Fletcher-Reevers and Hestenes-Stiefel methods are two well-known conjugate gradient methods, they are 

specified by : 
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where  
kkk

ggy 
1

 and .  stands for the  Euclidean norm. For ease of presentation we call the methods 

corresponding to FR method [4] and HS method [5], respectively. Other conjugate gradient methods can be found 

[2,3,8,10] et al . . . 
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In the same context based on the quadratic model Hideaki and Yasushi [6] proposed the updating formulas as : 

)(/2
,

)(/2
1

1

1

2

1















kkk

k

T

kHYY

k

kkk

kHYG

k

ff

yg

ff

g





  )8(..........  

 

Important difference between HYG and HYY is that with HYY the has nice numerical results and on the other hand 

HYG have strong convergence properties. We combine the HYY method which has good numerical results with the 

HYG method which has strong convergence properties.  

 

The paper is organized as follows. In Section 2 we construct a new hybrid method BGY, using the convex combination 

of parameters from the HYG method and from the HYY method. In this section we also find the formula for 

computing the parameter ],1,0[
k

 which is relevant for our method and we present the algorithm BGY. In Section 

3 We prove that under some assumptions the search direction of our method satisfies the descent condition and global 

convergence is established. Section 4 contains some numerical experiments. Finally we present the conclusion in the 

last part. 
 

Hybridization of HYG and HYY 

 

In this section, we completely describe a new hybrid method. Our new method is a convex combination of HYG and 

HYY method. Now we define the next conjugate gradient parameter as:  
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kk
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k
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Hence, the direction 
k

d  is given by : 
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The parameter 
k

  is the scalar parameter to be determined later. Obviously, if ,1
k

  then 
HYG

k

HBA

k
  , and if 

,0
k

  then 
HYY

k

HBA

k
  . On the other hand, if ,10 

k
  then, 

HBA

k
  is a convex combination of the 

parameters  
HYY

k
  and 
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k
 . 

 

Theorem 1.  

If the relations )9(  and )10( hold, then : 
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Proof : 

Having in view the relations 
HYG

k
  and ,
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k
  the relation )9(  becomes : 
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so, the relation )10(  becomes : 
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In further consideration of the relation ),13(  we can get : 
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The last relation yields ; 

))(1()(
111 k

HYY

kkkk

HYG

kkk

HBA

k
sgsgd  


.      )16(..........  

From )16(  we finally conclude : 
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We shall find the value of the parameter 
k

  in such a way that the conjugacy condition : 
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HBA

k

T

k
dy .      )18(..........  

holds. 

Firstly, we multiply both sides of the relation )13(  by 
T

k
y  from the left : 
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It is possible that ,
k

 calculated as in ),23(  has the values outside the interval [0, 1]. However. In order to have a real 

convex combination in 
)14(

 the following rule is used : if ,0
k
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k
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1k
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combines the properties of the HYY and the HYG algorithms in a convex way. 

 

Now, we can outline our new algorithm as follows: 

  

 Outline of the new algorithms: 
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International Journal of Enhanced Research in Science, Technology & Engineering 

ISSN: 2319-7463, Vol. 6 Issue 10, October-2017, Impact Factor: 4.059 

Page | 58  

CONVERGENCE ANALYSIS 

 

For further considerations we need the next assumptions : 

i- The level set  )()(
0

xfxfRxL
n

  is bounded. 

ii- In some neighborhood U  and )(, xfL  is continuously differentiable and its gradient id Lipschitz continuous, 

namely, there exists a constant 0L  such that : 
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Under these assumptions on ,f  there exists a constant  then a constant 0 exists, such that : 
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for all Lx  . More details can be found in [9]. 

 

In [7] it is proved that for any conjugate gradient method with the strong Wolfe line search, it holds : 

 

Lemma 1.  

  Let assumptions (i) and (ii) holds. Consider the method )2( and )6( , where 
1k
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We first prove the descent property in this subsection. 

 

Theorem 2. 

Let Assumptions (i)  and (ii) hold and let Wolfe conditions )5()4(   hold. Also, let  
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So, if ,0
k

  the sufficient descent holds for the hybrid method, if it holds for HYY method. We can prove the 

descent for HYY method under the conditions of Theorem 2. . It holds: 
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  we get: 
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But, under the Wolfe line search, HYG method satisfies the descent condition [6]. 
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Next, we show the convergence of the HBA method. 

 

Theorem  3. 
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Next, it holds : 
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             Using Lemma 1, we conclude that this is a contradiction. So, we finish the proof. 

 

NUMERICAL RESULTS 

 

In this section we present the computational performance of a Fortran implementation of the CG algorithm on a set of 
15 unconstrained optimization test problems. The test problems are the unconstrained problems in the CUTE  library, 

along with other large-scale optimization problems presented in [1]. 

 

All algorithms implement the Wolfe line search conditions (4)-(5) with 001.0
1
  and 9.0

2
 , and the 

same stopping criterion 
6

1
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




k
g  .  

Tables 1 list numerical results. The meaning of each column is as follows : NI : number of iterations. NF : 

number of function evaluations.  

So, the  limited numerical experiments (Table 1) indicate that the algorithm HBA is potentially efficient. 

 

CONCLUSION 

 

In this paper, we propose a new hybrid conjugate gradient method known as HBA. This method possessed good 

performance when compared to other classical CG. Based on the theoretical proof and the numerical result in table 1, it 

is shown that this HBA converges globally. 

 

Table 1: Comparison of different CG-algorithms with different test functions and different dimensions 

 

                                   FR algorithm              HBA algorithm           HBA with 5.0u    

                         P. No.            n                NI               NF             NI               NF              NI               NF 

34 18 35 19 35 19 100 1 

65 38 66 36 65 38 1000  

87 41 84 40 88 43 100 2 

89 40 92 40 92 46 1000  

25 13 25 13 64 32 100 3 

28 14 30 16 129 77 1000  

133 69 137 72 313 180 100 4 
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124 65 154 81 F F 1000  

146 78 90 51 231 124 100 5 

309 172 317 183 711 445 1000  

58 31 56 29 110 71 100 6 

65 34 62 31 84 47 1000  

210 87 206 85 217 101 100 7 

203 85 207 87 214 101 1000  

60 28 57 26 65 32 100 8 

84 34 88 37 116 53 1000  

67 43 53 34 65 40 100 9 

F F 67 41 68 43 1000  

555 351 657 414 605 398 100 10 

F F F F F F 1000  

125 77 142 90 218 121 100 11 

383 245 423 266 634 345 1000  

128 80 135 84 123 74 100 12 

401 239 430 259 616 370 1000  

16 8 16 8 18 9 100 13 

15 7 20 9 82 12 1000  

36 20 33 18 45 23 100 14 

46 21 44 19 55 27 1000  

44 22 46 23 43 25 100 15 

367 35 564 44 741 46 1000  

3779 1930 4115 2033 5391 2723  Total 

Fail: The  algorithm  fail to converge.   

 

Problems numbers indicant for: 1. is the Trigonometric, 2. is the Extended White & Holst, 3. is the Extended 

Tridiagonal 1, 4. is the Extended Powell, 5. is the Quadratic Diagonal Perturbed, 6. is the Extended Wood, 7. is the 

Extended Hiebert, 8. is the Extended Quadratic Penalty, 9. is the Extended Tridiagonal  2, 10. is the TRIDIA 

(CUTE), 11. is the DIXMAANE (CUTE), 12. is the Partial Perturbed Quadratic, 13. is the ARWHEAD (CUTE), 14. 

is the LIARWHD (CUTE), 15. is the Generalized Tridiagonal 1 . 
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